Springer-Verlag Berlin Heidelberg GmbH

Ralf Kories • Heinz Schmidt-Walter

# Electrical Engineering 

## A Pocket Reference

With 610 Figures

## Library of Congress Cataloging-in-Publication Data

Kories, Ralf
Electrical engineering : a pocket reference / Ralf Kories, Heinz Schmidt-Walter. p.cm.

Includes bibliographical references and index.
ISBN 978-3-540-43965-3 ISBN 978-3-642-55629-6 (eBook)
DOI 10.1007/978-3-642-55629-6

1. Electric engineering-Handbooks, manuals, etc. I. Schmidt-Walter, Heinz. II. Title.

## TK151.K583 2003

621.3--dc21

## ISBN 978-3-540-43965-3

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Typesetting and final processing: PTP-Berlin Protago-TeX-Production GmbH, Berlin Cover-Design: design \& production GmbH, Heidelberg
Printed on acid-free paper $\quad 62 / 3141 \mathrm{Yu}-543210$

## Preface

## Purpose

The purpose of the Electrical Engineering - A Pocket Reference is to provide the basics of electrical engineering and electronics in a single handy volume.

The book addresses university students in electrical engineering, telecommunications, computer engineering as well as other engineering disciplines with a minor in electrical engineering.

The book is a lot more than a collection of equations. It provides concise explanation of fundamental principles and their application.
The appendix collects useful reference data on standards, electrical, physical and chemical data on materials, etc. An extensive list of commonly used acronyms is included.
We hope that students will find this book helpful for reviewing classroom material, prepare for exams and understanding fundamental principles.
From the German edition we learned that quite a number of practising engineers keep the book on their shelves for ready reference.

## Organisation

The book is organized the way most electrical engineering curricula are taught. We tried to avois extensive cross-referencing between chapters. Need-to-know facts are provided in the context where and how you need them.
An extensive number of figures illustrates basic facts and principles. Numerous tables are provided to summarize facts and relations.
To make sure each symbol in an equation you look up for reference is well understood, each chapter provides a list of symbols with their meanings and physical units.

Useful mathematical relations in a notation suitable for their application in electrical engineering are listed in the Appendix. Fourier transforms are given in both ( $\omega$ and f ) notations to avoid confusion and mistakes by converting one into another.

An extensive index helps to find subject matters easily, entries for overview tables are highlighted in bold print.
No electrical device functions without a power supply. The last chapter gives an insight into state-of-the-art power supply technology drawing on all previous chapters. This is a useful source of information for novices and practising engineers.

## Acknowledgement

The book is the result of collaborative work of faculty from three European Universities. We are greatfully indebted to Elmar Jung and Paul O'Leary from the Dublin Institute of Technology for translating the German edition. Our thanks extend to Christopher Bruce, Frank Duignan and Eugene Coyle for initial proof reading and many useful comments.

The book wouldn't have come into beeing without Elmar Jung's efforts in typesetting. We gratefully acknowledge the meticulous copy editing work by Ms. Tracey Wilbourn. The final form of the book owes much to their collective efforts.

Finally we would like to thank hundreds of readers who over the years provided us with tips and hints how to improve the book to make it even more useful to our readership.

The Authors

## Contents

1 DC Systems ..... 1
1.1 Basic Quantities, Basic Laws ..... 1
1.1.1 Electric Charge ..... 1
1.1.2 Electric Current ..... 1
1.1.3 Voltage and Potential ..... 2
1.1.4 Ohm's Law ..... 2
1.1.5 Resistance and Conductance ..... 3
1.1.6 Temperature Dependence of Resistance ..... 3
1.1.7 Inductance ..... 4
1.1.8 Capacitance ..... 4
1.1.9 Ideal Voltage Source ..... 5
1.1.10 Ideal Current Source ..... 5
1.1.11 Kirchhoff's Law ..... 6
1.1.11.1 Kirchhoff's First Law (Current Law) ..... 6
1.1.11.2 Kirchhoff's Second Law (Voltage Law) ..... 6
1.1.12 Power and Energy ..... 7
1.1.12.1 Energy and Power in a Resistor ..... 7
1.1.12.2 Energy in an Inductor ..... 8
1.1.12.3 Energy in a Capacitor ..... 9
1.1.13 Efficiency ..... 9
1.1.14 Maximum Power Transfer ..... 10
1.2 Basic Circuits ..... 11
1.2.1 Real Voltage and Current Sources ..... 11
1.2.1.1 Real Voltage Source ..... 11
1.2.1.2 Real Current Source ..... 12
1.2.1.3 Voltage-Current Source Conversion ..... 13
1.2.2 Circuit Elements in Series and Parallel ..... 13
1.2.2.1 Series Combination of Resistors ..... 13
1.2.2.2 Parallel Combination of Resistors ..... 13
1.2.2.3 Series Combination of Conductances ..... 14
1.2.2.4 Parallel Combination of Conductances ..... 14
1.2.2.5 Series Combination of Inductances ..... 15
1.2.2.6 Parallel Combination of Inductances ..... 15
1.2.2.7 Series Combination of Capacitances ..... 16
1.2.2.8 Parallel Combination of Capacitances ..... 16
1.2.3 Star-Delta Transformation ..... 17
1.2.4 Voltage and Current Divider ..... 18
1.2.4.1 Voltage Divider ..... 18
1.2.4.2 Current Divider ..... 18
1.2.4.3 Capacitive and Inductive Dividers ..... 19
1.2.5 $R C$ and $R L$ Combinations ..... 19
1.2.5.1 Series Combination of $R$ and $C$ Driven by a Voltage Source ..... 21
1.2.5.2 Series Combination of $R$ and $C$ Driven by a Current Source ..... 21
1.2.5.3 Parallel Combination of $R$ and $C$ Driven by a Current Source ..... 22
1.2.5.4 Parallel Combination of $R$ and $C$ Driven by a Voltage Source ..... 22
1.2.5.5 Series Combination of $R$ and $L$ Driven by a Voltage Source ..... 23
1.2.5.6 Series Combination of $R$ and $L$ Driven by a Current Source ..... 23
1.2.5.7 Parallel Combination of $R$ and $L$ Driven by a Voltage Source ..... 24
1.2.5.8 Parallel Combination of $R$ and $L$ Driven by a Current Source ..... 24
1.2.6 RLC Combinations ..... 25
1.2.6.1 Series Combination of $R, L$ and $C$ ..... 26
1.3 Calculation Methods for Linear Circuits ..... 29
1.3.1 Rules for Signs ..... 29
1.3.2 Circuit Calculation with Mesh and Node Analysis ..... 30
1.3.3 Superposition ..... 31
1.3.4 Mesh Analysis ..... 32
1.3.5 Node Analysis ..... 33
1.3.6 Thévenin's and Norton's Theorem ..... 33
1.3.6.1 Calculating a Load Current by Thévenin's Theorem ..... 34
1.3.6.2 Calculating a Current Within a Network ..... 36
1.4 Notation Index ..... 37
1.5 Further Reading ..... 38
2 Electric Fields ..... 39
2.1 Electrostatic Fields ..... 39
2.1.1 Coulomb's Law ..... 39
2.1.2 Definition of Electric Field Strength ..... 40
2.1.3 Voltage and Potential ..... 41
2.1.4 Electrostatic Induction ..... 42
2.1.5 Electric Displacement ..... 43
2.1.6 Dielectrics ..... 44
2.1.7 The Coulomb Integral ..... 44
2.1.8 Gauss's Law of Electrostatics ..... 45
2.1.9 Capacitance ..... 46
2.1.10 Electrostatic Field at a Boundary ..... 47
2.1.11 Overview: Fields and Capacitances of Different Geometric Con- figurations ..... 48
2.1.12 Energy in an Electrostatic Field ..... 49
2.1.13 Forces in an Electrostatic Field ..... 50
2.1.13.1 Force on a Charge ..... 50
2.1.13.2 Force at the Boundary ..... 50
2.1.14 Overview: Characteristics of an Electrostatic Field ..... 52
2.1.15 Relationship between the Electrostatic Field Quantities ..... 53
2.2 Static Steady-State Current Flow ..... 53
2.2.1 Voltage and Potential ..... 53
2.2.2 Current ..... 54
2.2.3 Electric Field Strength ..... 54
2.2.4 Current Density ..... 55
2.2.5 Resistivity and Conductivity ..... 56
2.2.6 Resistance and Conductance ..... 57
2.2.7 Kirchhoff's Laws ..... 58
2.2.7.1 Kirchhoff's First Law (Current Law) ..... 58
2.2.7.2 Kirchhoff's Second Law (Mesh Law) ..... 59
2.2.8 Static Steady-State Current Flow at Boundaries ..... 60
2.2.9 Overview: Fields and Resistances of Different Geometric Configurations ..... 61
2.2.10 Power and Energy in Static Steady-State Current Flow ..... 62
2.2.11 Overview: Characteristics of Static Steady-State Current Flow ..... 63
2.2.12 Relationship Between Quantities in Static Steady-StateCurrent Flow ..... 64
2.3 Magnetic Fields ..... 64
2.3.1 Force on a Moving Charge ..... 65
2.3.2 Definition of Magnetic Flux Density ..... 66
2.3.3 Biot-Savart's Law ..... 68
2.3.4 Magnetic Field Strength ..... 69
2.3.5 Magnetic Flux ..... 70
2.3.6 Magnetic Voltage and Ampere's Law ..... 71
2.3.7 Magnetic Resistance, Magnetic Conductance, Inductance ..... 73
2.3.8 Materials in a Magnetic Field ..... 74
2.3.8.1 Ferromagnetic Materials ..... 75
2.3.9 Magnetic Fields at Boundaries ..... 77
2.3.10 The Magnetic Circuit ..... 78
2.3.11 Magnetic Circuit with a Permanent Magnet ..... 80
2.3.12 Overview: Inductances of Different Geometric Configurations ..... 82
2.3.13 Induction ..... 83
2.3.13.1 Induction in a Moving Electrical Conductor ..... 83
2.3.13.2 Faraday's Law of Induction ..... 84
2.3.13.3 Self-Induction ..... 87
2.3.14 Mutual Induction ..... 88
2.3.15 Transformer Principle ..... 90
2.3.16 Energy in a Magnetic Field ..... 90
2.3.16.1 Energy in a Magnetic Circuit with an Air Gap ..... 91
2.3.17 Forces in a Magnetic Field ..... 92
2.3.17.1 Force on a Current-Carrying Conductor ..... 92
2.3.17.2 Force at the Boundaries ..... 93
2.3.18 Overview: Characteristics of a Magnetic Field ..... 94
2.3.19 Relationship between the Magnetic Field Quantities ..... 95
2.4 Maxwell's Equations ..... 95
2.5 Notation Index ..... 96
2.6 Further Reading ..... 98
3 AC Systems ..... 99
3.1 Mathematical Basics of AC ..... 99
3.1.1 Sine and Cosine Functions ..... 99
3.1.1.1 Addition of Sinusoidal Waveforms ..... 100
3.1.2 Complex Numbers ..... 101
3.1.2.1 Complex Arithmetic ..... 102
3.1.2.2 Representation of Complex Numbers ..... 103
3.1.2.3 Changing Between Different Representations ..... 105
3.1.3 Complex Calculus ..... 105
3.1.3.1 Complex Addition and Subtraction ..... 105
3.1.3.2 Multiplication of Complex Numbers ..... 106
3.1.4 Overview: Complex Number Arithmetic ..... 107
3.1.5 The Complex Exponential Function ..... 107
3.1.5.1 Exponential Function with Imaginary Exponents ..... 108
3.1.5.2 Exponential Function with Complex Exponents ..... 108
3.1.6 Trigonometric Functions with Complex Arguments ..... 109
3.1.7 From Sinusoidal Waveforms to Phasors ..... 109
3.1.7.1 Complex Magnitude ..... 109
3.1.7.2 Relationship Between Sinusoidal Waveforms and Phasors ..... 110
3.1.7.3 Addition and Subtraction of Phasors ..... 111
3.2 Sinusoidal Waveforms ..... 112
3.2.1 Characteristics of Sinusoidal Waveforms ..... 113
3.2.2 Characteristics of Nonsinusoidal Waveforms ..... 115
3.3 Complex Impedance and Admittance ..... 116
3.3.1 Impedance ..... 116
3.3.2 Complex Impedance of Passive Components ..... 118
3.3.2.1 Resistor ..... 118
3.3.2.2 Inductor ..... 118
3.3.2.3 Capacitor ..... 118
3.3.3 Admittance ..... 119
3.3.4 Complex Admittance of Passive Components ..... 120
3.3.5 Overview: Complex Impedance ..... 121
3.4 Impedance of Passive Components ..... 122
3.5 Combinations of Passive Components ..... 123
3.5.1 Series Combinations ..... 123
3.5.1.1 General Case ..... 123
3.5.1.2 Resistor and Inductor in Series ..... 124
3.5.1.3 Resistor and Capacitor in Series ..... 125
3.5.1.4 Resistor, Inductor and Capacitor in Series ..... 126
3.5.2 Parallel Combinations ..... 128
3.5.2.1 General Case ..... 128
3.5.2.2 Resistor and Inductor in Parallel ..... 129
3.5.2.3 Resistor and Capacitor in Parallel ..... 130
3.5.2.4 Resistor, Inductor and Capacitor in Parallel ..... 132
3.5.3 Overview of Series and Parallel Circuits ..... 134
3.6 Network Transformations ..... 135
3.6.1 Transformation from Parallel to Series Circuits and Vice Versa ..... 135
3.6.2 Star-Delta (Wye-Delta) and Delta-Star (Delta-Wye)
Transformations ..... 137
3.6.3 Circuit Duality ..... 139
3.7 Simple Networks ..... 140
3.7.1 Complex Voltage and Current Division ..... 140
3.7.2 Loaded Complex Voltage Divider ..... 142
3.7.3 Impedance Matching ..... 143
3.7.4 Voltage Divider with Defined Input and Output Resistances ..... 145
3.7.5 Phase-Shifting Circuits ..... 146
3.7.5.1 RC Phase Shifter ..... 146
3.7.5.2 Alternative Phase-Shifting Circuits ..... 148
3.7.6 AC Bridges ..... 149
3.7.6.1 Balancing Condition ..... 149
3.7.6.2 Application: Measurement Technique ..... 150
3.8 Power in AC Circuits ..... 151
3.8.1 Instantaneous Power ..... 151
3.8.1.1 Power in a Resistance ..... 151
3.8.1.2 Power in a Reactive Element ..... 151
3.8.2 Average Power ..... 152
3.8.2.1 Real Power ..... 153
3.8.2.2 Reactive Power ..... 154
3.8.2.3 Apparent Power ..... 155
3.8.3 Complex Power ..... 155
3.8.4 Overview: AC Power ..... 156
3.8.5 Reactive Current Compensation ..... 156
3.9 Three-Phase Supplies ..... 158
3.9.1 Polyphase Systems ..... 158
3.9.2 Three-Phase Systems ..... 159
3.9.2.1 Properties of the Complex Operator $\underline{a}$ ..... 160
3.9.3 Delta-Connected Generators ..... 161
3.9.4 Star-Connected Generators ..... 162
3.10 Overview: Symmetrical Three-Phase Systems ..... 164
3.10.1 Power in a Three-Phase System ..... 165
3.11 Notation Index ..... 166
3.12 Further Reading ..... 167
4 Current, Voltage and Power Measurement ..... 169
4.1 Electrical Measuring Instruments ..... 169
4.1.1 Moving-Coil Instrument ..... 169
4.1.2 Ratiometer Moving-Coil Instrument ..... 169
4.1.3 Electrodynamic Instrument ..... 170
4.1.4 Moving-Iron Instrument ..... 171
4.1.5 Other Instruments ..... 171
4.1.6 Overview: Electrical Instruments ..... 173
4.2 Measurement of DC Current and Voltage ..... 174
4.2.1 Moving-Coil Instrument ..... 174
4.2.2 Range Extension for Current Measurements ..... 174
4.2.3 Range Extension for Voltage Measurements ..... 175
4.2.4 Overload Protection ..... 176
4.2.5 Systematic Measurement Errors in Current and Voltage Measurement ..... 176
4.3 Measurement of AC Voltage and AC Current ..... 177
4.3.1 Moving-Coil Instrument with Rectifier ..... 177
4.3.2 Moving-Iron Instruments ..... 179
4.3.3 Measurement Range Extension Using an Instrument Transformer ..... 179
4.3.4 RMS Measurement ..... 180
4.4 Power Measurement ..... 181
4.4.1 Power Measurement in a DC Circuit ..... 181
4.4.2 Power Measurement in an AC Circuit ..... 182
4.4.2.1 Three-Voltmeter Method ..... 183
4.4.2.2 Power Factor Measurement ..... 184
4.4.3 Power Measurement in a Multiphase System ..... 185
4.4.3.1 Measurement of the Real Power in a Multiphase System ..... 185
4.4.3.2 Measurement of the Reactive Power in a Multiphase System ..... 186
4.5 Measurement Errors ..... 187
4.5.1 Systematic and Random Errors ..... 187
4.5.2 Guaranteed Error Limits ..... 188
4.6 Overview: Symbols on Measurement Instruments ..... 188
4.7 Overview: Measurement Methods ..... 190
4.8 Notation Index ..... 190
4.9 Further Reading ..... 191
5 Networks at Variable Frequency ..... 192
5.1 Linear Systems ..... 192
5.1.1 Transfer Function, Amplitude and Phase Response ..... 192
5.2 Filters ..... 194
5.2.1 Low-Pass Filter ..... 195
5.2.2 High-Pass Filter ..... 195
5.2.3 Bandpass Filter ..... 196
5.2.4 Stop-Band Filter ..... 197
5.2.5 All-Pass Filter ..... 197
5.3 Simple Filters ..... 197
5.3.1 Low-Pass Filter ..... 197
5.3.1.1 Rise Time ..... 198
5.3.2 Frequency Normalisation ..... 199
5.3.2.1 Approximation of the Magnitude Response ..... 200
5.3.3 High-Pass Filter ..... 200
5.3.3.1 Approximation of the Magnitude Response ..... 202
5.3.4 Higher-Order Filters ..... 202
5.3.5 Bandpass Filter ..... 204
5.3.6 Filter Realisation ..... 206
5.4 Notation Index ..... 206
5.5 Further Reading ..... 207
6 Signals and Systems ..... 208
6.1 Signals ..... 208
6.1.1 Definitions ..... 208
6.1.2 Symmetry Properties of Signals ..... 209
6.2 Fourier Series ..... 210
6.2.1 Trigonometric Form ..... 210
6.2.1.1 Symmetry Properties ..... 211
6.2.2 Amplitude-Phase Form ..... 211
6.2.3 Exponential Form ..... 212
6.2.3.1 Symmetry Properties ..... 213
6.2.4 Overview: Fourier Series Representations ..... 213
6.2.5 Useful Integrals for the Calculation of Fourier Coefficients ..... 214
6.2.6 Useful Fourier Series ..... 215
6.2.7 Application of the Fourier Series ..... 217
6.2.7.1 Spectrum of a Rectangular Signal ..... 217
6.2.7.2 Spectrum of a Sawtooth Signal ..... 218
6.2.7.3 Spectrum of a Composite Signal ..... 219
6.3 Systems ..... 220
6.3.1 System Properties ..... 220
6.3.1.1 Linear Systems ..... 220
6.3.1.2 Causal Systems ..... 221
6.3.1.3 Time-Invariant Systems ..... 221
6.3.1.4 Stable Systems ..... 222
6.3.1.5 LTI Systems ..... 222
6.3.2 Elementary Signals ..... 222
6.3.2.1 The Step Function ..... 222
6.3.2.2 The Rectangular Pulse ..... 222
6.3.2.3 The Triangular Pulse ..... 223
6.3.2.4 The Gaussian Pulse ..... 223
6.3.2.5 The Impulse Function (Delta Function) ..... 224
6.3.3 Shifting and Scaling of Time Signals ..... 225
6.3.4 System Responses ..... 226
6.3.4.1 Impulse Response ..... 226
6.3.4.2 Step Response ..... 227
6.3.4.3 System Response to Arbitrary Input Signals ..... 228
6.3.4.4 Rules of Convolution ..... 228
6.3.4.5 Transfer Function ..... 230
6.3.4.6 System Response Calculation in the Frequency Domain ..... 230
6.3.5 Impulse and Step Response Calculation ..... 231
6.3.5.1 Normalisation of Circuits ..... 231
6.3.5.2 Impulse and Step Response of First-Order Systems ..... 232
6.3.5.3 Impulse and Step Response of Second-Order Systems ..... 234
6.3.6 Ideal Systems ..... 236
6.3.6.1 Distortion-Free Systems ..... 236
6.3.6.2 Ideal Low-Pass Filter ..... 238
6.3.6.3 Ideal Bandpass Filter ..... 240
6.4 Fourier Transforms ..... 241
6.4.1 Principle ..... 241
6.4.2 Definition ..... 242
6.4.3 Representation of the Fourier Transform ..... 243
6.4.3.1 Symmetry Properties ..... 244
6.4.4 Overview: Properties of the Fourier Transform ..... 244
6.4.5 Fourier Transforms of Elementary Signals ..... 245
6.4.5.1 Spectrum of the Delta Function ..... 245
6.4.5.2 Spectrum of the Signum and the Step Functions ..... 246
6.4.5.3 Spectrum of the Rectangular Pulse ..... 247
6.4.5.4 Spectrum of the Triangular Pulse ..... 247
6.4.5.5 Spectrum of the Gaussian Pulse ..... 248
6.4.5.6 Spectrum of Harmonic Functions ..... 249
6.4.6 Summary of Fourier Transforms ..... 250
6.5 Nonlinear Systems ..... 253
6.5.1 Definition ..... 253
6.5.2 Characterisation of Nonlinear Systems ..... 253
6.5.2.1 Characteristic Equation ..... 253
6.5.2.2 Total Harmonic Distortion ..... 254
6.5.2.3 Signal-to-Intermodulation Ratio ..... 255
6.6 Notation Index ..... 258
6.7 Further Reading ..... 259
7 Analogue Circuit Design ..... 261
7.1 Methods of Analysis ..... 261
7.1.1 Linearisation at the Operating Point ..... 261
7.1.2 AC Equivalent Circuit ..... 262
7.1.3 Input and Output Impedance ..... 263
7.1.3.1 Determination of the Input Impedance ..... 263
7.1.3.2 Determination of the Output Impedance ..... 263
7.1.3.3 Combination of Two-Terminal Networks ..... 264
7.1.4 Two-Port Networks ..... 265
7.1.4.1 Two-Port Network Equations ..... 265
7.1.4.2 Hybrid Parameters ( $h$-Parameters) ..... 265
7.1.4.3 Admittance Parameters ( $y$-Parameters) ..... 266
7.1.5 Block Diagrams ..... 267
7.1.5.1 Calculation Rules for Block Diagrams ..... 268
7.1.6 Bode Plot ..... 269
7.2 Silicon and Germanium Diodes ..... 269
7.2.1 Current-Voltage Characteristic of Si and Ge Diodes ..... 270
7.2.2 Temperature Dependency of the Threshold Voltage ..... 270
7.2.3 Dynamic Resistance (Differential Resistance) ..... 271
7.3 Small-Signal Amplifier with Bipolar Transistors ..... 271
7.3.1 Transistor Characteristics ..... 272
7.3.1.1 Symbols, Voltages and Currents for Bipolar Transistors ..... 272
7.3.1.2 Output Characteristics ..... 272
7.3.1.3 Transfer Characteristic ..... 273
7.3.1.4 Input Characteristic ..... 273
7.3.1.5 Static Current Gain $\beta_{\mathrm{DC}}$ ..... 274
7.3.1.6 Differential Current Gain $\beta$ ..... 274
7.3.1.7 Transconductance $g_{\mathrm{m}}$ ..... 275
7.3.1.8 Thermal Voltage Drift ..... 275
7.3.1.9 Differential Input Resistance $r_{\mathrm{BE}}$ ..... 275
7.3.1.10 Differential Output Resistance $r_{\mathrm{CE}}$ ..... 275
7.3.1.11 Reverse Voltage-Transfer Ratio $A_{\mathrm{r}}$ ..... 276
7.3.1.12 Unity Gain and Critical Frequencies ..... 276
7.3.2 Equivalent Circuits ..... 276
7.3.2.1 Static Equivalent Circuit ..... 276
7.3.2.2 AC Equivalent Circuit ..... 277
7.3.2.3 The Giacoletto Equivalent Circuit ..... 278
7.3.3 Darlington Pair ..... 278
7.3.3.1 Pseudo-Darlington Pair ..... 279
7.3.4 Basic Circuits with Bipolar Transistors ..... 280
7.3.5 Common-Emitter Circuit ..... 280
7.3.5.1 Common-Emitter Circuit Two-Port Network Equations ..... 281
7.3.5.2 Common-Emitter AC Equivalent Circuit ..... 282
7.3.5.3 Common-Emitter Circuit Input Impedance ..... 283
7.3.5.4 Common-Emitter Circuit Output Impedance ..... 284
7.3.5.5 Common-Emitter Circuit AC Voltage Gain ..... 285
7.3.5.6 Operating Point Biasing ..... 286
7.3.5.7 Operating Point Stabilisation ..... 288
7.3.5.8 Load Line ..... 290
7.3.5.9 Common-Emitter Circuit at High Frequencies ..... 291
7.3.6 Common-Collector Circuit (Emitter Follower) ..... 291
7.3.6.1 Common-Collector AC Equivalent Circuit ..... 292
7.3.6.2 Common-Collector Circuit Input Impedance ..... 293
7.3.6.3 Common-Collector Circuit Output Impedance ..... 293
7.3.6.4 Common-Collector Circuit AC Current Gain ..... 294
7.3.6.5 Common-Collector Circuit at High Frequencies ..... 294
7.3.7 Common-Base Circuit ..... 294
7.3.7.1 Common-Base AC Equivalent Circuit ..... 295
7.3.7.2 Common-Base Circuit Input Impedance ..... 295
7.3.7.3 Common-Base Circuit Output Impedance ..... 295
7.3.7.4 Common-Base Circuit AC Voltage Gain ..... 296
7.3.7.5 Common-Base Circuit at High Frequencies ..... 296
7.3.8 Overview: Basic Bipolar Transistor Circuits ..... 296
7.3.9 Bipolar Transistor Current Sources ..... 296
7.3.10 Bipolar Transistor Differential Amplifier ..... 298
7.3.10.1 Differential Mode Gain ..... 300
7.3.10.2 Common-Mode Gain ..... 301
7.3.10.3 Common-Mode Rejection Ratio ..... 301
7.3.10.4 Differential Amplifier Input Impedance ..... 302
7.3.10.5 Differential Amplifier Output Impedance ..... 302
7.3.10.6 Offset Voltage of the Differential Amplifier ..... 302
7.3.10.7 Differential Amplifier Offset Current ..... 302
7.3.10.8 Input Offset Voltage Drift ..... 302
7.3.10.9 Differential Amplifier Examples ..... 303
7.3.11 Overview: Bipolar Transistor Differential Amplifiers ..... 304
7.3.12 Current Mirror ..... 304
7.3.12.1 Current Mirror Variations ..... 305
7.4 Field-Effect Transistor Small-Signal Amplifiers ..... 305
7.4.1 Transistor Characteristics and Ratings ..... 305
7.4.1.1 Symbols, Voltages and Currents for Field-Effect Transistors ..... 305
7.4.1.2 JFET Characteristic Curves ..... 307
7.4.1.3 IGFET Characteristic Curves ..... 307
7.4.1.4 Transconductance ..... 308
7.4.1.5 Dynamic Output Resistance ..... 309
7.4.1.6 Input Impedance ..... 309
7.4.2 Equivalent Circuit ..... 309
7.4.2.1 Equivalent Circuit for Low Frequencies ..... 309
7.4.2.2 Equivalent Circuit for High Frequencies ..... 310
7.4.2.3 Critical Frequency of Transconductance ..... 310
7.4.3 Basic Circuits using Field-Effect Transistors ..... 310
7.4.4 Common-Source Circuit ..... 310
7.4.4.1 Common-Source Two-Port Parameters ..... 311
7.4.4.2 AC Equivalent Circuit of the Common-Source Circuit ..... 312
7.4.4.3 Input Impedance of the Common-Source Circuit ..... 313
7.4.4.4 Output Impedance of the Common-Source Circuit ..... 313
7.4.4.5 AC Voltage Gain ..... 314
7.4.4.6 Operating-Point Biasing ..... 314
7.4.4.7 Common-Drain Circuit, Source Follower ..... 316
7.4.4.8 AC Equivalent Circuit of the common-drain Circuit ..... 316
7.4.4.9 Input Impedance of the Common-Drain Circuit ..... 317
7.4.4.10 Output Impedance of the Common-Drain Circuit ..... 317
7.4.4.11 Voltage Gain of the Common-Drain Circuit ..... 317
7.4.4.12 Common-Drain Circuit at High Frequencies ..... 317
7.4.5 Common-Gate Circuit ..... 317
7.4.5.1 Input Impedance of the Common-Gate Circuit ..... 318
7.4.5.2 Output Impedance of the Common-Gate Circuit ..... 318
7.4.5.3 Voltage Gain of the Common-Gate Circuit ..... 318
7.4.6 Overview: Basic Circuits using Field-Effect Transistors ..... 318
7.4.7 FET Current Source ..... 319
7.4.8 Differential Amplifier with Field-Effect Transistors ..... 319
7.4.8.1 Differential Mode Gain ..... 320
7.4.8.2 Common-Mode Gain ..... 320
7.4.8.3 Common-Mode Rejection Ratio ..... 321
7.4.8.4 Input Impedance ..... 321
7.4.8.5 Output Impedance ..... 321
7.4.9 Overview: Differential Amplifier with FETs ..... 321
7.4.10 Controllable Resistor FETs ..... 321
7.5 Negative Feedback ..... 322
7.5.1 Feedback Topologies ..... 324
7.5.2 Influence of Negative Feedback on the Input and Output Impedance ..... 326
7.5.2.1 Input and Output Impedance of the Four Kinds of Feedback ..... 327
7.5.3 Influence of Negative Feedback on Frequency Response ..... 327
7.5.4 Stability of Systems with Negative Feedback ..... 328
7.6 Operational Amplifiers ..... 329
7.6.1 Characteristics of the Operational Amplifier ..... 330
7.6.1.1 Output Voltage Swing ..... 330
7.6.1.2 Offset Voltage ..... 330
7.6.1.3 Offset Voltage Drift ..... 331
7.6.1.4 Common-Mode Input Swing ..... 331
7.6.1.5 Differential Mode Gain ..... 331
7.6.1.6 Common-Mode Gain ..... 331
7.6.1.7 Common-Mode Rejection Ratio ..... 332
7.6.1.8 Power Supply Rejection Ratio ..... 332
7.6.1.9 Input Impedance ..... 332
7.6.1.10 Output Impedance ..... 332
7.6.1.11 Input Bias Current ..... 332
7.6.1.12 Gain-Bandwidth Product (Unity Gain Frequency) ..... 333
7.6.1.13 Critical Frequency ..... 333
7.6.1.14 Slew Rate of the Output Voltage ..... 333
7.6.1.15 Equivalent Circuit of the Operational Amplifier ..... 333
7.6.2 Frequency Compensation ..... 334
7.6.3 Comparators ..... 335
7.6.4 Circuits with Operational Amplifiers ..... 335
7.6.4.1 Impedance Converter (follower) ..... 336
7.6.4.2 Noninverting Amplifier ..... 336
7.6.4.3 Inverting Amplifier ..... 337
7.6.4.4 Summing Amplifier ..... 338
7.6.4.5 Difference Amplifier ..... 339
7.6.4.6 Instrumentation Amplifier ..... 340
7.6.4.7 Voltage-Controlled Current Source ..... 341
7.6.4.8 Integrator ..... 341
7.6.4.9 Differentiator ..... 342
7.6.4.10 AC Voltage Amplifier with Single-Rail Supply ..... 343
7.6.4.11 Voltage Setting with Defined Slew Rate ..... 343
7.6.4.12 Schmitt Trigger ..... 344
7.6.4.13 Triangle- and Square-Wave Generator ..... 345
7.6.4.14 Multivibrator ..... 346
7.6.4.15 Sawtooth Generator ..... 346
7.6.4.16 Pulse-Width Modulator ..... 346
7.7 Active Filters ..... 348
7.7.1 Low-Pass Filters ..... 349
7.7.1.1 Theory of Low-Pass Filters ..... 349
7.7.1.2 Low-Pass Filter Calculations ..... 356
7.7.1.3 Low-Pass Filter Circuits ..... 357
7.7.2 High-Pass Filters ..... 359
7.7.2.1 Theory of High-Pass Filters ..... 359
7.7.2.2 High-Pass Filter Circuits ..... 359
7.7.3 Bandpass Filters ..... 361
7.7.3.1 Second-Order Bandpass Filter ..... 361
7.7.3.2 Second-Order Bandpass Filter Circuit ..... 362
7.7.3.3 Fourth- and Higher-Order Bandpass Filters ..... 362
7.7.4 Universal Filter ..... 363
7.7.5 Switched-Capacitor Filter ..... 363
7.8 Oscillators ..... 364
7.8.1 RC Oscillators ..... 365
7.8.1.1 Phase-Shift Oscillator ..... 365
7.8.1.2 Wien Bridge Oscillator ..... 366
7.8.2 LC Tuned Oscillators ..... 367
7.8.2.1 Meissner Oscillator ..... 367
7.8.2.2 Hartley Oscillator ..... 367
7.8.2.3 Colpitts Oscillator ..... 368
7.8.3 Quartz/Crystal Oscillators ..... 368
7.8.3.1 Pierce Oscillator ..... 369
7.8.3.2 Quartz Oscillator with TTL Gates ..... 370
7.8.4 Multivibrators ..... 370
7.9 Heating and Cooling ..... 370
7.9.1 Reliability and Lifetime ..... 371
7.9.2 Temperature Calculation ..... 373
7.9.2.1 Thermal Resistance ..... 373
7.9.2.2 Thermal Capacity ..... 374
7.9.2.3 Transient Thermal Impedance ..... 375
7.10 Power Amplifiers ..... 376
7.10.1 Emitter Follower ..... 376
7.10.2 Complementary Emitter Follower in Class B Operation ..... 379
7.10.3 Complementary Emitter Follower in Class C Operation ..... 382
7.10.4 The Characteristic Curves of the Operation Classes ..... 383
7.10.5 Complementary Emitter Follower in Class AB Operation ..... 383
7.10.5.1 Biasing for Class AB Operation ..... 384
7.10.5.2 Complementary Emitter Follower with Darlington Transistors ..... 385
7.10.5.3 Current-Limiting Complementary Emitter Follower ..... 386
7.10.6 Input Signal Injection to Power Amplifiers ..... 386
7.10.6.1 Input Signal Injection using a Differential Amplifier ..... 386
7.10.6.2 Input Signal Injection Using an Op-Amp ..... 388
7.10.7 Switched-Mode Amplifiers ..... 388
7.11 Notation Index ..... 389
7.12 Further Reading ..... 390
8 Digital Electronics ..... 392
8.1 Logic Algebra ..... 392
8.1.1 Logic Variables and Logic Gates ..... 392
8.1.1.1 Inversion ..... 392
8.1.1.2 And Function ..... 392
8.1.1.3 Or Function ..... 393
8.1.2 Logic Functions and their Symbols ..... 393
8.1.2.1 Inverter (Not) ..... 394
8.1.2.2 And Gate ..... 394
8.1.2.3 Or Gate ..... 394
8.1.2.4 Nand Gate ..... 395
8.1.2.5 Nor Gate ..... 395
8.1.2.6 Xor Gate, Exclusive Or ..... 396
8.1.3 Logic Transformations ..... 396
8.1.3.1 Commutative Laws ..... 396
8.1.3.2 Associative Laws ..... 397
8.1.3.3 Distributive Laws ..... 397
8.1.3.4 Inversion Laws (DeMorgan's Rules) ..... 398
8.1.4 Overview: Logic Transformations ..... 398
8.1.5 Analysis of Logic Circuits ..... 399
8.1.6 Sum of Products and Product of Sums ..... 400
8.1.6.1 Sum of Products ..... 400
8.1.6.2 Product of Sums ..... 401
8.1.7 Systematic Reduction of a Logic Function ..... 402
8.1.7.1 Karnaugh Map ..... 402
8.1.7.2 The Quine-McCluskey Technique ..... 406
8.1.8 Synthesis of Combinational Circuits ..... 408
8.1.8.1 Implementation Using only Nand Gates ..... 408
8.1.8.2 Implementation Using only Nor Gates ..... 408
8.2 Electronic Realisation of Logic Circuits ..... 409
8.2.1 Electrical Specification ..... 409
8.2.1.1 Voltage Levels ..... 409
8.2.1.2 Transfer Characteristic ..... 409
8.2.1.3 Loading ..... 410
8.2.1.4 Noise Margin ..... 410
8.2.1.5 Propagation Delay Time ..... 411
8.2.1.6 Rise Times ..... 411
8.2.1.7 Power Loss ..... 412
8.2.1.8 Minimum Slew Rate ..... 412
8.2.1.9 Integration ..... 412
8.2.2 Overview: Notation in Data Sheets ..... 412
8.2.3 TTL Family ..... 414
8.2.3.1 TTL Devices ..... 414
8.2.3.2 Basic TTL Gate Circuit ..... 416
8.2.4 CMOS Family ..... 417
8.2.5 Comparison of TTL and CMOS ..... 418
8.2.5.1 Other Logic Families ..... 418
8.2.6 Special Circuit Variations ..... 420
8.2.6.1 Outputs with Open Collector ..... 420
8.2.6.2 Wired And/Or ..... 420
8.2.6.3 Tri-State Outputs ..... 422
8.2.6.4 Schmitt Trigger Inputs ..... 422
8.3 Combinational Circuits and Sequential Logic ..... 423
8.3.1 Dependency Notation ..... 423
8.3.1.1 Overview: Dependency Notation ..... 425
8.3.2 Circuit Symbols for Combinational and Sequential Logic ..... 425
8.4 Examples of Combinational Circuits ..... 426
8.4.1 1-to-n Decoder ..... 426
8.4.2 Multiplexer and Demultiplexer ..... 426
8.4.2.1 Overview of Circuits ..... 428
8.5 Latches and Flip-Flops ..... 428
8.5.1 Flip-Flop Applications ..... 428
8.5.2 SR Flip-Flop ..... 429
8.5.2.1 SR Flip-Flop with Clock Input ..... 430
8.5.3 D Flip-Flop ..... 430
8.5.4 Master-Slave Flip-Flop ..... 431
8.5.5 JK Flip-Flop ..... 432
8.5.6 Flip-Flop Triggering ..... 432
8.5.7 Notation for Flip-Flop Circuit Symbols ..... 433
8.5.8 Overview: Flip-Flops ..... 434
8.5.9 Overview: Edge-Triggered Flip-Flops ..... 434
8.5.10 Synthesis of Edge-Triggered Flip-Flops ..... 436
8.5.11 Overview: Flip-Flop Circuits ..... 438
8.6 Memory ..... 439
8.6.1 Memory Construction ..... 439
8.6.2 Memory Access ..... 440
8.6.3 Static and Dynamic RAMs ..... 441
8.6.3.1 Variations of RAM ..... 442
8.6.4 Read-Only Memory ..... 443
8.6.5 Programmable Logic Devices ..... 444
8.6.5.1 Principle of Operation ..... 444
8.6.5.2 PLD Types ..... 445
8.6.5.3 Output Circuits ..... 446
8.7 Registers and Shift Registers ..... 448
8.8 Counters ..... 449
8.8.1 Asynchronous Counters ..... 450
8.8.1.1 Binary Counter ..... 450
8.8.1.2 Decimal Counter ..... 450
8.8.1.3 Down Counter ..... 453
8.8.1.4 Up/Down Counter ..... 454
8.8.1.5 Programmable Counter ..... 454
8.8.2 Synchronous Counters ..... 455
8.8.2.1 Cascading Synchronous Counters ..... 456
8.8.3 Overview: TTL and CMOS Counters ..... 458
8.8.3.1 TTL Counters ..... 459
8.8.3.2 CMOS Counters ..... 459
8.9 Design and Synthesis of Sequential Logic ..... 460
8.10 Further Reading ..... 467
9 Power Supplies ..... 469
9.1 Power Transformers ..... 469
9.2 Rectification and Filtering ..... 470
9.2.1 Different Rectifier Circuits ..... 472
9.3 Analogue Voltage Stabilisation ..... 473
9.3.1 Voltage Stabilisation with Zener Diode ..... 473
9.3.2 Analogue Stabilisation with Transistor ..... 474
9.3.3 Voltage Regulation ..... 475
9.3.3.1 Integrated Voltage Regulators ..... 475
9.4 Switched Mode Power Supplies ..... 476
9.4.1 Single-Ended Converters, Secondary Switched SMPS ..... 477
9.4.1.1 Buck Converter ..... 477
9.4.1.2 Boost Converter ..... 479
9.4.1.3 Buck-Boost Converter ..... 481
9.4.2 Primary Switched SMPS ..... 482
9.4.2.1 Flyback Converter ..... 482
9.4.2.2 Single-Transistor Forward Converter ..... 486
9.4.2.3 Push-Pull Converters ..... 489
9.4.2.4 Resonant Converters ..... 491
9.4.3 Overview: Switched-Mode Power Supplies ..... 494
9.4.4 Control of Switched-Mode Power Supplies ..... 496
9.4.4.1 Voltage-Mode Control ..... 496
9.4.4.2 Current-Mode Control ..... 497
9.4.4.3 Comparison: Voltage-Mode vs. Current-Mode Control ..... 498
9.4.4.4 Design of the PI Controller ..... 498
9.4.5 Design of Inductors and High-Frequency Transformers ..... 499
9.4.5.1 Calculation of Inductors ..... 499
9.4.5.2 Calculation of High-Frequency Transformers ..... 500
9.4.6 Power Factor Control ..... 504
9.4.6.1 Currents, Voltages and Power of the PFC ..... 505
9.4.6.2 Controlling the PFC ..... 506
9.4.7 Radio-Frequency Interference Suppression of Switched-Mode Power Supplies ..... 507
9.4.7.1 Radio-Frequency Interference Radiation ..... 507
9.4.7.2 Mains Input Conducted-Mode Interference ..... 508
9.4.7.3 Suppression of Common-Mode Radio-Frequency Interference ..... 509
9.4.7.4 Suppression of Differential-Mode Radio Frequency Interference ..... 509
9.4.7.5 Complete Radio-Frequency Interference Filter ..... 510
9.5 Notation Index ..... 511
9.6 Further Reading ..... 512
A Mathematical Basics ..... 513
A. 1 Trigonometric Functions ..... 513
A.1.1 Properties ..... 513
A.1.2 Sums and Differences of Trigonometric Functions ..... 514
A.1.3 Sums and Differences in the Argument ..... 515
A.1.4 Multiples of the Argument ..... 515
A.1.5 Weighted Sums of Trigonometric Functions ..... 516
A.1.6 Products of Trigonometric Functions ..... 516
A.1.7 Triple Products ..... 516
A.1.8 Powers of Trigonometric Functions ..... 517
A.1. 9 Trigonometric Functions with Complex Arguments ..... 517
A. 2 Inverse Trigonometric Functions (Arc Functions) ..... 517
A. 3 Hyperbolic Functions ..... 518
A. 4 Differential Calculus ..... 518
A.4.1 Basics of Differential Calculus ..... 518
A.4.2 Derivatives of Elementary Functions ..... 519
A. 5 Integral Calculus ..... 519
A.5.1 Basics of Integral Calculus ..... 519
A.5.1.1 Integrals of Elementary Functions ..... 520
A.5.2 Integrals Involving Trigonometric Functions ..... 521
A.5.3 Integrals Involving Exponential Functions ..... 523
A.5.4 Integrals Involving Inverse Trigonometric Functions ..... 524
A.5.5 Definite Integrals ..... 524
A. 6 The Integral of the Standard Normal Distribution ..... 527
B Tables ..... 530
B. 1 The International System of Units (SI) ..... 530
B.1.1 Decimal Prefixes ..... 531
B.1.2 SI Units in Electrical Engineering ..... 532
B. 2 Naturally Occurring Constants ..... 533
B. 3 Symbols of the Greek Alphabet ..... 533
B. 4 Units and Definitions of Technical-Physical Quantities ..... 534
B. 5 Imperial and American Units ..... 535
B. 6 Other Units ..... 537
B. 7 Charge and Discharge Curves ..... 540
B. 8 IEC Standard Series ..... 541
B. 9 Resistor Colour Code ..... 542
B. 10 Parallel Combination of Resistors ..... 543
B. 11 Selecting Track Dimensions for Current Flow ..... 544
B. 12 American Wire Gauge ..... 545
B. 13 Dry Cell Batteries ..... 546
B. 14 Notation of Radio-Frequency Ranges ..... 548
B. 15 Ratios ..... 549
B.15.1 Absolute Voltage Levels ..... 549
B.15.1.1 Conversion of Power and Voltage Level Ratios ..... 550
B.15.2 Relative Levels ..... 551
B. 16 V. 24 Interface ..... 552
B. 17 Dual-Tone Multi-Frequency ..... 553
B. 18 ASCII Coding ..... 554
B. 19 Resolution and Coding for Analogue-to-Digital Converters ..... 555
B. 20 Chemical Elements ..... 556
B. 21 Materials ..... 559
C Acronyms ..... 561
D Circuit Symbols ..... 595
Index ..... 601

## 1 DC Systems

### 1.1 Basic Quantities, Basic Laws

### 1.1.1 Electric Charge

Système International (SI) unit of charge: $\mathrm{C}=\mathrm{As}$ (coulomb)
Electricity is based upon the existence of electric charges, which are positive or negative. A force exists between electric charges, which is described by Coulomb's law (Sect. 2.1.1). Like charges repel each other, and unlike charges attract each other.
From the physical point of view, every charge is a multiple of the elementary charge $e$. Elementary charge $e= \pm 1.602 \cdot 10^{-19}$ coulomb
Electrons carry a negative charge, and protons carry a positive charge. A lack of electrons in a body means the body is positively charged. Similarly, an excess of electrons means it is negatively charged.

### 1.1.2 Electric Current

SI unit of current: A (ampere)
The directed motion of electric charge carriers is called an electric current.

$$
\begin{equation*}
I=\frac{\mathrm{d} Q}{\mathrm{~d} t} \tag{1.1}
\end{equation*}
$$

The electric current $I$ in a conductor is the charge $\mathrm{d} Q$ passing through the conductor cross-sectional area during the time interval $\mathrm{d} t$. The current is a Direct current if the charge passing the conductor per time interval is constant.

$$
\begin{equation*}
\text { DC current: } \quad I=\frac{\mathrm{d} Q}{\mathrm{~d} t}=\text { constant } \tag{1.2}
\end{equation*}
$$

Technical direction of current:
The positive current direction is the motion of the positive charge carriers. This is equivalent to the opposite motion of negative charge carriers. In metal conductors electrons are the charge carriers. From the physical point of view, the electrons therefore move opposite the positive current flow (Fig. 1.1).


Fig. 1.1. Definition of the positive current direction
Electric charges always move in a closed loop. This means:

- The electric current always flows in a closed circuit.
R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003


### 1.1.3 Voltage and Potential

## SI unit of voltage: V (volt)

The electric voltage is the force that causes the movement of the charge carriers.


Fig. 1.2. Electrical circuits showing the direction of the voltage and the current
The electric current always flows from the positive terminal to the negative terminal of the voltage source. Since the current flows in a closed loop, inside the voltage source (e.g. a battery) the current flows from the negative to the positive terminal (Fig. 1.2).

The potential $\varphi$ is a scalar quantity. Given that one point in space has the potential $\varphi=0$, then all other points in space can be assigned an absolute potential. This potential is obtained from the energy that has to be provided to move the elementary charge from the point with $\varphi=0$ to the given point. In this physical model, the voltage $V$ is the difference between two potentials (Fig. 1.3). For this reason voltage is often referred to as potential difference.

$$
\begin{equation*}
V_{21}=\varphi_{2}-\varphi_{1} \tag{1.3}
\end{equation*}
$$


a)

b)

Fig. 1.3. Relationship between voltage and potential: $\mathbf{a}$ for arbitrary points; $\mathbf{b}$ in a circuit

### 1.1.4 Ohm's Law

The current flowing through a load is dependent on the driving voltage. Provided the properties of the load are independent of the current flowing through it and the voltage applied to it, Ohm's law holds:

$$
\begin{align*}
& V \propto I, \\
\text { or } \quad & V=R \cdot I \tag{1.4}
\end{align*}
$$

The current changes proportionally with the voltage. The constant $R$ relating current and voltage is called the electric resistance.

### 1.1.5 Resistance and Conductance

SI unit of resistance: $\Omega$ (ohm), $1 \Omega=1 \frac{\mathrm{~V}}{\mathrm{~A}}$
SI unit of conductance: S (siemens), $1 \mathrm{~S}=1 \frac{\mathrm{~A}}{\mathrm{~V}}$
The relationship between current and voltage is described by the quantities resistance $R$ and conductance $G$ (Fig. 1.4).

$$
\begin{array}{lll}
V=R \cdot I, & \text { or } & R=\frac{V}{I}  \tag{1.5}\\
I=G \cdot V, & \text { or } & G=\frac{I}{V} \\
\hline
\end{array}
$$

Fig. 1.4. Resistance and conductance as electrical circuit symbols

### 1.1.6 Temperature Dependence of Resistance

For real resistors a change in the temperature causea a change in resistance. The relationship between both values is linear to a first approximation. The relationship is described by the temperature coefficient $\alpha\left(\mathrm{K}^{-1}\right)$.
If the resistor $R_{1}$ is heated from temperature $\vartheta_{1}$ to temperature $\vartheta_{2}$, then the change in resistance is given by:

$$
\begin{equation*}
\Delta R=R_{1} \alpha\left(\vartheta_{2}-\vartheta_{1}\right) \tag{1.6}
\end{equation*}
$$

At a temperature $\vartheta_{2}$ the resistance is:

$$
\begin{equation*}
R_{2}=R_{1}\left[1+\alpha\left(\vartheta_{2}-\vartheta_{1}\right)\right] \tag{1.7}
\end{equation*}
$$

The temperature coefficient $\alpha$ is often given for a temperature of $\vartheta=20^{\circ} \mathrm{C}$. This value is sufficient for calculations for temperatures up to approximately $200^{\circ} \mathrm{C}$. For most resistive materials (apart from certain semiconductors), $\alpha$ has a positive value. This means that the resistance increases with temperature.

Example: For aluminium and copper is $\alpha=0.004 \mathrm{~K}^{-1}$. For a temperature change of $\Delta \vartheta=100 \mathrm{~K}$ the resistance of aluminium or copper wire therefore changes by $40 \%$.

For calculations over larger temperature ranges, the nonlinearity of $R=f(\vartheta)$ can be taken into account by including a squared term with the coefficient $\beta$. In this case, $R=f(\vartheta)$ is represented by:

$$
\begin{equation*}
R_{2}=R_{1}\left[1+\alpha\left(\vartheta_{2}-\vartheta_{1}\right)+\beta\left(\vartheta_{2}-\vartheta_{1}\right)^{2}\right] \tag{1.8}
\end{equation*}
$$

### 1.1.7 Inductance

SI unit of inductance: H (henry), $1 \mathrm{H}=1 \frac{\mathrm{Vs}}{\mathrm{A}}$


Fig. 1.5. Inductance as a circuit symbol

- For an inductance $L$ the voltage $v$ is proportional to the rate of change of the current $i$.

$$
\begin{equation*}
v=L \frac{\mathrm{~d} i}{\mathrm{~d} t}, \quad i=\frac{1}{L} \int_{t_{0}}^{t_{1}} v \mathrm{~d} t+I_{0}, \quad L=\frac{v \mathrm{~d} t}{\mathrm{~d} i} \tag{1.9}
\end{equation*}
$$

The current flowing at the beginning of the integration interval is called $I_{0}$. If a constant voltage is applied to an inductance, the current increases linearly (Fig. 1.6).


Fig. 1.6. Time progression of the current in an inductance when a constant voltage has been applied

- In an inductance the current cannot change instantaneously, while the voltage can change instantaneously.
- The current in an inductance is proportional to the time-integral of the applied voltage.

The inductive component is called the inductor, choke or coil.

### 1.1.8 Capacitance

SI unit of capacitance: F (farad), $1 \mathrm{~F}=1 \frac{\mathrm{As}}{\mathrm{V}}$

- In a capacitance $C$ the current $i$ is proportional to the rate of change of the voltage $v$.


Fig. 1.7. Capacitance as a circuit symbol

$$
\begin{equation*}
i=C \frac{\mathrm{~d} v}{\mathrm{~d} t}, \quad v=\frac{1}{C} \int_{t_{0}}^{t_{1}} i \mathrm{~d} t+V_{0}, \quad C=\frac{i \mathrm{~d} t}{\mathrm{~d} v} \tag{1.10}
\end{equation*}
$$

The voltage applied across the capacitance at the beginning of the integration interval is $V_{0}$. If a capacitance is supplied with a constant current, the voltage increases linearly (Fig. 1.8).


Fig. 1.8. Time progression of the voltage across a capacitance with a constant current flowing through it

- The voltage across a capacitance is continuous (cannot change instantaneously), while the current can change instantaneously.

The capacitive component is called the capacitor. When a current flows into a capacitance it can be said that the capacitor is being charged.

### 1.1.9 Ideal Voltage Source

A voltage source drives an electric current (Fig. 1.9).


Fig. 1.9. Ideal voltage source

- The ideal voltage source supplies a voltage $V_{\mathrm{s}}$, which is independent of the current $I$.


### 1.1.10 Ideal Current Source

- The ideal current source supplies a current $I_{\mathrm{S}}$, which is independent of the applied voltage $V$ (Fig. 1.10).


Fig. 1.10. Ideal current source

### 1.1.11 Kirchhoff's Law

Kirchhoff's laws describe the behaviour of current and voltage in electrical circuits. An electrical circuit can be represented by an equivalent circuit diagram. A circuit consists of branches, nodes and loops* (Fig. 1.11). Connection points are referred to as nodes. A branch joins two nodes, and a closed loop is formed with individual branches.


Fig. 1.11. Typical circuit of branches, nodes and loops

### 1.1.11.1 Kirchhoff's First Law (Current Law)

- The sum of all currents at a node is always equal to zero.

$$
\begin{equation*}
\sum_{\mathrm{n}} I_{\mathrm{n}}=0 \tag{1.11}
\end{equation*}
$$

Expressed differently, this means that the sum of currents flowing into a node is equal to the sum of currents flowing out of the node. This yields for the circuit given in Fig. 1.11:

$$
I_{1}-I_{2}-I_{3}=0
$$

Kirchhoff's current law is easier to understand if it is remembered that current always flows in a closed loop. This means that no extra current can 'join' the current path.

### 1.1.11.2 Kirchhoff's Second Law (Voltage Law)

- The sum of all voltages in a loop is always equal to zero.

$$
\begin{equation*}
\sum_{\mathrm{m}} V_{\mathrm{m}}=0 \tag{1.12}
\end{equation*}
$$

For the circuit given in Fig. 1.11 this yields:

$$
\begin{array}{rrr}
-V_{\mathrm{S}}+V_{1}+V_{2} & =0, & \text { and } \\
-V_{\mathrm{S}}+V_{1} & +V_{3}=0, & \text { and } \\
V_{2}-V_{3} & =0 &
\end{array}
$$

[^0]
### 1.1.12 Power and Energy

SI unit of power: W (watt), $1 \mathrm{~W}=1 \mathrm{VA}$
SI unit of energy: $J$ (joule), $1 \mathbf{J}=1 \mathrm{Ws}$
The instantaneous power is defined as:

$$
\begin{equation*}
p(t)=i(t) \cdot v(t) \tag{1.13}
\end{equation*}
$$

In most technical applications the average power $P$ is important. For example, the average power loss in a diode yields the heat dissipation in the diode.

$$
\begin{equation*}
P=\frac{1}{T} \int_{0}^{T} i(t) v(t) \mathrm{d} t \tag{1.14}
\end{equation*}
$$

For DC this simplifies to:

$$
\begin{equation*}
P=V \cdot I \tag{1.15}
\end{equation*}
$$

The electrical energy $W$ is the integral of the power over time:

$$
\begin{equation*}
W=\int_{t_{1}}^{t_{2}} p(t) \mathrm{d} t=\int_{t_{1}}^{t_{2}} i(t) v(t) \mathrm{d} t \tag{1.16}
\end{equation*}
$$

For DC this simplifies to:

$$
\begin{equation*}
W=P \cdot\left(t_{2}-t_{1}\right)=V \cdot I \cdot\left(t_{2}-t_{1}\right) \tag{1.17}
\end{equation*}
$$

Note: Power and energy relate the electrical SI units with the mechanical and thermodynamic SI units, respectively. All calculations in systems with mechanical and thermodynamic quantities on one side and electrical quantities on the other side are done via this relationship.

Example: What current is necessary to heat 11 of water in 10 min from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ using 230 V ? (Remember, $1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~V} \cdot \mathrm{~A}$.)

$$
\begin{aligned}
W & =100 \mathrm{kcal}=418.7 \mathrm{~kJ}=0.116 \mathrm{kWh} \\
W & =V I t \\
I & =\frac{W}{V \cdot t}=\frac{418.7 \mathrm{~kJ}}{230 \mathrm{~V} \cdot 600 \mathrm{~s}}=3.0 \mathrm{~A}
\end{aligned}
$$

### 1.1.12. 1 Energy and Power in a Resistor

In a resistor electric energy is converted into thermal energy. For resistors $v \propto i$, therefore:

$$
\begin{equation*}
p(t)=v(t) i(t)=i(t)^{2} R=\frac{v(t)^{2}}{R} \tag{1.18}
\end{equation*}
$$

The resulting change in resistance caused by the heating is neglected here.

The average power is:

$$
\begin{equation*}
P=\frac{1}{T} \int_{0}^{T} v(t) i(t) \mathrm{d} t=\frac{1}{T} \int_{0}^{T} i(t)^{2} R \mathrm{~d} t=\frac{1}{T} \int_{0}^{T} \frac{v(t)^{2}}{R} \mathrm{~d} t \tag{1.1}
\end{equation*}
$$

For DC this simplifies to:

$$
\begin{equation*}
P=V \cdot I=I^{2} \cdot R=\frac{V^{2}}{R} \tag{1.20}
\end{equation*}
$$

Example: A motor delivers mechanical energy of $P=500 \mathrm{~W}$ at 230 V . What is the value of the equivalent resistor that represents the power consumption of this motor, assuming that the motor is loss-free?

$$
P=\frac{V^{2}}{R} \Rightarrow R=\frac{(230 \mathrm{~V})^{2}}{500 \mathrm{~W}}=106 \Omega
$$

The energy $W$ that is converted into heat in a time interval can be calculated as:

$$
\begin{equation*}
W=\int_{t_{1}}^{t_{2}} p(t) \mathrm{d} t \tag{1.21}
\end{equation*}
$$

For DC it holds that:

$$
\begin{equation*}
W=V \cdot I \cdot\left(t_{2}-t_{1}\right)=I^{2} \cdot R \cdot\left(t_{2}-t_{1}\right)=\frac{V^{2}}{R}\left(t_{2}-t_{1}\right) \tag{1.22}
\end{equation*}
$$

### 1.1.12.2 Energy in an Inductor

An ideal inductor absorbs and releases electrical energy. No energy is transformed into heat. The energy is stored in the magnetic field (see Sect. 2.3.16).
For the energy stored in an inductor, it holds in general that:

$$
W=\int_{t_{0}}^{t_{1}} v(t) i(t) \mathrm{d} t+W_{0}
$$

The starting energy in the time interval under consideration is $W_{0}$. With $v=L \mathrm{~d} i / \mathrm{d} t$ and $W_{0}=0$, it follows that:

$$
\begin{gather*}
W=\int L \frac{\mathrm{~d} i}{\mathrm{~d} t} i \mathrm{~d} t=L \int i \mathrm{~d} i=\frac{1}{2} L i^{2} \\
W=\frac{1}{2} L i^{2} \tag{1.23}
\end{gather*}
$$

For DC this is

$$
\begin{equation*}
W=\frac{1}{2} L I^{2} \tag{1.24}
\end{equation*}
$$

- The energy stored in an inductor is proportional to the inductance and to the square of the current flowing through it.


### 1.1.12.3 Energy in a Capacitor

An ideal capacitor absorbs and releases electrical energy. No energy is transformed into heat. The energy is stored in the electric field (see Sect. 2.1.12).
For the energy stored in a capacitor, it holds in general that:

$$
W=\int_{t_{0}}^{t_{1}} v(t) i(t) \mathrm{d} t+W_{0}
$$

The starting energy in the time interval under consideration is $W_{0}$. With $i=C \mathrm{~d} v / \mathrm{d} t$ and $W_{0}=0$, it follows that:

$$
\begin{gather*}
W=\int C \frac{\mathrm{~d} v}{\mathrm{~d} t} v \mathrm{~d} t=C \int v \mathrm{~d} v=\frac{1}{2} C v^{2} \\
W=\frac{1}{2} C v^{2} \tag{1.25}
\end{gather*}
$$

For DC this is

$$
\begin{equation*}
W=\frac{1}{2} C V^{2} \tag{1.26}
\end{equation*}
$$

- The energy stored in a capacitor is proportional to the capacitance and to the square of the voltage across it.


### 1.1.13 Efficiency

The efficiency $\eta$ is defined as the ratio of the effective (useful) power $P_{\text {out }}$ to the total power $P_{\text {total }}$.

$$
\begin{equation*}
\eta=\frac{P_{\mathrm{out}}}{P_{\mathrm{total}}}=\frac{P_{\mathrm{out}}}{P_{\mathrm{out}}+P_{\mathrm{loss}}} \tag{1.27}
\end{equation*}
$$

Example: A motor consumes a power of $P=230 \mathrm{~V} \cdot 5$ A and delivers a torque of $M=2.5 \mathrm{Nm}$ at $n=3000 \mathrm{rpm}$ (rounds per minute).
The efficiency is:

$$
\eta=\frac{P_{\text {out }}}{P_{\text {total }}}=\frac{M \omega}{V I}=\frac{M \frac{2 \mathrm{a}}{60} n}{V I}=0.68=68 \%
$$

Next, the efficiency of a real voltage source with a load resistor is calculated. The load resistor $R_{\mathrm{L}}$ corresponds to the effective power, and the source resistor $R_{\mathrm{S}}$ corresponds to the power loss (Fig. 1.12).

$$
\begin{aligned}
P_{\mathrm{out}} & =V \cdot I, \quad P_{\text {total }}=V_{\mathrm{S}} \cdot I, \quad P_{\text {loss }}=I^{2} \cdot R_{\mathrm{S}} \\
\eta & =\frac{V I}{V_{\mathrm{S}} I}=\frac{V_{\mathrm{S}} \frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+R_{\mathrm{L}}} \frac{V_{\mathrm{S}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}}{V_{\mathrm{S}} \frac{V_{\mathrm{S}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}}=\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}
\end{aligned}
$$

- The smaller the source resistance, the higher the efficiency! If the source resistance of a voltage source is zero then the efficiency has a value of 1 (Fig. 1.13).


Fig. 1.12. Real voltage source with a load resistor


Fig. 1.13. Efficiency and supplied power for a real voltage source

### 1.1.14 Maximum Power Transfer

In some cases the efficiency is not as important as the voltage source delivering maximum power. This is true, for example, for many sensors and for audio systems, where the signal power is very low and the power loss is unimportant.
The useful power $P_{\text {out }}$ that is delivered by a voltage source with source resistance $R_{\mathrm{S}}$ is:

$$
P_{\text {out }}=V I=V_{\mathrm{S}} \frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+R_{\mathrm{L}}} \frac{V_{\mathrm{S}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}=V_{\mathrm{S}}^{2} \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)^{2}}
$$

With $\mathrm{d} P_{\text {out }} / \mathrm{d} R_{\mathrm{L}}=0$, the load resistance $R_{\mathrm{L}}$ at which the useful power $P_{\text {out }}$ reaches a maximum can be determined:

$$
\frac{\mathrm{d} P_{\text {out }}}{\mathrm{d} R_{\mathrm{L}}}=0=V_{\mathrm{S}}^{2} \frac{\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)^{2}-2 R_{\mathrm{L}}\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)}{\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)^{4}}
$$

This yields:

$$
\begin{equation*}
R_{\mathrm{L}}=R_{\mathrm{S}} \tag{1.28}
\end{equation*}
$$

This is known as impedance matching.
The efficiency is then:

$$
\begin{equation*}
\eta=\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}=\frac{1}{2}=50 \% \tag{1.29}
\end{equation*}
$$

- With a load of $R_{\mathrm{L}}=R_{\mathrm{S}}$, a voltage source delivers the maximum power. The efficiency is then $50 \%$.


### 1.2 Basic Circuits

### 1.2.1 Real Voltage and Current Sources

### 1.2.1.1 Real Voltage Source

The terminal voltage of a real voltage source (e.g. a battery) depends on the current being drawn from it. The terminal voltage decreases as the output current increases. A real voltage source can often be described by an equivalent circuit, as shown in Fig. 1.14, and consists of an ideal voltage source $V_{\mathrm{S}}$ and a source resistor $R_{\mathrm{S}}$ in series.


Fig. 1.14. Equivalent circuit of a real voltage source


Fig. 1.15. Current-voltage diagram of a voltage source with a source resistance
Calculation of the current-voltage characteristic can be done through application of Kirchhoff's voltage law:

$$
\begin{array}{r}
-V_{\mathrm{S}}+I \cdot R_{\mathrm{S}}+V=0 \\
V=V_{\mathrm{S}}-I \cdot R_{\mathrm{S}} \tag{1.30}
\end{array}
$$

This equation describes a linear relationship, that is, the voltage $V$ decreases linearly with increasing current $I$. Nonlinearities of a real voltage source are not considered in this equivalent circuit. However, in most cases, this equivalent circuit is a good representation of a real voltage source.

- In the open-circuit case (i.e. $I=0$ ), $V=V_{\mathrm{S}}$ can be measured at the terminals of the equivalent voltage source.
- In the case of a short circuit (i.e. $V=0$ ), the current is:

$$
I=I_{\mathrm{s} / \mathrm{c}}=\frac{V_{\mathrm{S}}}{R_{\mathrm{S}}}
$$

$I_{\mathrm{s} / \mathrm{c}}$ is known as the short-circuit current.

- The lower the source resistance $R_{\mathrm{S}}$, the more similar the real voltage source is to an ideal voltage source.


### 1.2.1.2 Real Current Source

The current delivered by a real current source is dependent on the applied voltage. The current decreases as the resistance of the load increases. For example, a photodiode is a current source for which incoming light causes a current to flow that is almost independent of the applied voltage. A real current source often can be described in the equivalent circuit in Fig. 1.16. It consists of an ideal current source $I_{\mathrm{S}}$ in parallel with a source resistor $R_{\mathrm{S}}$.


Fig. 1.16. Equivalent circuit of a real current source


Fig. 1.17. Current-voltage diagram of a current source with internal resistance
If the load has a large resistance, then a large voltage appears at the terminals. The higher the voltage $V$, the more the source resistance $R_{\mathrm{S}}$ drains the current, which is therefore lost at the terminals.
Calculation of the current-voltage characteristic can be done through application of Kirchhoff's current law:

$$
\begin{array}{r}
-I_{\mathrm{S}}+\frac{V}{R_{\mathrm{S}}}+I=0 \\
I=I_{\mathrm{S}}-\frac{V}{R_{\mathrm{S}}} \tag{1.31}
\end{array}
$$

This equation describes a linear relationship in which the current $I$ decreases linearly with increasing voltage $V$. Nonlinearities of a real current source are not considered in this equivalent circuit. However, in most cases this equivalent circuit is a good representation of a real current source.

- For a short circuit $(V=0)$, the current $I=I_{\mathrm{S}}$.
- For an open circuit the entire current $I_{\mathrm{S}}$ flows through the internal resistance. Then the voltage is:

$$
V=V_{\mathrm{o} / \mathrm{c}}=I_{\mathrm{S}} R_{\mathrm{S}}
$$

$V_{\mathrm{o} / \mathrm{c}}$ is the open-circuit voltage.

- The higher the source resistance $R_{\mathrm{S}}$, the more similar the real current source is to an ideal current source.


### 1.2.1.3 Voltage-Current Source Conversion

Current and voltage sources have an identical linear voltage-current behaviour, which is shown as a negatively sloped line on a $V-I$-graph. Therefore a real current source can be regarded as a voltage source with a high internal resistance, and a real voltage source can be regarded as a current source with a low internal resistance (Fig. 1.18).


Fig. 1.18. Changing from voltage to current sources and vice versa

### 1.2.2 Circuit Elements in Series and Parallel

- Series combination: Circuit elements in series experience the same current flow.
- Parallel combination: Circuit elements in parallel experience the same applied voltage.


### 1.2.2.1 Series Combination of Resistors

A series combination of resistors $R$ is shown in Fig. 1.19. Application of Kirchhoff's voltage law yields:

$$
\begin{gather*}
V=I R_{1}+I R_{2}+\cdots+I R_{\mathrm{n}}=I\left(R_{1}+R_{2}+\cdots+R_{\mathrm{n}}\right)=I \cdot R_{\text {total }} \\
R_{\text {total }}=R_{1}+R_{2}+\cdots+R_{\mathrm{n}} \tag{1.32}
\end{gather*}
$$



Fig. 1.19. Series combination of resistors

### 1.2.2.2 Parallel Combination of Resistors

A number of resistors $R$ combined in parallel is shown in Fig. 1.20. Application of Kirchhoff's current law yields:

$$
\begin{gather*}
I=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\cdots+\frac{V}{R_{\mathrm{n}}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{\mathrm{n}}}\right)=V \frac{1}{R_{\text {total }}} \\
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{\mathrm{n}}} \tag{1.33}
\end{gather*}
$$



Fig. 1.20. Parallel combination of resistors
For the parallel combination of two resistors:

$$
\begin{equation*}
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}, \quad R_{\text {total }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \tag{1.34}
\end{equation*}
$$

- The resulting resistance of a parallel combination of resistors is smaller than either of the individual resistances.


### 1.2.2.3 Series Combination of Conductances

For a number of conuctances $G$ combined in series (Fig. 1.21), the application of Kirchhoff's voltage law yields:

$$
\begin{gather*}
V=\frac{I}{G_{1}}+\frac{I}{G_{2}}+\cdots+\frac{I}{G_{\mathrm{n}}}=I\left(\frac{1}{G_{1}}+\frac{1}{G_{2}}+\cdots+\frac{1}{G_{\mathrm{n}}}\right)=I \frac{1}{G_{\text {total }}} \\
\frac{1}{G_{\text {total }}}=\frac{1}{G_{1}}+\frac{1}{G_{2}}+\cdots+\frac{1}{G_{\mathrm{n}}} \tag{1.35}
\end{gather*}
$$

For the series combination of two conductances:

$$
\begin{equation*}
\frac{1}{G_{\text {total }}}=\frac{1}{G_{1}}+\frac{1}{G_{2}}, \quad G_{\text {total }}=\frac{G_{1} G_{2}}{G_{1}+G_{2}} \tag{1.36}
\end{equation*}
$$

- The resulting conductance of a series combination is smaller than either of the individual conductances.


Fig. 1.21. Series combination of conductances

### 1.2.2.4 Parallel Combination of Conductances

The parallel combination of a number of conductances $G$ is shown in Fig. 1.22. Application of Kirchhoff's current law yields:

$$
\begin{gather*}
I=V G_{1}+V G_{2}+\cdots+V G_{\mathrm{n}}=V\left(G_{1}+G_{2}+\cdots+G_{\mathrm{n}}\right)=V \cdot G_{\text {total }} \\
G_{\text {total }}=G_{1}+G_{2}+\cdots+G_{\mathrm{n}} \tag{1.37}
\end{gather*}
$$



Fig. 1.22. Parallel combination of conductances

### 1.2.2.5 Series Combination of Inductances

For a number of inductances $L$ combined in series (Fig. 1.23), the application of Kirchhoff's voltage law yields:

$$
\begin{gather*}
v=L_{1} \frac{\mathrm{~d} i}{\mathrm{~d} t}+L_{2} \frac{\mathrm{~d} i}{\mathrm{~d} t}+\cdots+L_{\mathrm{n}} \frac{\mathrm{~d} i}{\mathrm{~d} t}=\left(L_{1}+L_{2}+\cdots+L_{\mathrm{n}}\right) \frac{\mathrm{d} i}{\mathrm{~d} t}=L_{\text {total } 1} \frac{\mathrm{~d} i}{\mathrm{~d} t} \\
L_{\text {total }}=L_{1}+L_{2}+\cdots+L_{\mathrm{n}} \tag{1.38}
\end{gather*}
$$



Fig. 1.23. Series combination of inductances

### 1.2.2.6 Parallel Combination of Inductances

For a parallel combination of inductances $L$ (Fig. 1.24), application of Kirchhoff's current law yields:

$$
\begin{aligned}
i & =\frac{1}{L_{1}} \int v \mathrm{~d} t+\frac{1}{L_{2}} \int v \mathrm{~d} t+\cdots+\frac{1}{L_{\mathrm{n}}} \int v \mathrm{~d} t+I_{01}+I_{02}+\cdots+I_{0 n} \\
& =\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{\mathrm{n}}}\right) \int v \mathrm{~d} t+I_{01}+I_{02}+\cdots+I_{0 n} \\
& =\frac{1}{L_{\text {total }}} \int v \mathrm{~d} t+I_{0}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{L_{\text {total }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{\mathrm{n}}} \tag{1.39}
\end{equation*}
$$



Fig. 1.24. Parallel combination of inductances

For the parallel combination of two inductances:

$$
\begin{equation*}
\frac{1}{L_{\text {total }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}, \quad L_{\text {total }}=\frac{L_{1} L_{2}}{L_{1}+L_{2}} \tag{1.40}
\end{equation*}
$$

- The resulting inductance of a parallel combination is smaller than either of the individual inductances.


### 1.2.2.7 Series Combination of Capacitances

For capacitances $C$ combined in series (Fig. 1.25), the application of Kirchhoff's voltage law yields:

$$
\begin{aligned}
v & =\frac{1}{C_{1}} \int i \mathrm{~d} t+V_{01}+\frac{1}{C_{2}} \int i \mathrm{~d} t+V_{02}+\cdots+\frac{1}{C_{\mathrm{n}}} \int i \mathrm{~d} t+V_{0 n} \\
& =\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{\mathrm{n}}}\right) \int i \mathrm{~d} t+V_{01}+V_{02}+\cdots+V_{0 n} \\
& =\frac{1}{C_{\text {total }}} \int i \mathrm{~d} t+V_{0}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{\mathrm{n}}} \tag{1.41}
\end{equation*}
$$



Fig. 1.25. Series combination of capacitances
For the series combination of two capacitances:

$$
\begin{equation*}
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}, \quad C_{\text {total }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \tag{1.42}
\end{equation*}
$$

- The resulting capacitance of a series combination is smaller than either of the individual capacitances.


### 1.2.2.8 Parallel Combination of Capacitances

For a parallel combination of capacitances $C$ (Fig. 1.26), the application of Kirchhoff's current law yields:

$$
i=C_{1} \frac{\mathrm{~d} v}{\mathrm{~d} t}+C_{2} \frac{\mathrm{~d} v}{\mathrm{~d} t}+\cdots+C_{\mathrm{n}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=\left(C_{1}+C_{2}+\cdots+C_{\mathrm{n}}\right) \frac{\mathrm{d} v}{\mathrm{~d} t}
$$

$$
\begin{equation*}
C_{\text {total }}=C_{1}+C_{2}+\cdots+C_{\mathrm{n}} \tag{1.43}
\end{equation*}
$$



Fig. 1.26. Parallel combination of capacitances

### 1.2.3 Star-Delta Transformation (Wye-Delta Transformation)

A star-configuration can be transformed into an equivalent delta-configuration and vice versa (Fig. 1.27). ${ }^{\dagger}$ This can be necessary when calculating complex circuits of resistors in order to reduce the calculation to those of series and parallel combinations.


Fig. 1.27. Star-delta transformation
In a star-delta transformation:

$$
\begin{align*}
& R_{23}=R_{2}+R_{3}+\frac{R_{2} R_{3}}{R_{1}}, \\
& R_{31}=R_{1}+R_{3}+\frac{R_{1} R_{3}}{R_{2}},  \tag{1.44}\\
& R_{12}=R_{1}+R_{2}+\frac{R_{1} R_{2}}{R_{3}}
\end{align*}
$$

In a delta-star transformation:

$$
\begin{align*}
R_{1} & =\frac{R_{31} R_{12}}{R_{12}+R_{23}+R_{31}}, \\
R_{2} & =\frac{R_{23} R_{12}}{R_{12}+R_{23}+R_{31}},  \tag{1.45}\\
R_{3} & =\frac{R_{23} R_{31}}{R_{12}+R_{23}+R_{31}}
\end{align*}
$$

[^1]
### 1.2.4 Voltage and Current Divider

### 1.2.4.1 Voltage Divider

If the same current flows through two resistors (Fig. 1.28), then:

$$
I=\frac{V_{1}}{R_{1}}=\frac{V_{2}}{R_{2}}=\frac{V}{R_{1}+R_{2}}
$$



Fig. 1.28. Voltage divider
The voltage-divider rule follows from this:

$$
\begin{equation*}
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}, \quad \frac{V_{1}}{V}=\frac{R_{1}}{R_{1}+R_{2}}, \quad \frac{V_{2}}{V}=\frac{R_{2}}{R_{1}+R_{2}} \tag{1.46}
\end{equation*}
$$

- In a series combination the individual voltages are proportional to the resistances they appear across. This also holds for series combinations of more than two resistors.


### 1.2.4.2 Current Divider

If the same voltage is applied across two conductances or resistances (Fig. 1.29), then:

$$
V=\frac{I_{1}}{G_{1}}=\frac{I_{2}}{G_{2}}=\frac{I}{G_{1}+G_{2}}
$$



Fig. 1.29. Current divider
The current-divider rule follows from this:

$$
\begin{equation*}
\frac{I_{1}}{I_{2}}=\frac{G_{1}}{G_{2}}, \quad \frac{I_{1}}{I}=\frac{G_{1}}{G_{1}+G_{2}}, \quad \frac{I_{2}}{I}=\frac{G_{2}}{G_{1}+G_{2}} \tag{1.47}
\end{equation*}
$$

- In parallel combinations the individual currents are proportional to the conductances they flow through. This also holds for combinations of more than two conductances.

Replacing the conductances with resistances gives:

$$
\begin{equation*}
\frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}}, \quad \frac{I_{1}}{I}=\frac{R_{2}}{R_{1}+R_{2}}, \quad \frac{I_{2}}{I}=\frac{R_{1}}{R_{1}+R_{2}} \tag{1.48}
\end{equation*}
$$

- The individual currents behave inversely to the individual resistances.


### 1.2.4.3 Capacitive and Inductive Dividers

Examples of capacitive and inductive dividers along with their respective voltage and current relations are shown in Fig. 1.30. The specifications given in Fig. 1.30 are valid provided that before the voltage $v$ or the current $i$ are applied, the circuit elements were energy-free, i.e. $V_{\mathrm{n}}(t=0)=0$, and $i_{\mathrm{n}}(t=0)=0$.


Fig. 1.30. Capacitive (top) and inductive (bottom) dividers

### 1.2.5 $\quad R C$ and $R L$ Combinations

This section concerns the settling processes that occur when a DC voltage or a DC current is applied to a circuit containing an inductance or a capacitance next to a resistance. Processes like this can be described with first-order differential equations.
A linear first-order differential equation has the following form:

$$
\begin{equation*}
q(t)=\tau \cdot \frac{\mathrm{d} y}{\mathrm{~d} t}+y \tag{1.49}
\end{equation*}
$$

The solution of the inhomogeneous differential equation is combined from the solution of the homogeneous equation $\left(0=\tau \cdot \frac{\mathrm{d} y}{\mathrm{~d} t}+y\right)$ plus any special solution (for example, in the case of the step response, the special solution may be obtained by examining the system behaviour as $t \rightarrow \infty$ ).

The solution of the inhomogeneous differential equation is then:

$$
\begin{equation*}
y(t)=y(t)_{\text {homogeneous }}+y(t)_{\text {special }} \tag{1.50}
\end{equation*}
$$

The coefficient $\tau$ is called the time constant.
The solution of the first-order homogeneous differential equation is

$$
\begin{equation*}
y(t)_{\text {homogeneous }}=K_{1} \cdot \mathrm{e}^{-\frac{t}{\tau}} \tag{1.51}
\end{equation*}
$$

The constant $K_{1}$ is evaluated from the starting conditions of the system, that is, $y(t=0)$.

Example: Calculation of the step response of an RC low-pass filter:


Fig. 1.31. Series combination of $R$ and $C$ as a low-pass filter
Applying Kirchhoff's voltage law to the system shown in Fig. 1.31, it can be seen that

$$
V_{\mathrm{S}}=i R+V_{\text {out }}, \quad \text { with } \quad i=C \frac{\mathrm{~d} V_{\text {out }}}{\mathrm{d} t} .
$$

The inhomogeneous differential equation follows from this:

$$
V_{\mathrm{S}}=\underbrace{R C}_{\tau} \frac{\mathrm{d} V_{\mathrm{out}}}{\mathrm{~d} t}+V_{\mathrm{out}}
$$

The solution of the inhomogeneous differential equation is:

$$
V_{\text {out }}(t)=V_{\text {out }}(t)_{\text {homogeneous }}+V_{\text {out }}(t)_{\text {special }}=K_{1} \cdot \mathrm{e}^{-\frac{t}{R C}}+V_{\mathrm{S}}
$$

Given the starting condition $V_{\text {out }}(0)=0, K_{1}$ can be calculated:

$$
0=K_{1}+V_{\mathrm{S}} \quad \Rightarrow \quad K_{1}=-V_{\mathrm{S}}
$$

The solution of the inhomogeneous differential equation is therefore:

$$
V_{\text {out }}(t)=-V_{\mathrm{S}} \cdot \mathrm{e}^{-\frac{t}{R C}}+V_{\mathrm{S}}=V_{\mathrm{S}}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)
$$



Fig. 1.32. Step response of $V_{\text {out }}(t)$

- Constant $\tau$ is called the time constant. At the time $\tau$ the function value has reached $63 \%$ of its final value. After $5 \tau$, the function value is within $1 \%$ of its final value (Fig. 1.32).


### 1.2.5.1 $\quad$ Series Combination of $R$ and $C$ Driven by a Voltage Source

The switch is closed at time $t=0$. The capacitor is assumed to be uncharged at this time. Application of Kirchhoff's voltage law leads to the differential equation:

$$
V_{\mathrm{S}}=i R+\frac{1}{C} \int i \mathrm{~d} t
$$

The solution of the differential equation is given by:

$$
\begin{align*}
i(t) & =\frac{V_{\mathrm{S}}}{R} \cdot \mathrm{e}^{-\frac{t}{R C}}, \\
V_{\mathrm{C}}(t) & =V_{\mathrm{S}}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right),  \tag{1.52}\\
V_{\mathrm{R}}(t) & =V_{\mathrm{S}} \cdot \mathrm{e}^{-\frac{t}{R C}}, \quad \tau=R C
\end{align*}
$$

The capacitor is charged via the resistor. Since the voltage across the capacitor increases during the charging process, the voltage across the resistor decreases. The current is proportional to the voltage $V_{\mathrm{R}}$ and therefore also decreases (Fig. 1.33).


Fig. 1.33. Series combination of $R$ and $C$ driven by a voltage source

### 1.2.5.2 Series Combination of $\boldsymbol{R}$ and $\boldsymbol{C}$ Driven by a Current Source

A series combination of a resistor and a capacitor driven by a current source is shown in Fig. 1.34. The switch is toggled at time $t=0$. The capacitor is assumed to be uncharged at this time.


Fig. 1.34. Series combination of $R$ and $C$ driven by a current source

Application of Kirchhoff's voltage law yields:

$$
v=I_{\mathrm{S}} R+\frac{1}{C} \int I_{\mathrm{S}} \mathrm{~d} t
$$

Solution:

$$
\begin{equation*}
v(t)=I_{\mathrm{S}} R+\frac{1}{C} I_{\mathrm{S}} t \tag{1.53}
\end{equation*}
$$

### 1.2.5.3 Parallel Combination of $\boldsymbol{R}$ and $\boldsymbol{C}$ Driven by a Current Source

The parellel combination of a resistor and a capacitor is shown in Fig. 1.35. The switch is toggled at time $t=0$. The capacitor is assumed to be uncharged at this time.


Fig. 1.35. Parallel combination of $R$ and $C$ driven by a current source
Application of Kirchhoff's current law leads to the differential equation:

$$
I_{\mathrm{S}}=\frac{v}{R}+C \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Solution of the differential equation gives:

$$
\begin{align*}
& v(t)=I_{\mathrm{S}} R\left(1-\mathrm{e}^{-\frac{t}{R C}}\right) \\
& i_{\mathrm{R}}(t)=I_{\mathrm{S}}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)  \tag{1.54}\\
& i_{\mathrm{C}}(t)=I_{\mathrm{S}} \cdot \mathrm{e}^{-\frac{t}{R C}}, \quad \tau=R C
\end{align*}
$$

### 1.2.5.4 Parallel Combination of $R$ and $C$ Driven by a Voltage Source

Theoretically, the voltage across the capacitor has to change in an infinitely short time. Therefore the current $i_{\mathrm{C}}=C \cdot \mathrm{~d} v / \mathrm{d} t$ should be an infinitely high value. In practice such circuits lead to the destruction of the switch (Fig. 1.36).


Fig. 1.36. Parallel combination of $R$ and $C$ driven by a voltage source

### 1.2.5.5 Series Combination of $R$ and $L$ Driven by a Voltage Source

Application of Kirchhoff's voltage law to a resistor and a capacitor in series driven by a voltage source leads to the differential equation:

$$
V_{\mathrm{S}}=i R+L \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

Solution of the differential equation yields:

$$
\begin{align*}
i(t) & =\frac{V_{\mathrm{S}}}{R}\left(1-\mathrm{e}^{-\frac{t}{L / R}}\right), \\
V_{\mathrm{R}}(t) & =V_{\mathrm{S}}\left(1-\mathrm{e}^{-\frac{t}{L / R}}\right),  \tag{1.55}\\
V_{\mathrm{L}}(t) & =V_{\mathrm{S}} \cdot \mathrm{e}^{-\frac{t}{L / R}}, \quad \tau=\frac{L}{R}
\end{align*}
$$

The voltage $V_{\mathrm{L}}=V_{\mathrm{S}}$ is applied at time $t=0$. The current $i$ increases at a rate of $\mathrm{d} i / \mathrm{d} t=V_{\mathrm{S}} / L$. Therefore, the voltage drop across $R$ increases, and $V_{\mathrm{L}}$ and $\mathrm{d} i / \mathrm{d} t$ decrease (Fig. 1.37).


Fig. 1.37. Series combination of $R$ and $L$ driven by a voltage source

### 1.2.5.6 Series Combination of $\boldsymbol{R}$ and $L$ Driven by a Current Source

Toggling the switch shown in Fig. 1.38 can be considered an attempt to create an infinitely large $\mathrm{d} i / \mathrm{d} t$. This would result in an infinitely high voltage across $L$, which is not achievable in reality.


Fig. 1.38. Series combination of $R$ and $L$ driven by a current source


Fig. 1.39. Switching off a resistive-inductive load
Very high values of $\mathrm{d} i / \mathrm{d} t$ result when switching off a resistive-inductive load (Fig. 1.39).
At the time $t=0$ the current $V_{\mathrm{S}} / R$ is flowing. Opening the switch results in a current change of $\mathrm{d} i / \mathrm{d} t \rightarrow-\infty$. Therefore $v_{\mathrm{L}} \rightarrow-\infty$. Kirchhoff's voltage law applied to the loop gives $V_{\mathrm{S}}=v_{\text {Switch }}+v_{\mathrm{R}}+v_{\mathrm{L}}$. This shows that not only $v_{\mathrm{L}}$ but also $v_{\text {Switch }}$ increases greatly, but $v_{\mathrm{R}}$ and $V_{\mathrm{S}}$ have finite values. In practice, this results in the destruction of the switch. To avoid this, a diode can be added to the circuit, called a free-wheeling diode.

### 1.2.5.7 Parallel Combination of $R$ and $L$ Driven by a Voltage Source

A resistor and an inductor connected in parallel and driven by a voltage source are shown in Fig. 1.40. Application of Kirchhoff's current law for this circuit yields:

$$
i(t)=\frac{V_{\mathrm{S}}}{R}+\frac{1}{L} \int V_{\mathrm{S}} \mathrm{~d} t
$$

Solution:

$$
\begin{equation*}
i(t)=\frac{V_{\mathrm{S}}}{R}+\frac{V_{\mathrm{s}} t}{L} \tag{1.56}
\end{equation*}
$$



Fig. 1.40. Parallel combination of $R$ and $L$ driven by a voltage source

### 1.2.5.8 Parallel Combination of $\boldsymbol{R}$ and $L$ Driven by a Current Source

A resistor and an inductor are combined in parallel and driven by a current source are shown in Fig. 1.41. The switch is closed at $t=0$. At this time the current $i_{\mathrm{L}}$ is assumed to be zero. Application of Kirchhoff's current law leads to the differential equation:

$$
I_{\mathrm{S}}=\frac{v}{R}+\frac{1}{L} \int v \mathrm{~d} t
$$

Solution of the differential equation yields:

$$
\begin{align*}
v(t) & =I_{\mathrm{S}} R \cdot \mathrm{e}^{-\frac{t}{L / R}}, \\
i_{\mathrm{L}}(t) & =I_{\mathrm{S}}\left(1-\mathrm{e}^{-\frac{t}{L / R}}\right),  \tag{1.57}\\
i_{\mathrm{R}}(t) & =I_{\mathrm{S}} \cdot \mathrm{e}^{-\frac{t}{L / R}}, \quad \tau=\frac{L}{R}
\end{align*}
$$

After toggling the switch a current $I_{\mathrm{S}}$ flows through resistor $R$. The current $i_{\mathrm{L}}$ increases by a factor $\mathrm{d} i / \mathrm{d} t=I_{\mathrm{S}} R / L$. While $i_{\mathrm{L}}$ increases $i_{\mathrm{R}}$ decreases until the inductance has taken over the entire current $I_{\mathrm{S}}$. Then $v=0$ because $i_{\mathrm{R}}=0$ (Fig. 1.41).


Fig. 1.41. Parallel combination of $R$ and $L$ driven by a current source

### 1.2.6 $R L C$ Combinations

This section deals with transients that appear when applying a DC voltage or DC current to a circuit containing inductances and capacitances. Systems containing two independent energy storage components can oscillate, depending on the damping of the system. Inductances and capacitances are independent energy storage components in this sense. This kind of process is described by second-order differential equations.
A linear second-order differential equation with constant coefficients has the form:

$$
\begin{equation*}
q(t)=\frac{1}{\omega_{0}^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\frac{2 D}{\omega_{0}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+y \tag{1.58}
\end{equation*}
$$

The solution of the inhomogeneous differential equation is combined from the solution of the homogeneous differential equation:

$$
\frac{1}{\omega_{0}^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\frac{2 D}{\omega_{0}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+y=0
$$

and any special solution. In order to calculate the step response, it is easiest to regard $y(t \rightarrow \infty)$.
The solution of the inhomogeneous differential equation is then:

$$
\begin{equation*}
y(t)=y(t)_{\text {homogeneous }}+y(t)_{\text {special }} \tag{1.59}
\end{equation*}
$$

The coefficient $D$ is called the damping ratio, and the coefficient $\omega_{0}$ is called the resonant frequency: $\omega_{0}=2 \mathbf{a} f_{0}$. Three different cases have to be distinguished for the solution of second-order homogeneous differential equations:

## 1. Overdamped case

## D $>1$ :

$$
\begin{equation*}
y(t)=K_{1} \mathrm{e}^{\lambda_{1} t}+K_{2} \mathrm{e}^{\lambda_{2} t}, \quad \lambda_{1,2}=-D \omega_{0} \pm \omega_{0} \sqrt{D^{2}-1} \tag{1.60}
\end{equation*}
$$

2. Critically damped case

D $=\mathbf{1}$ :

$$
\begin{equation*}
y(t)=\left(K_{1} t+K_{2}\right) \mathrm{e}^{-D \omega_{0} t} \tag{1.61}
\end{equation*}
$$

## 3. Underdamped case

D $<\mathbf{1}$ :

$$
\begin{equation*}
y(t)=\mathrm{e}^{-D \omega_{0} t}\left(K_{1} \cos \omega t+K_{2} \sin \omega t\right), \quad \omega=\omega_{0} \sqrt{1-D^{2}} \tag{1.62}
\end{equation*}
$$

The constants $K_{1}$ and $K_{2}$ are determined from the initial conditions, namely $y(0)$ and $y^{\prime}(0)$.
The angular frequency $\omega$ is called the natural frequency, which is the frequency of the fading oscillation of a damped system. Its value is slightly lower than the resonant frequency and depends on the damping ratio.

Note: An oscillator with a resonant circuit as a means of frequency determination oscillates at the resonant frequency. This is because the circuit attenuation is compensated with an active component (e.g. a transistor), so that $D=0$.

In the context of oscillating circuits the following terms are also commonly used:

$$
\begin{array}{ll}
\text { Loss factor: } & d=2 D \\
\text { Quality or Q-factor: } & Q=\frac{1}{2 D} \\
\text { Bandwidth: } & B=\frac{\omega_{0}}{2 \mathbf{a}} \cdot 2 D
\end{array}
$$

### 1.2.6.1 Series Combination of $R, L$ and $C$

The entire procedure of solving the differential equation can be explained using the example of the series combination of $R, L$ and $C$. This circuit forms a low-pass filter (Fig. 1.42), and the step response $v_{\text {out }}(t)$ is calculated here.
Application of Kirchhoff's voltage law yields: $V_{\mathrm{S}}=L \frac{\mathrm{~d} i}{\mathrm{~d} t}+R \cdot i+v_{\text {out }}$. With $i=C \frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t}$, the inhomogeneous differential equation is:

$$
\begin{equation*}
V_{\mathrm{S}}=\underbrace{L C}_{\frac{1}{\omega_{0}^{2}}} \frac{\mathrm{~d}^{2} V_{\text {out }}}{\mathrm{d} t^{2}}+\underbrace{R C}_{\frac{2 D}{\omega_{0}}} \frac{\mathrm{~d} V_{\text {out }}}{\mathrm{d} t}+V_{\text {out }}, \quad \omega_{0}=\frac{1}{\sqrt{L C}}, \quad D=\frac{R}{2} \sqrt{\frac{C}{L}} \tag{1.63}
\end{equation*}
$$



Fig. 1.42. Series combination of $R, L$ and $C$ as a low-pass filter
The homogeneous differential equation is:

$$
\begin{equation*}
0=L C \frac{\mathrm{~d}^{2} v_{\text {out }}}{\mathrm{d} t^{2}}+R C \frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t}+v_{\text {out }} \tag{1.64}
\end{equation*}
$$

One special solution of the differential equation is, for example:

$$
\begin{equation*}
v_{\text {out, special }}=v_{\text {out }}(t \rightarrow \infty)=v_{\mathrm{S}} \tag{1.65}
\end{equation*}
$$

To determine the coefficients $K_{1}$ and $K_{2}$ in the general solution two specific values are required for $v_{\text {out }}(t)$. The initial conditions usually used are:

$$
\begin{equation*}
v_{\text {out }}(t=0)=0, \quad \text { and }\left.\quad \frac{\mathrm{d} v_{\text {out }}}{\mathrm{d} t}\right|_{t=0}=0 \tag{1.66}
\end{equation*}
$$

The solutions of the inhomogeneous differential equation are:

## 1. Overdamped case

D $>1$ :

$$
\begin{aligned}
v_{\text {out }}(t) & =v_{\text {out }}(t)_{\text {homogeneous }}+v_{\text {out special }} \\
& =K_{1} \mathrm{e}^{\lambda_{1} t}+K_{2} \mathrm{e}^{\lambda_{2} t}+v_{\mathrm{S}}, \quad \lambda_{1,2}=-D \omega_{0} \pm \omega_{0} \sqrt{D^{2}-1}
\end{aligned}
$$

$K_{1}$ and $K_{2}$ can be determined from the initial conditions: first the derivative $\mathrm{d} v_{\text {out }}(t) / \mathrm{d} t$ is calculated, then $t=0$ is inserted in $v_{\text {out }}(t)$ and in $\mathrm{d} v_{\text {out }}(t) / \mathrm{d} t$. This results in two equations for $K_{1}$ and $K_{2}$.

$$
\begin{array}{r}
\frac{\mathrm{d} v_{\text {out }}(t)}{\mathrm{d} t}=\lambda_{1} K_{1} \mathrm{e}^{\lambda_{1} t}+\lambda_{2} K_{2} \mathrm{e}^{\lambda_{2} t} \\
v_{\text {out }}(t=0)=0 \Longrightarrow K_{1}+K_{2}+V_{\mathrm{S}}=0 \\
\left.\frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t}\right|_{t=0}=0 \Longrightarrow \lambda_{1} K_{1}+\lambda_{2} K_{2}=0 \\
\Longrightarrow \quad K_{1}=\frac{\lambda_{2} V_{\mathrm{S}}}{\lambda_{2}-\lambda_{1}}, \text { and } K_{2}=\frac{\lambda_{1} V_{\mathrm{S}}}{\lambda_{2}-\lambda_{1}}
\end{array}
$$

- The solution of the differential equation is:

$$
\begin{equation*}
v_{\text {out }}(t)=\frac{V_{\mathrm{S}}}{\lambda_{1}-\lambda_{2}}\left(\lambda_{2} \mathrm{e}^{\lambda_{1} t}-\lambda_{1} \mathrm{e}^{\lambda_{2} t}\right)+V_{\mathrm{S}} \tag{1.67}
\end{equation*}
$$

## 2. Critically damped case

D $=1$ :

$$
v_{\text {out }}(t)=v_{\text {out }}(t)_{\text {homogeneous }}+v_{\text {out, special }}=\left(K_{1} t+K_{2}\right) \mathrm{e}^{-\omega_{0} t}+V_{\mathrm{S}}, \quad D \omega_{0}=\omega
$$

$K_{1}$ and $K_{2}$ can be calculated from the initial conditions: first the derivative $\mathrm{d} v_{\text {out }} / \mathrm{d} t$ needs to be calculated. Then $t=0$ is inserted in $v_{\text {out }}(t)$ and in $\mathrm{d} v_{\text {out }} / \mathrm{d} t$. This results in two equations for $K_{1}$ and $K_{2}$.

$$
\begin{gathered}
\frac{\mathrm{d} v_{\text {out }}}{\mathrm{d} t}=K_{1} \mathrm{e}^{-\omega_{0} t}-\left(K_{1} t+K_{2}\right) \omega_{0} \mathrm{e}^{-\omega_{0} t} \\
v_{\text {out }}(t=0)=0 \Longrightarrow K_{2}+V_{\mathrm{S}}=0 \\
\left.\frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t}\right|_{t=0}=0 \Longrightarrow K_{1}-\omega_{0} K_{2}=0 \\
\Longrightarrow \quad K_{1}=-\omega_{0} V_{\mathrm{S}}, \text { and } K_{2}=-V_{\mathrm{S}}
\end{gathered}
$$

- The solution of the differential equation for the critically damped case is:

$$
\begin{equation*}
v_{\text {out }}(t)=-\left(\omega_{0} V_{\mathrm{S}} t+V_{\mathrm{S}}\right) \mathrm{e}^{-\omega_{0} t}+V_{\mathrm{S}} \tag{1.68}
\end{equation*}
$$

## 3. Underdamped case

D $<\mathbf{1}$ :

$$
\begin{aligned}
v_{\text {out }}(t) & =v_{\text {out }}(t)_{\text {homogeneous }}+v_{\text {out, special }} \\
& =\mathrm{e}^{-D \omega_{0} t}\left(K_{1} \cos \omega t+K_{2} \sin \omega t\right)+V_{\mathrm{S}}, \quad \omega=\omega_{0} \sqrt{1-D^{2}}
\end{aligned}
$$

$K_{1}$ and $K_{2}$ can be calculated from the initial conditions: first the derivative of $\mathrm{d} v_{\text {out }} / \mathrm{d} t$ is calculated. Then $t=0$ is inserted in $v_{\text {out }}(t)$ and in $\mathrm{d} v_{\text {out }} / \mathrm{d} t$. This results in two equations for $K_{1}$ and $K_{2}$.

$$
\begin{gathered}
\frac{\mathrm{d} v_{\text {out }}}{\mathrm{d} t}=-D \omega_{0} \mathrm{e}^{-D \omega_{0} t}\left(K_{1} \cos \omega t+K_{2} \sin \omega t\right)+\mathrm{e}^{-D \omega_{0} t}\left(-K_{1} \omega \sin \omega t+K_{2} \omega \cos \omega t\right) \\
v_{\text {out }}(t=0)=0 \Longrightarrow K_{1}+V_{\mathrm{S}}=0 \\
\left.\frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t}\right|_{t=0}=0 \Longrightarrow-D \omega_{0} K_{1}+\omega K_{2}=0 \\
\Longrightarrow \quad K_{1}=-V_{\mathrm{S}}, \text { and } K_{2}=-\frac{D}{\sqrt{1-D^{2}}} V_{\mathrm{S}}
\end{gathered}
$$

- The solution for the differential equation for the underdamped case is:

$$
\begin{equation*}
v_{\mathrm{out}}(t)=-V_{\mathrm{S}} \mathrm{e}^{-D \omega_{0} t}\left(\cos \omega t+\frac{D}{\sqrt{1-D^{2}}} \sin \omega t\right)+V_{\mathrm{S}} \tag{1.69}
\end{equation*}
$$

Figure 1.43 shows the step responses $v_{\text {out }}(t)$ for different system damping ratios.
The level of the step is $V_{\mathrm{S}}=1 \mathrm{~V}$ in this example, and the resonant angular frequency is $\omega_{0}=\frac{1}{\mathrm{~s}}$. Small attenuation values (underdamped case) result in high overshooting of $v_{\text {out }} \cdot$ In the case of $D=1$, the output voltage reaches the final value quickly without overshooting. For $D>1$, the output voltage approaches the final value slowly (overdamped case). All functions approach $v_{\text {out }}(t \rightarrow \infty)=V_{\mathrm{S}}$.

Note: In electronic systems often $D=1 / \sqrt{2}$. This setting lets the output value reach the final value much more quickly than with critical damping and has an overshoot of only $4 \%$.


Fig. 1.43. Step responses of an $L R C$ low-pass filter using the damping ratio $D$ as a parameter

### 1.3 Calculation Methods for Linear Circuits

### 1.3.1 Rules for Signs

An unknown branch of a circuit can act both as a generator and as a load. Generators are components that supply energy, which can be voltage or current sources.
Loads are components that absorb energy. These are usually resistors, inductors and capacitors. They may also be components that usually supply energy. A rechargeable battery can become an absorber whilst being charged.

Generators and loads are distinguished in a circuit by assigning voltage and current directions. In the generator the current and the voltage point in the same direction. In the load the current and the voltage have opposite directions (Fig. 1.44).

This convention is used in the following sections for the analysis of circuits. When the exact nature of an element is unknown (that is, whether it is supplying or absorbing energy), a nominal direction for the arrows is chosen arbitrarily. At the end of the analysis, if the solution for the element has a positive sign, then the nominal direction was correct. On the other hand, a negative sign implies a reversing of the arrows.


Fig. 1.44. Generator and load

### 1.3.2 Circuit Calculation with Mesh and Node Analysis

For a known circuit (i.e. all component values are known) Kirchhoff's laws deliver enough independent equations as required to calculate all of the currents present. If one or more values of components are unknown, this lack of information must be compensated for by the same number of known currents or voltages.
A circuit consisting of $n$ nodes and $m$ meshes delivers $(n-1)$ independent node equations (Kirchhoff's first law) and $m-(n-1)$ independent mesh equations (Kirchhoff's second law). There are therefore $m$ independent equations. Equations are independent of each other if they cannot be generated from a linear combination of the other equations.

Mesh equations, including ideal current sources, do not deliver additional information, because the voltage drop across the current source is independent of the respective current source. Branches enclosing current sources are therefore not considered in the number of branches $m$.


$$
\begin{aligned}
& \text { Nodes: } \quad n=3 \\
& \text { Branches: } \quad m=4 \\
& \text { Node equations: }(n-1)=2 \\
& I_{1}-I_{2}-I_{3}=0, \\
& I_{3}+I_{\mathrm{S}}-I_{4}=0 \\
& \text { Mesh equations: } \\
& m-(n-1)=2 \\
& -V_{\mathrm{S}}+I_{1} R_{1}+I_{2} R_{2}=0, \\
& -I_{2} R_{2}+I_{3} R_{3}+I_{4} R_{4}=0
\end{aligned}
$$

Fig. 1.45. Example for mesh and node equations
Gauss's method:
The solution of a system of $m$ equations with $m$ variables is done by step-by-step elimination of the variables until only one variable remains. The elimination is done by scaling and adding/subtracting two equations. When one variable is known then it can be inserted into an equation with a further variable, and so on. With this method all variables can be solved in a stepwise fashion. To make it easier to keep track of the operations, the calculation is done to a defined scheme (Table 1.1)

Example: Calculation of the current $I_{4}$ in Fig. 1.45 with Gauss's method:
Solution:

$$
I_{4}=\frac{R_{2}\left(I_{\mathrm{S}} R_{1}+V_{\mathrm{S}}\right)+\left(R_{1}+R_{2}\right) I_{\mathrm{S}} R_{3}}{R_{2} R_{1}+\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}
$$

Table 1.1. Solution with Gauss's method

| $I_{1}$ | $I_{2}$ | $I_{3}$ | $I_{4}$ | Right side | Operation | Eliminated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | 0 | 0 | +2 . line |  |
| 0 | 0 | 1 | -1 | $-I_{\mathrm{S}}$ | $\times\left(-R_{3}\right)+4$. line | $I_{3}$ |
| $R_{1}$ | $R_{2}$ | 0 | 0 | $V_{\mathrm{S}}$ |  |  |
| 0 | $-R_{2}$ | $R_{3}$ | $R_{4}$ | 0 |  |  |
| 1 | -1 | 0 | -1 | $-I_{\mathrm{S}}$ | $\times\left(-R_{1}\right)+3$. line |  |
| 0 | $-R_{2}$ | 0 | $R_{3}+R_{4}$ | $I_{\mathrm{S}} R_{3}$ |  | $I_{1}$ |
| $R_{1}$ | $R_{2}$ | 0 | 0 | $V_{\mathrm{S}}$ |  |  |
| 0 | $R_{1}+R_{2}$ | 0 | $R_{1}$ | $I_{\mathrm{S}} R_{1}+V_{\mathrm{S}}$ | $\times R_{2}$ | $I_{2}$ |
| 0 | $-R_{2}$ | 0 | $R_{3}+R_{4}$ | $I_{\mathrm{S}} R_{3}$ | $\times\left(R_{1}+R_{2}\right)$ |  |
| 0 | 0 | 0 | $R_{2} R_{1}+$ | $R_{2}\left(I_{\mathrm{S}} R_{1}+V_{\mathrm{S}}\right)+$ |  |  |
|  |  |  | $\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)$ | $+\left(R_{1}+R_{2}\right) I_{\mathrm{S}} R_{3}$ |  |  |

### 1.3.3 Superposition

According to the principle of superposition in physics it is possible in linear systems (i.e. where cause and effect are proportional) to determine the effect of one cause independently from all other causes and effects. The overall resulting cause is then the sum of all individual causes.

In the analysis of linear circuits this means that first all (partial) currents are calculated as caused by the individual voltage and current sources. Then the individual partial currents are summed, keeping their correct signs, in order to determine the resulting current. When calculating the partial currents, all voltage sources not under consideration are replaced by short circuits, and all the current sources not under consideration are taken out (replaced by open circuits).


Fig. 1.46. Solution using the principle of superposition

Example: Calculation of the current $I_{4}$ in Fig. 1.46 with the principle of superposition: Short circuiting the voltage source $V_{\mathrm{S}}$ and applying the current-divider rule yields for $I_{4}^{\prime}$ :

$$
I_{4}^{\prime}=I_{\mathrm{S}} \frac{R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}{R_{4}+R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}
$$

Removing the current source $I_{\mathrm{S}}$ and applying the current-divider rule yields for $I_{4}^{\prime \prime}$ :

$$
I_{4}^{\prime \prime}=I_{1}^{\prime \prime} \frac{R_{2}}{R_{2}+R_{3}+R_{4}}=\frac{V_{\mathrm{S}}}{R_{1}+\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}} \cdot \frac{R_{2}}{R_{2}+R_{3}+R_{4}}
$$

The current $I_{4}$ is then given as:

$$
I_{4}=I_{4}^{\prime}+I_{4}^{\prime \prime}
$$

### 1.3.4 Mesh Analysis

In mesh analysis a ring current is introduced for every independent mesh, and the respective equation is described. This results in a system of as many equations as there are meshes. The branch currents are obtained by adding the ring currents while taking into account their correct signs.
If the mesh contains a current source, the source current can be considered as the mesh current.

- This method is very suitable for calculating the currents in a circuit.
- The equation system becomes very simple when the circuit contains many current sources.


Fig. 1.47. Solution method using mesh analyses
Example: Calculation of the current $I_{4}$ through $R_{4}$ in the circuit shown in Fig. 1.47:
System of equations:

$$
\begin{aligned}
-V_{S}+I_{1}^{\prime}\left(R_{1}+R_{2}\right)-I_{2}^{\prime} R_{2} & =0 \\
-I_{1}^{\prime} R_{2}+I_{2}^{\prime}\left(R_{2}+R_{3}+R_{4}\right)+I_{\mathrm{S}} R_{4} & =0
\end{aligned}
$$

It follows then for $I_{2}^{\prime}$ :

$$
I_{2}^{\prime}=\frac{V_{\mathrm{S}} R_{2}-I_{\mathrm{S}} R_{4}\left(R_{1}+R_{2}\right)}{\left(R_{1}+R_{2}\right)\left(R_{2}+R_{3}+R_{4}\right)-R_{2}^{2}}
$$

The current $I_{4}$ is then: $I_{4}=I_{2}^{\prime}+I_{\mathrm{S}}$.

### 1.3.5 Node Analysis

In node analysis every node is assigned a potential, where one node is assigned the reference potential $\varphi=0$. Then the independent node equations are formed by expressing the currents with the node potential differences divided by the respective resistors, $I_{\mathrm{n}}=\Delta \varphi / R_{m}$. This results in a system of as many equations as there are unknown potentials.

- This method is very suitable for calculating the voltages in a circuit.
- The equation system becomes very simple when the circuit contains many voltage sources.

Example: Calculation of the voltage $V_{4}$ across $R_{4}$ in the circuit in Fig. 1.48:
System of equations:

$$
\begin{aligned}
& I_{1}-I_{2}-I_{3}=0 \Longrightarrow \frac{V_{\mathrm{S}}-\left(\varphi_{1}-\varphi_{0}\right)}{R_{1}}-\frac{\varphi_{1}-\varphi_{0}}{R_{2}}-\frac{\varphi_{1}-\varphi_{2}}{R_{3}}=0 \\
& I_{3}+I_{\mathrm{S}}-I_{4}=0 \Longrightarrow \frac{\varphi_{1}-\varphi_{2}}{R_{3}}+I_{\mathrm{S}}-\frac{\varphi_{2}-\varphi_{0}}{R_{4}}=0
\end{aligned}
$$

with $\varphi_{0}=0$, it follows that:

$$
\begin{aligned}
\frac{V_{\mathrm{S}}-\varphi_{1}}{R_{1}}-\frac{\varphi_{1}}{R_{2}}-\frac{\varphi_{1}-\varphi_{2}}{R_{3}} & =0 \\
\frac{\varphi_{1}-\varphi_{2}}{R_{3}}+I_{\mathrm{S}}-\frac{\varphi_{2}}{R_{4}} & =0
\end{aligned}
$$

This yields for $\varphi_{2}=V_{4}$ :

$$
\varphi_{2}=V_{4}=\frac{R_{4}\left[V_{\mathrm{S}} R_{2}+I_{\mathrm{S}}\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)\right]}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}}
$$



Fig. 1.48. Solution method using node analyses

### 1.3.6 Thévenin's and Norton's Theorem

By Thévenin's theorem every active linear two-terminal network, no matter how many sources and resistors are interconnected, can be represented by an equivalent circuit, which contains only one voltage source and one resistor (Fig. 1.49).
By Norton's theorem every active linear two-terminal network, no matter how many sources and resistors are interconnected, can be represented by an equivalent circuit, which contains only one current source and one resistor (Fig. 1.50).


Fig. 1.49. Thévenin's theorem


Fig. 1.50. Norton's theorem
Thévenin's and Norton's equivalent circuits, called 'real voltage source' and 'real current source' in Sect. 1.2.1 respectively, have the same voltage-current characteristic (Fig. 1.51). It is a declining straight line, starting with $V_{\mathrm{o} / \mathrm{c}}, I_{\text {out }}=0$ (o/c stands for open circuit) for no-load operation and ending with $V_{\text {out }}=0, I_{\mathrm{s} / \mathrm{c}}$ ( $\mathrm{s} / \mathrm{c}$ stands for short circuit). The slope of the line is determined by the internal resistance $R_{\mathrm{int}}$.

$$
\begin{equation*}
R_{\mathrm{int}}=\frac{\Delta V_{\mathrm{out}}}{\Delta I_{\mathrm{out}}}=\frac{V_{\mathrm{o} / \mathrm{c}}}{I_{\mathrm{s} / \mathrm{c}}} \tag{1.70}
\end{equation*}
$$



Fig. 1.51. Voltage-current characteristic of Thévenin's and Norton's equivalent circuit

### 1.3.6.1 Calculating a Load Current by Thévenin's Theorem

By Thévenin's theorem an active two-terminal network can be reduced to its equivalent circuit, consisting of a voltage source and an internal resistor.
The voltage-current characteristic of the equivalent circuit can be determined very simply:
a) by measuring the open circuit voltage $V_{\mathrm{o} / \mathrm{c}}$ with a voltmeter, and by measuring a second value of the characteristic $V_{1}, I_{1}$ by loading the circuit (Fig. 1.53). Then $R_{\mathrm{int}}=\frac{V_{\mathrm{o} / \mathrm{c}}-V_{1}}{I_{1}}$.


Fig. 1.52. Voltage-current characteristic
b) by calculating the open circuit voltage $V_{\mathrm{o} / \mathrm{c}}$ and the short circuit current $I_{\mathrm{s} / \mathrm{c}}$, if the network is known.
Then $R_{\mathrm{int}}=\frac{V_{\mathrm{o} / \mathrm{c}}}{I_{\mathrm{s} / \mathrm{c}}}$.
After $V_{\mathrm{o} / \mathrm{c}}$ and $R_{\text {int }}$ are known, the load current can be determined very simply (Fig. 1.53):

$$
\begin{equation*}
I_{\text {out }}=\frac{V_{\mathrm{o} / \mathrm{c}}}{R_{\text {int }}+R_{\text {load }}}, \quad V_{\text {out }}=V_{\mathrm{o} / \mathrm{s}} \frac{R_{\text {load }}}{R_{\text {int }}+R_{\text {load }}} \tag{1.71}
\end{equation*}
$$



Fig. 1.53. Loaded Thévenin's equivalent circuit
Example: Analysing the circuit shown in Fig. 1.54 using Thévenin's theorem:
Step one: calculate $V_{o / c}$ using the voltage-divider rule

$$
V_{\mathrm{o} / \mathrm{c}}=V_{\mathrm{S} 1} \cdot \frac{R_{2}}{R_{1}+R_{2}}=12 \mathrm{~V} \cdot \frac{20 \Omega}{30 \Omega}=8 \mathrm{~V}
$$

Step two: calculate $I_{\mathrm{s} / \mathrm{c}}$ by shorting the output terminals

$$
I_{\mathrm{s} / \mathrm{c}}=\frac{V_{\mathrm{s} 1}}{R_{1}}=\frac{12 \mathrm{~V}}{10 \Omega}=1.2 \mathrm{~A}
$$



Fig. 1.54. Application of Thévenin's theorem to a circuit

For $R_{\text {int }}$ it follows that:

$$
R_{\mathrm{int}}=\frac{V_{\mathrm{o} / \mathrm{c}}}{I_{\mathrm{s} / \mathrm{c}}}=\frac{V_{\mathrm{S} 1} \cdot \frac{R_{2}}{R_{1}+R_{2}}}{\frac{V_{\mathrm{S} 1}}{R_{1}}}=\frac{R_{2} R_{1}}{R_{1}+R_{2}}=\frac{10 \Omega \cdot 20 \Omega}{30 \Omega}=6.66 \Omega
$$

or directly

$$
R_{\mathrm{int}}=\frac{V_{\mathrm{o} / \mathrm{c}}}{I_{\mathrm{s} / \mathrm{c}}}=\frac{8 \mathrm{~V}}{1.2 \mathrm{~A}}=6.66 \Omega
$$

### 1.3.6.2 Calculating a Current Within a Network

Thévenin's theorem can also be used to determine a certain current within a network. Therefore the network must be divided into two parts, where the current is to be calculated (Fig. 1.55).
After this, both parts of the divided network can be reduced to Thévenin equivalent circuits:
Then $I=\frac{V_{1}-V_{2}}{R_{1}+R_{2}}$.


Fig. 1.55. Using Thévenin's theorem to calculate a certain current
Often the right part of the network is passive, which means that it can be reduced to a resistor (or in an AC circuit to an impedance). In this case, the calculation follows that given in Sect. 1.3.6.1.

Example: Calculation of the current $I_{3}$ for the circuit shown in Fig. 1.56.


Fig. 1.56. Calculation of $I_{3}$ by Thévenin's theorem

First the circuit is divided into two parts at the two points a and b. Then the left part is converted into an equivalent voltage source, and the right part is converted into an equivalent resistor:

$$
V_{\mathrm{o} / \mathrm{c}}=V_{\mathrm{S} 1} \frac{R_{2}}{R_{1}+R_{2}}, \quad R_{\mathrm{int}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}, \quad R_{\mathrm{load}}=R_{3}+\frac{R_{4} R_{5}}{R_{4}+R_{5}}
$$

$I_{3}$ is then:

$$
I_{3}=\frac{V_{\mathrm{o} / \mathrm{c}}}{R_{\text {int }}+R_{\text {load }}}=\frac{V_{\mathrm{S} 1} \frac{R_{2}}{R_{1}+R_{2}}}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}+\frac{R_{4} R_{5}}{R_{4}+R_{5}}}
$$

### 1.4 Notation Index

C capacitance ( $\mathrm{F}=\mathrm{As} / \mathrm{V}$ )
$D$ damping ratio
$e \quad$ elementary or electronic charge $\left(e= \pm 1.602 \cdot 10^{-19} \mathrm{As}\right)$
$f$ frequency ( Hz )
$G \quad$ conductance $(\mathrm{S}=\mathrm{A} / \mathrm{V})$
$i \quad$ time variant current (A)
$I \quad$ DC current
$I_{\mathrm{s} / \mathrm{c}} \quad$ short-circuit current (A)
$I_{\mathrm{S}} \quad$ source current (A)
$L \quad$ inductance $(\mathrm{H}=\mathrm{V} / \mathrm{A} / \mathrm{A})$
$n \quad$ rounds per minute $\left(\mathrm{min}^{-1}\right)$
$M$ torque ( Nm )
$P \quad$ power $(\mathrm{W}=\mathrm{VA})$
$Q \quad$ charge (As)
$R \quad$ resistance ( $\Omega=\mathrm{V} / \mathrm{A}$ )
$R_{\mathrm{S}} \quad$ source or internal resistance $(\Omega=\mathrm{V} / \mathrm{A})$
$R_{\mathrm{L}} \quad$ load resistance ( $\Omega=\mathrm{V} / \mathrm{A}$ )
$t$ time (s)
$T$ period length (s)
$v \quad$ time variant voltage ( V )
$V \quad$ DC voltage (V)
$V_{\text {S }} \quad$ source voltage (V)
$V_{\mathrm{o} / \mathrm{c}}$ open-circuit voltage (V)
$W \quad$ energy (Ws = VAs)
$\alpha \quad$ temperature coefficient $\left(\mathrm{k}^{-1}\right)$
$\beta \quad$ temperature coefficient $\left(\mathrm{k}^{-2}\right)$
$\eta$ efficiency
$\vartheta$ temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\tau \quad$ time constant (s)
$\varphi$ potential (V)
$\omega$ angular frequency $\left(\mathrm{s}^{-1}\right)$
$\omega_{0} \quad$ resonant angular frequency $\left(\mathrm{s}^{-1}\right)$

## $1.5 \quad$ Further Reading

Bird, J. O.: Electrical Circuit Theory \& Technology, 1st Edition
Butterworth-Heinemann (1997)
Boylestad, R. L.: Introductory Circuit Analysis, 9th Edition
Prentice Hall (1999)
Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)
Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications, 5th Edition Prentice Hall (2000)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1998)
Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)
Muncaster, R.: A-Level Physics
Stanley Thornes Ltd. (1997)
Nelkon, M.; Parker, P.: Advanced Level Physics
Heinemann (1995)
Tse, Chi Kong: Linear Circuit Analysis, 1st Edition
Addison-Wesley (1998)

## 2 Electric Fields

Electric fields are caused by electrical charges. The state of motion of the charges is important. The physical phenomena may be divided into those caused by stationary charges and those caused by moving charges. The former are described by an electrostatic field, the latter by an electric flow field or a magnetic field. Charges in motion cause electric and magnetic fields. For an electrostatic field to exist alone, the charges must be stationary.

### 2.1 Electrostatic Fields

Electrostatics describes the relationships between stationary electric charges. The electric field that is created by stationary electric charges is known as an electrostatic field.

### 2.1.1 Coulomb's Law

Electric charges exert forces on each other. Charges with the same sign repel each other, whereas charges with opposite signs attract each other. The force between two stationary point charges $Q_{1}$ and $Q_{2}$ is defined by Coulomb's law (point charges are charges with no spatial volume):

$$
\begin{equation*}
|F|=\frac{1}{4 \mathbf{a} \varepsilon} \cdot \frac{Q_{1} \cdot Q_{2}}{r^{2}}, \quad \text { with } \quad \varepsilon=\varepsilon_{0} \cdot \varepsilon_{\mathrm{r}} \tag{2.1}
\end{equation*}
$$

$\varepsilon_{0}:$ permittivity of free space, $\varepsilon_{0}=8.86 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}}$;
$\varepsilon_{\mathrm{r}}$ : relative permittivity;
$r$ : distance between the charges.
The space between the charges is assumed to be an insulator, whose properties are equal and independent of orientation (that is, isotropic) in all places. In a vacuum $\varepsilon_{\mathrm{r}}=1$, which is also approximately true in air. The force $F_{2}$ on the point charge $Q_{2}$ can be represented by a vector:

$$
\begin{equation*}
\vec{F}_{2}=\frac{1}{4 \mathrm{a} \varepsilon} \cdot \frac{Q_{1} \cdot Q_{2}}{r^{2}} \cdot \vec{e}_{\mathrm{r}} \tag{2.2}
\end{equation*}
$$

The equation is written in spherical coordinates, where the point charge $Q_{1}$ is in the centre of the coordinate system. $\vec{e}_{\mathrm{r}}$ is the unity vector $\frac{\vec{r}}{|\vec{r}|}$, which points radially away from the charge $Q_{1}$.

- Coulomb's law is also valid to a good approximation for spheres whose diameters are small with respect to their separation; $r$ is then the distance between the centre points.


## R. Kories et al., Electrical Engineering

### 2.1.2 Definition of Electric Field Strength

The electric field strength may be derived from Coulomb's law:

$$
\begin{equation*}
\vec{F}_{2}=Q_{2} \cdot \underbrace{\frac{Q_{1}}{4 \mathrm{a} \varepsilon r^{2}} \cdot \vec{e}_{\mathrm{r}}}_{\vec{E}}=Q_{2} \cdot \vec{E} \tag{2.3}
\end{equation*}
$$

This defines a field for the point charge $Q_{1}$, pointing radially away from the charge and decreasing with the distance squared. This leads to a description of the force on $Q_{2}$ that would be caused by an electric field, without explicitly knowing the source of the field (the charge $Q_{1}$ in the position $r=0$ ).

- The SI unit of electric field strength is the Volts per Meter, $\frac{\mathrm{V}}{\mathrm{m}}$.
- When a force is exerted on an electric charge, then the charge is in an electric field.

In general, the force on a point charge in an electric field is given by:

$$
\begin{equation*}
\vec{F}=Q \cdot \vec{E} \tag{2.4}
\end{equation*}
$$

This equation is generally valid, independently of how the field strength vector $\vec{E}$ was caused.

Note: The field of the point charge $Q$ for which one wants to calculate the force is in this model meaningless. It points radially away from (or towards) the point and exercises no force on the charge.

Note: To calculate the force on an extended charge, it is divided up into infinitesimal point charges, in order to calculate the resulting force by integration. In the Cartesian coordinate system the calculation is expressed as:

$$
\vec{F}=\int_{Q} \vec{E}(x, y, z) \mathrm{d} Q(x, y, z)
$$

Of course, the coordinate system that is chosen is suitable to the given problem.
The fields may be visualised by electric flux lines (Fig. 2.1). Lines whose direction at any point corresponds to the direction of the force on a point charge at that position are used to represent a field. The density of the field lines is thus a measure of the field strength.

a)


Fig. 2.1. Representation of the force on a charge $Q_{2}:$ a) using Coulomb's law; b) using the electric field

- An electrostatic field is a source field. Electric flux lines always begin and end on electric charges.
- The positive direction of the flux lines is defined from positive charges to negative charges.

Note: If an electric field is drawn around a single charge (as in the definition of the electric field strength), then this automatically implies that the opposite charge is at infinity. This visually simplifies the calculation of the electric field. Where there are several charges present, then the resulting electric field can be constructed by the superposition of each individual field at each point in space (Fig. 2.2).

a)



> b)


Fig. 2.2. The resulting electric field of two a) opposite charges b) same-sign charges

### 2.1.3 Voltage and Potential

The electric voltage is a measure of the work required to move a unit charge in an electric field from one place to another.

$$
W=\int \vec{F} \mathrm{~d} \vec{s}=\int Q \cdot \underbrace{\vec{E} \mathrm{~d} \vec{s}}_{V}=Q \cdot V
$$

- The electric voltage between two points in space is equal to the line integral of the electric field strength between the two points. The particular path over which the integration is carried out is irrelevant.

$$
\begin{equation*}
V_{12}=\int_{s} \vec{E} \mathrm{~d} \vec{s} \tag{2.5}
\end{equation*}
$$

The electric potential $\varphi$ is an absolute scalar quantity. If a point in space is chosen where the electric potential $\varphi=0$ (reference potential), then all other points in space can be assigned an absolute potential. The potential $\varphi=0$ is normally assigned to earth, or is placed in abstract physical models at infinity. The voltage $V$ in this model is given by the difference between two potentials (Fig. 2.3a).

$$
\begin{equation*}
V_{12}=\varphi_{1}-\varphi_{2} \tag{2.6}
\end{equation*}
$$

Areas of equal potential are called equipotential surfaces. The electric field strength and the electric flux density vectors are perpendicular to these surfaces. An infinitesimal surface element $\mathrm{d} \vec{A}$ of the equipotential surface is a vector that is perpendicular to the surface. The direction of the vector $\mathrm{d} \vec{A}$ is the same as the direction of the electric field strength (Fig. 2.3b).


Fig. 2.3. The voltage $V$ and the potential $\varphi$ in an electrostatic field

### 2.1.4 Electrostatic Induction

Electrostatic induction is the shift of the mobile charges in a conductor that has been placed in an electric field. The charges shift so that the electric field strength in the electrical conductor remains zero.

- An electrical conductor is always internally field-free. (This is strictly valid only in an electrostatic field, but is also approximately true in low-frequency alternating fields.)

The electric field strength can be experimentally shown with Maxwell's parallel plates (Fig. 2.4). When two electrically conducting parallel plates are placed in an electric field, the mobile charges in the plates shift to the outer surfaces. In Fig. 2.4a, the negative charges shift left, and the positive shift right. The space inside the parallel plates is field-free. If the plates are now drawn apart (Fig. 2.4b), the charges remain on the plates and continue to balance out the field strength between the plates. If the parallel plates are removed from the field (Fig. 2.4c), then the charges on the parallel plates create a new electric field that can, for example, be measured in the discharge current.

a)

b)


Fig. 2.4. Maxwell's parallel plates to demonstrate electric fields
Electrostatic shielding can be used to prevent electrostatic induction by an external field. A hollow conductor is always internally field-free, as the charges shift to its outer surface so as to prevent an internal electric field. This is also approximately true when the hollow conductor does not have a closed outer surface, but rather has a grating structure. Such a shielding cage is called a Faraday cage, after its inventor (Fig. 2.5a). However, it is also possible to surround a charge with a hollow electrical conductor to keep the external space field-free (Fig. 2.5b). An equal and opposite charge to the internal charge gathers on the inner side of the hollow body. The charge on the outer surface of the hollow body flows away to earth. The outer space is thus kept field-free.

Note: If there is an alternating field inside the hollow body, then an alternating current flows on the earth conductor, as in this case the charge on the outer surface of


Fig. 2.5. Faraday cage
the hollow body must continuously change. The fact that this alternating current creates a magnetic field, which in turn induces a voltage, need not be taken into account at low frequencies. (The frequency range is not simple to specify, but for a good short earth conductor can be from 1 to 10 MHz .)

### 2.1.5 Electric Displacement

The electric displacement is a measure of the electrostatically induced charge after displacement. It is a vector field quantity.

$$
\begin{equation*}
\vec{D}=\frac{\mathrm{d} Q}{\mathrm{~d} A_{\perp}} \cdot \vec{e}_{A_{\perp}} \tag{2.7}
\end{equation*}
$$

Thus $\mathrm{d} A_{\perp}$ is the surface element of an equipotential surface. The unity vector $\vec{e}_{A_{\perp}}$ points in the direction of the electric field strength.

- The SI unit of electric displacement is $\frac{\mathrm{As}}{\mathrm{m}^{2}}$.
- The electric displacement is equivalent to the charge density on the outer surface of a conductor. In an electrostatic field it is equal to the charge density on an equipotential surface, if an electrically conducting foil is placed on the surface.
- The electric displacement intersects the equipotential surfaces perpendicularly, as does the electric field strength.

Example: A point charge $Q_{+}$is placed in the centre of a hollow spherical conductor (Fig. 2.6b). The electric displacement on the inner surface of the hollow sphere amounts to $\vec{D}=\frac{Q}{4 \mathrm{a} R^{2}} \cdot \vec{e}_{\mathrm{r}}$. It is obvious therefore that the opposite charge $Q_{-}$is spread over the inner surface of the sphere. Inside the hollow sphere the equipotential surfaces form concentric shells around the point charge $Q_{+}$. The electric displacement inside the sphere can be given in general by

$$
\vec{D}_{(r)}=\frac{Q}{4 \mathbf{a} r^{2}} \cdot \vec{e}_{\mathrm{r}} .
$$

With spherical coordinates the charge $Q_{+}$lies in the centre of this representation.


Fig. 2.6. Electric displacement: a) general definition; a) in a hollow sphere

### 2.1.6 Dielectrics

The space an electrostatic field fills is known as a dielectric. The dielectric field quantities are the electric field strength $\vec{E}$ and the electric displacement $\vec{D}$. In an electrostatic field:

$$
\begin{equation*}
\vec{D}=\varepsilon \cdot \vec{E} \tag{2.8}
\end{equation*}
$$

where $\varepsilon$ is the permittivity (also known as the dielectric constant). For an isotropic dielectric:

- $\vec{E}$ and $\vec{D}$ point in the same direction and lie perpendicular to the equipotential surfaces.
- The proportionality factor between the electric displacement and the electric field strength is the permittivity $\varepsilon$.

The permittivity is derived from the free space permittivity $\varepsilon_{0}$ and the relative permittivity $\varepsilon_{\mathrm{r}} \geq 1$ (relative dielectric constant).

$$
\begin{equation*}
\varepsilon=\varepsilon_{0} \cdot \varepsilon_{\mathrm{r}} \tag{2.9}
\end{equation*}
$$

The value of the free space permittivity is:

$$
\begin{equation*}
\varepsilon_{0}=8.85419 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \tag{2.10}
\end{equation*}
$$

The relative permittivity $\varepsilon_{\mathrm{r}}$ depends on the material in which the field extends. The values of $\varepsilon_{\mathrm{r}}$ for most dielectrics lie between 1 and 100 , but $\varepsilon_{\mathrm{r}}$ can be up to 10000 .

- The relative permittivity is always $\varepsilon_{\mathrm{r}} \geq 1$.
- The relative permittivity of a vacuum is $\varepsilon_{\mathrm{r}}=1$.
- The relative permittivity of air is $\varepsilon_{\mathrm{r}} \approx 1$.
- The relative permittivity of insulators usually lies in the range 2-3.


### 2.1.7 The Coulomb Integral

The electric field strength at an arbitrary point in space can be calculated with the aid of the superposition principle. The total field strength is equal to the vector sum of the individual field strengths from each of the charges.

$$
\begin{equation*}
\vec{D}=\sum_{i} \frac{Q_{i}}{4 \mathrm{a} r_{i}^{2}} \cdot \vec{e}_{\mathrm{r} i}, \quad \text { or } \quad \vec{E}=\sum_{i} \frac{Q_{i}}{4 \mathrm{a} \varepsilon r_{i}^{2}} \cdot \vec{e}_{\mathrm{r} i} \tag{2.11}
\end{equation*}
$$

A spatially distributed charge may be considered as a number of spatially distributed point charges $\mathrm{d} Q_{i}$. The resulting field strength is then equal to the integral of the individual field strengths from each of the point charges $\mathrm{d} Q_{i}$.

$$
\begin{equation*}
\vec{D}=\int_{Q} \frac{\mathrm{~d} Q_{i}}{4 \mathbf{a} r^{2}} \cdot \vec{e}_{\mathrm{r} i}, \quad \text { or } \quad \vec{E}=\int_{Q} \frac{\mathrm{~d} Q_{i}}{4 \mathbf{a} \varepsilon r^{2}} \cdot \vec{e}_{\mathrm{r} i} \tag{2.12}
\end{equation*}
$$

This is known as the Coulomb integral.
Example: The calculation of the electric field strength around a straight line charge $\lambda\left(\frac{\mathrm{As}}{\mathrm{m}}\right)$ by using the Coulomb integral:


Fig. 2.7. Calculation of the electric field strength using the Coulomb integral
It can be assumed that the field spreads out radially and symmetrically from the line charge. If the line charge is rotated about its longitudinal axis, the field at a fixed point in space will not change for symmetrical reasons. The calculation can thus be reduced to a planar (two-dimensional) problem. The spatially distributed point charges may be considered as $\mathrm{d} Q=\lambda \mathrm{d} x$. The distance from the charge $\mathrm{d} Q$ to the point $P$ is given by $r=\sqrt{R^{2}+x^{2}}$. The cosine of the angle $\alpha$ can be represented in Cartesian coordinates as $\frac{R}{\sqrt{R^{2}+x^{2}}}$ (Fig. 2.7). The calculation of the field strength $E$ at the point $P$ :

$$
E=\frac{D}{\varepsilon}=\int_{-\infty}^{+\infty} \frac{\lambda}{4 \mathbf{\mathbf { a } \varepsilon}} \cdot \frac{\mathrm{~d} x}{R^{2}+x^{2}} \cdot \underbrace{\frac{R}{\sqrt{R^{2}+x^{2}}}}_{\cos \alpha}=2 \cdot \frac{\lambda R}{4 \mathbf{a} \varepsilon} \int_{0}^{+\infty} \frac{\mathrm{d} x}{\left(R^{2}+x^{2}\right)^{3 / 2}}=\frac{\lambda}{2 \mathbf{a} \varepsilon R}
$$

The field components in the $x$-direction balance each other out. The resulting field strength points radially away from the line charge.

### 2.1.8 Gauss's Law of Electrostatics

Gauss's law of electrostatics states that the surface integral of the electric displacement over a closed surface is equal to the charge enclosed.

$$
\begin{equation*}
\oint_{A} \vec{D} \mathrm{~d} \vec{A}=Q \tag{2.13}
\end{equation*}
$$

The vector $\mathrm{d} \vec{A}$ points out from the surface area.

Example: The calculation of the electric field strength around a straight line charge $\lambda$ using Gauss's law:


Fig. 2.8. Field calculation for a line charge
A field calculation using Gauss's law essentially depends on a suitable choice of the coordinate system. In this particular case a cylindrical coordinate system is suitable for symmetrical reasons, since the field points radially away from a line charge. A cylindrical surface is therefore placed around the line charge, as shown in Fig. 2.8. Gauss's law states that:

$$
\begin{aligned}
\oint_{A} \vec{D} \mathrm{~d} \vec{A}=\vec{D} \cdot 2 \mathrm{\square} \vec{R} \cdot l=\lambda l & \Rightarrow \vec{D}(R)=\frac{\lambda}{2 \mathrm{a} R} \cdot \vec{e}_{\mathrm{r}} \\
& \Rightarrow \vec{E}(R)=\frac{\lambda}{2 \mathrm{a} \varepsilon R} \cdot \vec{e}_{\mathrm{r}}
\end{aligned}
$$

### 2.1.9 Capacitance

- In a configuration of two electrodes, the ratio of the charge on the two electrodes to the voltage between the electrodes is constant. This ratio only depends on the geometry of the configuration and the dielectric constant of the space between the electrodes.
- The ratio of the charge to the voltage is called the capacitance.

$$
\begin{equation*}
C=\frac{Q}{V} \tag{2.14}
\end{equation*}
$$

The SI unit of capacitance is the farad, $1 \mathrm{~F}=1 \frac{\mathrm{As}}{\mathrm{V}}$
If field quantities are used to describe $Q$ and $V$, then $C$ can be calculated as:

$$
\begin{equation*}
C=\frac{Q}{V}=\frac{\oint_{A} \vec{D} \mathrm{~d} \vec{A}}{\int_{s} \vec{E} \mathrm{~d} \vec{s}}, \quad \text { with } \quad \vec{e}_{A} \| \vec{e}_{s} \tag{2.15}
\end{equation*}
$$

Equation (2.15) is valid for the case where the path element $\mathrm{d} s$ is perpendicular to the area element $\mathrm{d} A$. Therefore, in order to evaluate this integral, the field qualities must be known qualitatively, i.e. the direction of the field strength and the electric displacement must be known.

Example: Calculation of the capacitance of a coaxial conductor of length $l$ (Fig. 2.9):


Fig. 2.9. Calculation of the capacitance of a coaxial conductor
Knowledge of the electric field is necessary for the calculation of the capacitance. Equation (2.15) is used, as either a voltage $V$ is applied to, or a charge $Q$ is placed on, the electrodes. In this case a charge $Q$ is placed on the electrodes, and the field $\vec{E}(r)$ is expressed as a function of this charge. As can be seen, the charge $Q$ cancels out to yield an expression for $C$ that only depends on the geometry of the configuration and the material characteristics of the dielectric.

$$
C=\frac{Q}{V}=\frac{\oint_{A} \vec{D} \mathrm{~d} \vec{A}}{\int_{s} \vec{E} \mathrm{~d} \vec{s}}=\frac{Q}{\int_{r_{1}}^{r_{2}} \frac{Q / l}{2 \mathbf{a} \varepsilon r} \mathrm{~d} r}=\frac{2 \mathrm{a} \varepsilon l}{\ln \frac{r_{2}}{r_{1}}}, \quad \text { with } \quad \vec{E}=\frac{Q / l}{2 \mathbf{a} \varepsilon r} \vec{e}_{\mathrm{r}}
$$

### 2.1.10 Electrostatic Field at a Boundary

Figure 2.10 shows electrostatic field quantities at a boundary. At the boundary:

$$
\begin{equation*}
\vec{E}_{\mathrm{t} 2}=\vec{E}_{\mathrm{t} 1}, \quad \text { and } \quad \vec{E}_{\mathrm{n} 2}=\frac{\varepsilon_{1}}{\varepsilon_{2}} \cdot \vec{E}_{\mathrm{n} 1} \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
\vec{D}_{\mathrm{n} 2}=\vec{D}_{\mathrm{n} 1}, \quad \text { and } \quad \vec{D}_{\mathrm{t} 2}=\frac{\varepsilon_{2}}{\varepsilon_{1}} \cdot \overrightarrow{\mathrm{D}}_{\mathrm{t} 1} \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}} \cdot \tan \alpha_{1} \tag{2.18}
\end{equation*}
$$



Fig. 2.10. Field quantities at a boundary

- The tangential component of the electric field strength is constant.
- The normal component of the electric field strength is inversely proportional to the dielectric constant.
- The tangential component of the electric displacement is proportional to the dielectric constant.
- The normal component of the electric displacement is constant.


### 2.1.11 Overview: Fields and Capacitances of Different Geometric Configurations

Table 2.1. Overview of fields and capacitances

| Parallel-plate capacitor | $C=\varepsilon \cdot \frac{A}{d}$ | $E=\frac{V}{d}$ |
| :---: | :---: | :---: |
| Parallel-plate capacitor | $C=\frac{A}{\frac{d_{1}}{\varepsilon_{1}}+\frac{d_{2}}{\varepsilon_{2}}}$ | $E_{1(2)}=\frac{V}{\varepsilon_{1(2)}\left(\frac{d_{1}}{\varepsilon_{1}}+\frac{d_{2}}{\varepsilon_{2}}\right)}$ |
| Cylindrical capacitor | $C=\frac{2 \pi \varepsilon \cdot l}{\ln \frac{r_{2}}{r_{1}}}$ | $E=\frac{V}{r \cdot \ln \frac{r_{2}}{r_{1}}}$ |
| Cylindrical capacitor | $C=\frac{2 \pi l}{\frac{1}{\varepsilon_{1}} \ln \frac{r_{2}}{r_{1}}+\frac{1}{\varepsilon_{2}} \ln \frac{r_{3}}{r_{2}}}$ | $\begin{aligned} E_{1(2)}= & \frac{V}{\varepsilon_{1(2)} \cdot r} \\ & \times \frac{1}{\frac{1}{\varepsilon_{1}} \ln \frac{r_{2}}{r_{1}}+\frac{1}{\varepsilon_{2}} \ln \frac{r_{3}}{r_{2}}} \end{aligned}$ |
| Spherical capacitor | $C=4 \pi \varepsilon \cdot \frac{r_{1} r_{2}}{r_{2}-r_{1}}$ | $E=\frac{V}{r^{2}} \cdot \frac{r_{1} r_{2}}{r_{2}-r_{1}}$ |
| Parallel conductor | $\begin{aligned} C & =\frac{\pi \varepsilon l}{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]} \\ & \approx \frac{\pi \varepsilon l}{\ln \frac{2 a}{r_{1}}}, \text { for } a \gg r_{1} \end{aligned}$ | $E=\frac{V \frac{\sqrt{a^{2}-r_{1}^{2}}}{a^{2}-r_{1}^{2}-x^{2}}}{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]}$ |

Table 2.1. (cont.)

| Single conductor-earth | $\begin{aligned} C & =\frac{2 \mathrm{a} \varepsilon l}{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]} \\ & \approx \frac{2 \mathrm{\square} \bar{\varepsilon} l}{\ln \frac{2 a}{r_{1}}} \text { for } a \gg r_{1} \end{aligned}$ | $E=\frac{2 V \frac{\sqrt{a^{2}-r_{1}^{2}}}{a^{2}-r_{1}^{2}-x^{2}}}{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]}$ |
| :---: | :---: | :---: |
| Sphere-sphere $\xrightarrow[\rightarrow]{r_{1}} \underset{\underset{x}{\rightarrow}}{\underset{2 a}{r_{1}} \rightarrow Q}$ | $C \approx \frac{2 \mathrm{a} \varepsilon}{\frac{1}{\frac{1}{r_{1}}-\frac{1}{2 a}}}$ | $E \approx \frac{V\left(\frac{1}{x^{2}}+\frac{1}{(2 a-x)^{2}}\right)}{\frac{2}{r_{1}}-\frac{1}{a}}$ |
| Sphere-infinity | $C=4 \mathrm{a} \varepsilon \mathrm{r}_{1}$ | $E=V \cdot \frac{r_{1}}{r^{2}}$ |

### 2.1.12 Energy in an Electrostatic Field

Energy is required to create an electric field, as positive and negative charges must be separated. A charging current will flow if a voltage is applied to a capacitor in order to charge it. The energy supplied to the capacitor is stored in the electric field and not, as for a resistance, transformed into heat. The energy is given by:

$$
W=\int_{0}^{t_{1}} v(t) \cdot \underbrace{i(t) \mathrm{d} t}_{\mathrm{d} Q}=\int_{0}^{Q_{1}} v(t) \underbrace{\mathrm{d} Q}_{C \mathrm{~d} V}=C \int_{0}^{V_{\mathrm{C}}} v \mathrm{~d} v=\frac{1}{2} C \cdot V_{\mathrm{C}}^{2}
$$

In general:

$$
\begin{equation*}
W=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C} \tag{2.19}
\end{equation*}
$$

If the integral quantities $Q$ and $V$ are replaced by the vector quantities $\vec{D}$ and $\vec{E}$, this becomes:

$$
\begin{equation*}
W=\frac{1}{2} \oint_{A} \vec{D} \mathrm{~d} \vec{A} \cdot \int_{s} \vec{E} \mathrm{~d} \vec{s}=\frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} \mathrm{~d} V, \quad \text { with } \quad \vec{e}_{s} \|_{e_{A}} \tag{2.20}
\end{equation*}
$$

The unity vector $\vec{e}_{s}$ points therefore in the same direction as the unity vector for the area $\vec{e}_{A}$, so that the integral $\int \mathrm{d} s \cdot \mathrm{~d} A$ yields the volume element $\mathrm{d} V$. The energy density of an electrostatic field is:

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} V}=\frac{1}{2} \vec{D} \cdot \vec{E} \tag{2.21}
\end{equation*}
$$

### 2.1.13 Forces in an Electrostatic Field

### 2.1.13.1 Force on a Charge

The force on a point charge in an electric field is given by:

$$
\begin{equation*}
\vec{F}=Q \cdot \vec{E} \tag{2.22}
\end{equation*}
$$

Example: The deflection of an electron after passing through an electric field is given by:


Fig. 2.11. Deflection of an electron passing through an electric field
A force is exerted on an electron during its passage through an electric field (Fig. 2.11). Because of the negative charge on the electron, the direction of the force opposes that of the electric field. The speed $\vec{v}_{0}$ of the electron perpendicular to the direction of the field remains unchanged during passage through the field. The time the electron requires to traverse the field is $t=l / \mathrm{v}_{0}$.

$$
\begin{aligned}
F=m \cdot a \quad & \quad \text { (force }=\text { mass } \times \text { acceleration }) \\
v=\int a \mathrm{~d} t \quad & \text { (velocity }=\text { time integral of the acceleration) } \\
\mathrm{v}_{1} & =\int_{0}^{l / \mathrm{v}_{0}} \frac{e \cdot E}{m} \mathrm{~d} t=\frac{e}{m \mathrm{v}_{0}} \cdot E \cdot l, \quad \tan \alpha=\frac{e}{m} \cdot E \cdot l
\end{aligned}
$$

### 2.1.13.2 Force at the Boundary

Both the boundary between dielectric and the conductive surface of electrodes and also the boundary between different dielectrics are subject to forces. These forces can be most easily derived by considering the energy balance between the mechanical, electrical and field energy. To do this, the boundary is assumed to have shifted infinitesimally and then the resulting change in the potential energy is calculated. The sum of the energy changes must be zero:

$$
\begin{equation*}
\mathrm{d} W_{\text {mech }}+\mathrm{d} W_{\text {field }}+\mathrm{d} W_{\text {electr }}=0 \tag{2.23}
\end{equation*}
$$

In order to carry out this energy balance it is necessary to know which of the changes is positive and which negative, i.e., which energy increases and which decreases. Consider the following thought experiment: A voltage source is applied to a parallel-plate capacitor. The plates of the capacitor are drawn to each other, as they are charged with opposite charges. Mechanical energy is applied if the plates are pulled apart. The capacitance will
simultaneously decrease, i.e. the stored field energy $\frac{1}{2} C V^{2}$ will decrease. The mechanical energy and the change in the stored field energy are balanced by the energy supplied by the voltage source. This energy balance can be more concretely stated as:

$$
F \cdot \mathrm{~d} s+\mathrm{d}\left(\frac{1}{2} C V^{2}\right)=\mathrm{d} Q \cdot V
$$

With $Q=C \cdot V$, it follows therefore for the force:

$$
\begin{equation*}
F=\frac{1}{2} V^{2} \frac{\mathrm{~d} C}{\mathrm{~d} s} \tag{2.24}
\end{equation*}
$$

- The force on the plates of a capacitor is proportional to the change in the capacitance relative to the imaginary shift of the plates.

For boundaries this means, in general, that:

- The force at a boundary is proportional to the change in the capacitance relative to an imaginary shift of the boundary.
- The force at a boundary always tries to increase the capacitance.

Note: If a voltage source is not applied to the capacitor plates in the above thought experiment, but rather they hold the fixed charge $Q$, then the energy balance for the virtual shift is different. It then becomes:

$$
F \cdot \mathrm{~d} s+\mathrm{d}\left(\frac{1}{2} \frac{Q^{2}}{C}\right)=0
$$

The force is thus:

$$
\begin{equation*}
F=-\frac{1}{2} Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{C}\right) \tag{2.25}
\end{equation*}
$$

The applied mechanical energy increases the field energy in this case. (In the first case with the voltage source the field energy was reduced!) Of course, both equations for the calculation of the force, $F=\frac{1}{2} V^{2} \frac{\mathrm{~d} C}{\mathrm{~d} s}$ and $F=-\frac{1}{2} Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{C}\right)$, arrive at the same result.

Example: Calculation of the force at the electrodes of a parallel plate capacitor (Fig. 2.12a):

$$
F=\frac{1}{2} V^{2} \frac{\mathrm{~d} C}{\mathrm{~d} s}, \quad C=\frac{\varepsilon A}{s}, \quad \frac{\mathrm{~d} C}{\mathrm{~d} s}=-\frac{\varepsilon A}{s^{2}} \quad \Rightarrow F=-\frac{1}{2} V^{2} \cdot \frac{\varepsilon A}{s^{2}}
$$

Another approach is:

$$
\begin{gathered}
F=-\frac{1}{2} Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{C}\right), \quad \frac{1}{C}=\frac{s}{\varepsilon A}, \quad \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{C}\right)=\frac{1}{\varepsilon A} \\
\Rightarrow F=-\frac{1}{2} Q^{2} \frac{1}{\varepsilon A}=-\frac{1}{2} V^{2} \cdot \frac{\varepsilon A}{s^{2}}
\end{gathered}
$$

As expected, both results are equal. The minus sign in the result shows that the force resists against the plates being drawn apart.

a)


Fig. 2.12. Forces at boundaries: a) parallel to the flux lines; b) perpendicular to the flux lines
Example: Calculation of the force drawing a dielectric between two capacitor plates (Fig. 2.12b):

$$
\begin{aligned}
F=\frac{V^{2}}{2} \cdot \frac{\mathrm{~d} C}{\mathrm{~d} x}, \quad C & =\frac{\varepsilon_{1} \varepsilon_{0} b}{a} x+\frac{\varepsilon_{0} b}{a}(h-x), \quad \frac{\mathrm{d} C}{\mathrm{~d} x}=\left(\varepsilon_{1}-1\right) \frac{\varepsilon_{0} b}{a} \\
& \Rightarrow F=\frac{V^{2}}{2} \cdot\left(\varepsilon_{1}-1\right) \frac{\varepsilon_{0} b}{a}
\end{aligned}
$$

### 2.1.14 Overview: Characteristics of an Electrostatic Field

- Conducting media are field-free.
- The electric displacement and the electric field strength point in the same direction in isotropic materials.

$$
\vec{D}=\varepsilon \cdot \vec{E}
$$

- The electric field is a charge field. Electric flux lines always begin and end on electric charges. The positive direction is defined from negative to positive charges.
- The surface integral of the electric displacement over a closed surface is equal to the charge enclosed. This is obviously zero in a charge-free space.

$$
\oint_{A} \vec{D} \mathrm{~d} \vec{A}=Q
$$

- A space is charge-free if the divergence of the observed field in this space is zero.

$$
\nabla \cdot \vec{E}=0 \quad \text { in a charge-free space. }
$$

- If the observed space contains the charge density $\varrho$, then the divergence of $\vec{E}$ (Maxwell's third equation) is:

$$
\nabla \cdot \vec{E}=\frac{\varrho}{\varepsilon}
$$

- The curl of the electric field is zero at all points. If the integral of the electric field strength is calculated over a closed loop then the result is always zero, independent of the integration path chosen.

$$
\oint \vec{E} \mathrm{~d} \vec{s}=0, \quad \nabla \times \vec{E}=0
$$

- The electrostatic field is a conservative field. The line integral of the electric field strength is equal to the voltage (potential difference) between the beginning and end points of the path. It is therefore not relevant over which path the integration occurs.

$$
\int_{1}^{2} \vec{E} \cdot \mathrm{~d} \vec{s}=V_{12}=\varphi_{1}-\varphi_{2}
$$

- Flux lines pass perpendicularly through the equipotential surfaces. The electric field strength points in the direction of the greatest voltage change. The field vector points from higher to lower voltage levels (in the direction of the lower potential).

$$
\vec{E}=-\nabla \cdot V
$$

- The electrostatic field holds energy:

$$
W=\frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} \mathrm{~d} V
$$

### 2.1.15 Relationship between the Electrostatic Field Quantities

$$
\begin{aligned}
& Q \quad \Leftarrow Q=\oint_{A} \vec{D} \mathrm{~d} \vec{A} \Rightarrow \quad \vec{D} \\
& \text { 介 } \Uparrow \\
& \begin{array}{cccc}
Q=C \cdot V & & \vec{D}=\varepsilon \cdot \vec{E} \\
\Downarrow & & \\
\Downarrow \\
V & \Leftarrow V=\int_{s} \vec{E} \mathrm{~d} \vec{s} \Rightarrow & \vec{E}
\end{array}
\end{aligned}
$$

### 2.2 Static Steady-State Current Flow

The static steady-state current flow describes the motion of charges in an electrical conductor and its effects when the electrical quantities do not change with time. The following section makes the assumption that $\frac{\mathrm{d} i}{\mathrm{~d} t}=0$. There are therefore no induced voltages!

### 2.2.1 Voltage and Potential

Voltage causes directed charge motion in an electrical conductor. If a voltage is placed on an electrical conductor then a current $I$ will flow. A voltage can be measured at any point on the surface of an electrical conductor when a current is flowing in the conductor. A voltage is also present at each internal point in the conductor, although this is not so easy to measure.

- The voltage decreases uniformly along the electrical conductor.

A point can be designated where the potential $\varphi=0$. It is then possible to define potential $\varphi$ at any point in the conductor. The voltage between two points is equal to the potential difference between the points:

$$
\begin{equation*}
V_{12}=\varphi_{1}-\varphi_{2} \tag{2.26}
\end{equation*}
$$

Areas with the same voltage or with the same potential are known as equipotential surfaces, as in electrostatic fields.

### 2.2.2 Current

The electric current is the sum of charges that flow through a defined cross section per unit time:

$$
\begin{equation*}
I=\frac{\mathrm{d} Q}{\mathrm{~d} t} \tag{2.27}
\end{equation*}
$$

- The direction of positive current is the direction of motion of the positive charges. This is opposite to the direction of motion of the negative charges.
- Current always flows in a closed loop.
(See also Sect. 1.1)


### 2.2.3 Electric Field Strength

The electric field strength describes the change in the electric voltage over a given path. It is a vector that points in the direction of the greatest change. As the greatest change in the voltage is perpendicular to the equipotential surfaces, the electric field strength vector lies perpendicular to the equipotential surfaces (Fig. 2.13).

$$
\begin{equation*}
\vec{E}=\frac{\mathrm{d} V}{\mathrm{~d} s_{\perp}} \cdot \vec{e}_{A_{\perp}} \tag{2.28}
\end{equation*}
$$

The unity vector $\vec{e}_{A_{\perp}}$ is perpendicular to the equipotential surface, and the path element $\mathrm{d} s_{\perp}$ passes perpendicularly through the equipotential surface. This may also be written as:

$$
\begin{equation*}
\vec{E}=-\nabla \cdot V \tag{2.29}
\end{equation*}
$$



Fig. 2.13. Electric field strength, equipotential surfaces and electric voltage

- The direction of the electric field strength is the direction of the greatest change in voltage.
- The magnitude of the electric field strength yields the change in the voltage over the path.
The unit of electric field strength is volt per meter, $\frac{\mathrm{V}}{\mathrm{m}}$. The electric voltage $V$ is the line integral of the electric field strength:

$$
\begin{equation*}
V_{12}=\int_{1}^{2} \vec{E} \cdot \mathrm{~d} \vec{s} \tag{2.30}
\end{equation*}
$$

- The electric voltage between two points is equal to the line integral of the electric field strength between the two points. Therefore, it does not matter over which path the integration occurs.

A field is said to be homogeneous if the same field strength prevails at all points in that field, i.e. the magnitude and direction at all points are the same. The voltage in a homogeneous field is:

$$
\begin{equation*}
V_{12}=\vec{E} \cdot \vec{s}_{12} \tag{2.31}
\end{equation*}
$$

### 2.2.4 Current Density

The current $I$ is spread out over a conductor. This leads to the definition of current density $\vec{J}$ :

$$
\begin{equation*}
\vec{J}=\frac{\mathrm{d} I}{\mathrm{~d} A_{\perp}} \cdot \vec{e}_{A_{\perp}} \tag{2.32}
\end{equation*}
$$

Thus $\mathrm{d} A_{\perp}$ is the surface element of an equipotential surface. The unity vector $\vec{e}_{A_{\perp}}$ lies perpendicular to the equipotential surface.

- The direction of the current density points in the direction of the greatest voltage change. The current density vector lies perpendicular to the equipotential surface (Fig. 2.14a).
- The magnitude of the current density yields the amount of charge per cross section and per unit of time that passes through an equipotential surface.
- The current density points in the same direction as the electric field strength.

The unit of current density is amperes per square meter, $\frac{\mathrm{A}}{\mathrm{m}^{2}}$. The current $I$ is the integral of the scalar product of the current density and an arbitrary area through which the current passes.

$$
\begin{equation*}
I=\int_{A} \vec{J} \cdot \mathrm{~d} \vec{A} \tag{2.33}
\end{equation*}
$$

In a homogeneous field this integral becomes (Fig. 2.14b):

$$
\begin{equation*}
I=J \cdot A \cdot \cos \alpha \tag{2.34}
\end{equation*}
$$

where $\alpha$ is the angle between the normal to the area and the current density.


Fig. 2.14. Current density: a) in general; b) in a homogeneous field

### 2.2.5 Resistivity and Conductivity

The electric field strength is related to the current density by the resistivity $\varrho$ and the conductivity $\sigma$.

$$
\begin{array}{cc}
\vec{E}=\varrho \cdot \vec{J}, & \text { and } \quad \vec{J}=\sigma \cdot \vec{E} \\
& \sigma=\frac{1}{\varrho} \tag{2.36}
\end{array}
$$

- The conductivity is the inverse of the resistivity.
- The unit of resistivity is ohm meters, $\Omega \mathrm{m}$.

Note: The unit of resistivity is often given as $\frac{\Omega \mathrm{mm}^{2}}{\mathrm{~m}}$, since the lengths of electrical conductors are often given in meters and the cross-sectional area in millimeter ${ }^{2}$. The electrical resistance of a homogeneous conductor may be calculated thus:

$$
R=\varrho \cdot \frac{\text { length }}{\text { cross-sectional area }}
$$

The unit of conductivity is siemens or mho per meter, $\frac{\mathrm{S}}{\mathrm{m}}$, or $\frac{\mathrm{mho}}{\mathrm{m}}$.

- The resistivity and the conductivity are material characteristics of the electrical conductor (Table 2.2).
- The resistivity and the conductivity are temperature dependent.

Note: The resistivity temperature dependence is given by the temperature coefficient $\alpha$. The change in the resistivity with temperature may be calculated from:

$$
\varrho\left(\vartheta_{2}\right)=\varrho\left(\vartheta_{1}\right) \cdot\left[1+\alpha \cdot\left(\vartheta_{2}-\vartheta_{1}\right)\right]
$$

The temperature coefficients of copper and aluminium are $\alpha=0.004 \mathrm{~K}^{-1}$. Therefore, for a temperature change of 100 K , their resistivity changes by $40 \%$.

Table 2.2. Resistivity of electrical conductors

| Material | Conductivity <br> $\sigma\left(\mathrm{S} / \mathrm{m} \cdot 10^{-6}\right)$ | Resistivity <br> $\varrho\left(\Omega \cdot \mathrm{mm}^{2} / \mathrm{m}\right)$ |
| :--- | :---: | :---: |
| Aluminium | 37 | 0.027 |
| Brass | $14.3-12.5$ | $0.07-0.08$ |
| Copper | 59 | 0.017 |
| Gold | 45.5 | 0.022 |
| Iron | $10-2.5$ | $0.1-0.4$ |
| Silver | 62.5 | 0.016 |

### 2.2.6 Resistance and Conductance

Voltage is related to current by the electrical resistance $R$ and the electrical conductance $G$.

$$
\begin{equation*}
V=R \cdot I, \quad \text { and } \quad I=G \cdot U \tag{2.37}
\end{equation*}
$$

The SI unit of resistance $R$ is the ohm, $1 \Omega=\frac{1 \mathrm{~V}}{1 \mathrm{~A}}$, while the unit of conductance $G$ is the mho or Siemens, $1=\frac{1 \mathrm{~A}}{1 \mathrm{~V}}$. If the integral quantities $V$ and $I$ are represented as vector quantities, then $R$ and $G$ are calculated as:

$$
\begin{equation*}
R=\frac{V}{I}=\frac{\int_{s} \vec{E} \mathrm{~d} \vec{s}}{\int_{A} \vec{J} \mathrm{~d} \vec{A}}, \quad \text { and } \quad G=\frac{I}{V}=\frac{\int_{A} \vec{J} \mathrm{~d} \vec{A}}{\int_{s} \vec{E} \mathrm{~d} \vec{s}}, \quad \text { with } \quad \vec{e}_{A}=\vec{e}_{s} \tag{2.38}
\end{equation*}
$$

Equation (2.38) is valid for the case where the path element $\mathrm{d} s$ lies perpendicular to the area element $\mathrm{d} A$. To evaluate this integral the field characteristics must be known qualitatively, i.e. the directions of the field strength and the current density must be known. For an isotropic conductor material of length $l$ and cross-sectional area $A$ with a homogeneous field distribution, $R=\varrho \cdot \frac{l}{A} \quad$ and $\quad G=\sigma \cdot \frac{A}{l}$

Example: Calculation of the resistance of a quarter-ring: The contacts are perfect conductors, and the resistance material is isotropic. a) Figure 2.15a: the current is tangentially injected. The current density lines are tangential to the ring. The current is equally divided over the cross section. The individual current density lines may be considered as "current threads" $\mathrm{d} I$. The integration (addition) of these current threads thus yields the total current $I=\int \mathrm{d} I$. Each current thread $\mathrm{d} I$ is defined by the differential conductance $\mathrm{d} G$ :

$$
\begin{aligned}
\mathrm{d} I & =V \cdot \mathrm{~d} G=V \cdot \sigma \frac{\mathrm{~d} A}{l}=V \cdot \sigma \frac{b}{\mathbf{a} / 2} \cdot \frac{\mathrm{~d} r}{r} \\
G & =\frac{I}{V}=\int \frac{\mathrm{d} I}{V}=\int \frac{V}{V} \cdot \mathrm{~d} G=\int \sigma \frac{\mathrm{d} A}{l}=\sigma \frac{b}{\mathbf{a} / 2} \cdot \int_{r_{1}}^{r_{2}} \frac{\mathrm{~d} r}{r}=\sigma \cdot \frac{b}{\mathbf{a} / 2} \cdot \ln \frac{r_{2}}{r_{1}}
\end{aligned}
$$



Fig. 2.15. Quarter-ring resistance: a) with tangential and b) with radial current injection
The resistance $R$ is:

$$
\begin{equation*}
R=\frac{1}{G}=\frac{1}{\sigma} \cdot \frac{\mathbf{a} / 2}{b} \cdot \frac{1}{\ln \left(r_{2} / r_{1}\right)} \tag{2.39}
\end{equation*}
$$

An alternative method comes from analysing the geometry of the configuration: The total resistance can be considered as a combination of parallel resistors of length $\frac{\mathrm{a}}{2} r$ and cross-sectional area $b \cdot \mathrm{~d} r$. The partial conductance $\mathrm{d} G$ is given by $\sigma \cdot \frac{b}{\mathrm{a} / 2} \cdot \frac{\mathrm{~d} r}{r}$. The total conductance $G$ is therefore the integration (summation) of the partial conductances:

$$
G=\int_{r_{1}}^{r_{2}} \sigma \cdot \frac{b}{\mathrm{a} / 2} \cdot \frac{\mathrm{~d} r}{r}=\sigma \cdot \frac{b}{\mathrm{a} / 2} \cdot \ln \frac{r_{2}}{r_{1}}
$$

Note: The direction of the field must also be known for this method.
b) Figure 2.15b: the current is injected radially. The current is divided radially from the inside to the outside of the arc. The current density decreases from the inside to the outside of the ring, flowing away from the inner contact in a star-like pattern. The total current must pass through "resistance discs" $\mathrm{d} R$ of cross-sectional area $\frac{\square}{2} r \cdot b$ and of length $\mathrm{d} r$. The total resistance $R$ can be considered as a series combination of resistance discs $\mathrm{d} R$. The total resistance is therefore the integration (summation) of the partial resistances $\mathrm{d} R$ :

$$
R=\int \mathrm{d} R=\int \varrho \cdot \frac{\mathrm{d} l}{A}=\int_{r_{1}}^{r_{2}} \varrho \cdot \frac{\mathrm{~d} r}{b \cdot(\mathbf{a} / 2) \cdot r}=\varrho \cdot \frac{\ln \left(r_{2} / r_{1}\right)}{b \cdot(\mathbf{a} / 2)}
$$

### 2.2.7 Kirchhoff's Laws

### 2.2.7.1 Kirchhoff's First Law (Current Law)

The electric current always flows in a closed loop. For the current density this means that the flux lines of the current density always form a closed path. Kirchhoff's first law states
that for a static steady-state current flow (Fig. 2.16):

$$
\begin{equation*}
\oint_{A} \vec{J} \mathrm{~d} \vec{A}=0 \tag{2.40}
\end{equation*}
$$

This can also be written as:

$$
\begin{equation*}
\nabla \cdot \vec{J}=0 \tag{2.41}
\end{equation*}
$$



Fig. 2.16. Illustration of Kirchhoff's first law (current law)

- The surface integral of the current density over a closed surface is always zero.
- The current density $\vec{J}$ is source-free.


### 2.2.7.2 Kirchhoff's Second Law (Mesh Law)

The line integral of the electric field strength between two points is equal to the voltage between those points, independent of the path over which the integration is made. If the start and end points are the same then the result is obviously zero.

$$
\begin{equation*}
\oint_{s} \vec{E} \mathrm{~d} \vec{s}=0 \tag{2.42}
\end{equation*}
$$

This can also be written as:

$$
\begin{equation*}
\nabla \times \vec{E}=0 \tag{2.43}
\end{equation*}
$$



Fig. 2.17. Illustration of Kirchhoff's second law (mesh law)

- The line integral of the electric field strength over a closed loop is always zero (Fig.2.17).
- The static steady-state current flow is solenoidal.


Fig. 2.18. Field quantities at a boundary

### 2.2.8 Static Steady-State Current Flow at Boundaries

A static steady-state current flow that passes a material boundary changes its direction depending on the conductivity of the materials (Fig. 2.18).

$$
\begin{equation*}
\vec{J}_{\mathrm{n} 2}=\vec{J}_{\mathrm{n} 1}, \quad \text { and } \quad \vec{J}_{\mathrm{t} 2}=\frac{\varrho_{1}}{\varrho_{2}} \cdot \vec{J}_{\mathrm{t} 1}=\frac{\sigma_{2}}{\sigma_{1}} \cdot \vec{J}_{\mathrm{t} 1} \tag{2.44}
\end{equation*}
$$

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\varrho_{1}}{\varrho_{2}} \tan \alpha_{1}=\frac{\sigma_{2}}{\sigma_{1}} \tan \alpha_{1} \tag{2.46}
\end{equation*}
$$

$$
\begin{equation*}
\vec{E}_{\mathrm{t} 2}=\vec{E}_{\mathrm{t} 1}, \quad \text { and } \quad \vec{E}_{\mathrm{n} 2}=\frac{\varrho_{2}}{\varrho_{1}} \cdot \vec{E}_{\mathrm{n} 1}=\frac{\sigma_{1}}{\sigma_{2}} \cdot \vec{E}_{\mathrm{n} 1} \tag{2.45}
\end{equation*}
$$

At the boundary:

- The normal component of the current density does not change.
- The change in the tangential component of the current density is proportional to the conductivity.
- The tangential component of the electric field strength does not change.
- The normal component of the electric field strength is proportional to the resistivity.


### 2.2.9 Overview: Fields and Resistances of Different Geometric Configurations

Table 2.3. Overview of fields and resistances

| Parallel Plates | $R=\varrho \cdot \frac{d}{A}$ | $E=\frac{V}{d}$ |
| :--- | :---: | :---: |
| Parallel plates | $R=\frac{I}{A}$ |  |

Table 2.3. cont.

| Sphere-infinity | $R=\frac{1}{4 \mathbf{\square} \sigma r_{1}}$ | $\begin{gathered} E=V \cdot \frac{r_{1}}{r^{2}} \\ S=\frac{I}{4 \mathbf{a} r^{2}} \end{gathered}$ |
| :---: | :---: | :---: |
| Parallel conductors | $\begin{aligned} R & =\varrho \frac{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]}{\mathbf{a} \sigma l} \\ & \approx \varrho \cdot \frac{\ln \frac{2 a}{r_{1}}}{\mathbf{a} l} \text { for } a \gg r_{1} \end{aligned}$ | $\begin{aligned} E & =\frac{V \frac{\sqrt{a^{2}-r_{1}^{2}}}{a^{2}-r_{1}^{2}-x^{2}}}{\ln \left[\frac{a}{r_{1}}+\sqrt{\left(\frac{a}{r_{1}}\right)^{2}-1}\right]} \\ S & =\frac{I \sqrt{a^{2}-r_{1}^{2}}}{\mathbf{a} l\left(a^{2}-r_{1}^{2}-x^{2}\right)} \end{aligned}$ |

### 2.2.10 Power and Energy in Static Steady-State Current Flow

In a static steady-state current flow electrical energy is converted into heat. The electrical power is :

$$
\begin{equation*}
P=V \cdot I \tag{2.47}
\end{equation*}
$$

For a resistance $R$ or a conductance $G$ this becomes:

$$
\begin{equation*}
P=V \cdot I=\frac{V^{2}}{R}=I^{2} \cdot R, \quad \text { or } \quad P=V \cdot I=\frac{I^{2}}{G}=V^{2} \cdot G \tag{2.48}
\end{equation*}
$$

This also holds for each infinitesimal volume element:

$$
\begin{equation*}
\mathrm{d} P=\underbrace{\frac{\mathrm{d} V}{\mathrm{~d} s_{\perp}}}_{\vec{E}} \mathrm{~d} s_{\perp} \cdot \underbrace{\frac{\mathrm{d} I}{\mathrm{~d} A_{\perp}}}_{\vec{J}} \mathrm{~d} A_{\perp}=\vec{E} \cdot \vec{J} \cdot \mathrm{~d} V \tag{2.49}
\end{equation*}
$$

Thus $\mathrm{d} s_{\perp}$ and $\mathrm{d} A_{\perp}$ lie perpendicular to the equipotential surfaces. From Eq. (2.49) the power density of a static steady state current flow is defined as:

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} V}=\vec{J} \cdot \vec{E} \tag{2.50}
\end{equation*}
$$

The power P is then given by:

$$
\begin{equation*}
P=\int_{V} \vec{J} \cdot \vec{E} \mathrm{~d} V \tag{2.51}
\end{equation*}
$$

The energy is the integral of the power over time:

$$
\begin{equation*}
W=\int_{t_{1}}^{t_{2}} P(t) \mathrm{d} t \tag{2.52}
\end{equation*}
$$

Note: The static steady-state current flow makes assumptions for time-invariant quantities. The use of $P(t)$ in the above equations seems to contradict this. However, for slow time variations of the electric quantities, the magnetic effects can be ignored (for example, current pinching, skin effect).

Note: If the power is a time-varying periodic progression, then the average power $\bar{P}$ is usually used to refer to the power loss. This is calculated as the arithmetic average of the work done divided by the period:

$$
\begin{equation*}
\bar{P}=\frac{1}{T} \cdot W(T)=\frac{1}{T} \int_{0}^{T} P(t) \mathrm{d} t \tag{2.53}
\end{equation*}
$$

### 2.2.11 Overview: Characteristics of Static Steady-State Current Flow

- The static steady-state current flow is a conservative field. The line integral of the electric field strength is equal to the voltage (potential difference) between the beginning and end points of the path. The path over which the integration is made is therefore not relevant. The flux lines pass perpendicularly through the equipotential surfaces.

$$
\begin{equation*}
\int_{1}^{2} \vec{E} \cdot \mathrm{~d} \vec{s}=V_{12}=\varphi_{1}-\varphi_{2}, \quad \text { or } \quad \vec{E}=-\nabla \cdot V \tag{2.54}
\end{equation*}
$$

- The static steady-state current flow is solenoidal. The line integral of the electric field strength over a closed loop is always zero (Kirchhoff's second law, $\sum V=0$ ).

$$
\begin{equation*}
\oint \vec{E} \cdot \mathrm{~d} \vec{s}=0, \quad \text { or } \quad \nabla \times \vec{E}=0 \tag{2.55}
\end{equation*}
$$

- The static steady-state current flow is source-free. The current always flows in a closed loop. The surface integral over a closed surface is always zero (Kirchhoff's first law, $\left.\sum I=0\right)$.

$$
\begin{equation*}
\oint_{A} \vec{J} \cdot \mathrm{~d} \vec{A}=0, \quad \text { or } \quad \nabla \cdot \vec{J}=0 \tag{2.56}
\end{equation*}
$$

- In a static steady-state current flow electrical power is converted into heat:

$$
\begin{equation*}
P=\int_{V} \vec{J} \cdot \vec{E} \mathrm{~d} V \tag{2.57}
\end{equation*}
$$

### 2.2.12 Relationship Between Quantities in Static Steady-State Current Flow

### 2.3 Magnetic Fields

The magnetic field describes the effects of stationary and time-varying currents inside and outside an electrical conductor. Electric charges in motion are subject to Coulomb forces and also to other forces caused by the magnetic field. The unit of electrical current can be defined in terms of the forces in a magnetic field:

- If, for two straight, parallel, infinitely long conductors with negligibly small diameter separated by a distance of $r=1 \mathrm{~m}$ and with the same time-invariant current $I$ flowing through them, each $1-\mathrm{m}$ conductor length exerts a force $F=2 \cdot 10^{-7} \mathrm{~N}$ on the other, then the current $I$ has a value of 1 A .

The effect of time-varying currents and time-varying magnetic fields is described in Sect. 2.3.13.2 by Faraday's law. Faraday's law is the basis of many technical applications, such as, for example, the electric motor, transformers, relays and the electrical energy supply by rotating generators.

## Direction-Pointing Convention

In this book, three-dimensional physical relationships are illustrated when considering magnetic fields. To do this, the following representation is normally used for directions:
$\otimes$ : Direction pointer or vector pointing into the page;
$\odot$ : Direction pointer or vector pointing out of the page towards the observer.
Direction pointer: Direction convention for scalar quantities, such as current, voltage or magnetic flux. Vector: Direction convention for field quantities, such as flux density and magnetic field strength. Cross product, vector product: For example: $\vec{F}=(\vec{v} \times \vec{B})$, or: " $F$ is equal to v cross B". The magnitude of $\vec{F}$ is

$$
|\vec{F}|=|\vec{v}| \cdot|\vec{B}| \cdot \sin \alpha
$$

where $\alpha$ is the angle between vectors $\vec{v}$ and $\vec{B}$. The vector $\vec{F}$ lies perpendicular to the plane formed by the vectors $\vec{v}$ and $\vec{B}$. The direction of $\vec{F}$ can be given by the corkscrew rule. If a corkscrew is turned over the smallest angle from $\vec{v}$ to $\vec{B}$, then the direction of the corkscrew gives the direction of $\vec{F}$ (Fig. 2.19). Source pointer system: If the direction pointers for $V$ and $I$ in a basic circuit element point in the same directions, then it may be assumed that the basic element is a source and thus supplies energy. This does not mean


Fig. 2.19. Corkscrew rule for a cross product, here: $\vec{F}=\vec{v} \times \vec{B}$
that it definitely is a source, which can only be ascertained after some network calculations. Only if the application of Kirchhoff's law yields a positive result for current and voltage, can it be confirmed that the element was indeed a source. If the result is negative, then the assumption that the element was a source was wrong, and the element is an energy consumer. Consumer pointer system: If the direction pointers for $V$ and $I$ in a basic circuit element point in opposite directions, then it may be presumed that the particular element is a consumer and thus absorbs energy.

### 2.3.1 Force on a Moving Charge

Moving electric charges exert forces on one another that cannot be explained by Coulomb's law. The magnetic force on two point charges in uniform motion on parallel paths, while at the same height, is given by:

$$
\begin{equation*}
F=\frac{\mu}{4 \mathrm{a}} \cdot \frac{\left(Q_{1 \mathrm{v}_{1}}\right) \cdot\left(Q_{2} \mathrm{v}_{2}\right)}{r^{2}}, \quad \text { with } \quad \mu=\mu_{0} \cdot \mu_{\mathrm{r}} \tag{2.58}
\end{equation*}
$$

$\mu$ : permeability;
$\mu_{0}$ : free-space permeability, $\mu_{0}=4 \mathbf{a} \cdot 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}}=1.257 \cdot 10^{-6} \frac{\mathrm{Vs}}{\mathrm{Am}}$;
$\mu_{\mathrm{r}}$ : relative permeability;
$r$ : distance between the paths.
The permeability is a constant that depends on the medium in which the charges are moving. In a vacuum and in air the relative permeability is $\mu_{\mathrm{r}}=1$.

- For the same sign on the products $\left(Q_{1} \cdot \mathrm{v}_{1}\right)$ and $\left(Q_{2} \cdot \mathrm{v}_{2}\right)$ the charges are drawn closer, but for opposite signs the charges are drawn apart (Fig. 2.20).


Fig. 2.20. Force on moving point charges

### 2.3.2 Definition of Magnetic Flux Density

The magnetic flux density $\vec{B}$ is derived from the force on charges in motion. By definition:

$$
F=\left(Q_{1} \mathrm{v}_{1}\right) \cdot \underbrace{\frac{\mu}{4 \mathrm{a}} \frac{\left(Q_{2} \mathrm{v}_{2}\right)}{r^{2}}}_{B}=Q_{1 \mathrm{v}_{1}} \cdot B
$$

$B$ is the magnetic flux density. The magnetic flux density is a field quantity with direction, that is, a vector. The SI unit of magnetic flux density is the tesla, $1 \mathrm{~T}=\frac{1 \mathrm{Vs}}{1 \mathrm{~m}^{2}}$. The direction of the magnetic flux density can be found using a magnetic dipole (e.g. a compass needle). The positive direction of magnetic flux density is the direction to which the north pole of the magnetic dipole points.

Note: The compass needle is a magnetic dipole. The north pole of the compass needle points north. This means that the geographic north pole actually is the magnetic south pole of the earth.


Fig. 2.21. a) Compass needle in a magnetic field; b) magnetic flux density around a moving charge
Magnetic fields are illustrated by means of flux lines. To show the field, lines are drawn whose tangents correspond at each point to the direction in which an infinitesimally small magnetic dipole would point. The density of flux lines is thus a measure of the magnitude of the field strength.

- It can be shown experimentally that the magnetic force lines (flux lines) are tangential in a clockwise sense about the direction of motion of the charge (Fig. 2.21).
- The flux lines in magnetic induction have no beginning or end since they form closed loops.

Right-hand rule: The direction of the magnetic field around a moving charge or around an electric current can be found with the right-hand rule. If the right-hand thumb points in the direction of the moving charge (or in the direction of the current), then the curved fingers of the right hand show the rotation direction of the field. Corkscrew rule: The direction of the magnetic field around a moving charge or around an electric current can also be found with the corkscrew rule. If a corkscrew were turned in the direction of the moving charge (in the direction of the current), then the rotation direction of the corkscrew is the direction of the field. The force on a moving charge can be found from the field direction:

$$
\begin{equation*}
\vec{F}=Q \cdot(\vec{v} \times \vec{B}) \tag{2.59}
\end{equation*}
$$

- The force on a moving charge is known as the Lorentz force.


## Lorentz Force on a Current Carrying Conductor

The current $I$ can be considered as a directed motion of charges. If a charge quantity $\Delta Q$ moves in an electrical conductor, then it can be described by $\Delta Q=I \cdot \Delta t$. The velocity of the charges can be written as $v=\frac{\Delta l}{\Delta t}$. Therefore:

$$
\Delta Q \cdot v=\Delta Q \cdot \frac{\Delta l}{\Delta t}=\frac{\Delta Q}{\Delta t} \cdot \Delta l=I \cdot \Delta l
$$



Fig. 2.22. Lorentz force: a) moving charge in a conductor; b) force on the conductor
The Lorentz force on a straight current carrying conductor therefore amounts to:

$$
\begin{equation*}
\vec{F}=I \cdot(\vec{l} \times \vec{B}) \tag{2.60}
\end{equation*}
$$

The vector $\vec{l}$ points thus in the direction of the current $I$ (Fig. 2.22).
Example: Calculate the rotation direction and the torque of an electric motor: In a permanent magnet electric motor the flux density in the air gap is $B=0.5 \mathrm{~T}$ (permanent magnet: the magnetic field is created by a permanent magnet). The rotor of the motor has an active length of $l=10 \mathrm{~cm}$ (the conductor length is 10 cm in the magnetic field) and a diameter of $d=10 \mathrm{~cm}$. There are four current-carrying conductors in the magnetic field on either side (Fig. 2.23a). Each conductor carries a current of 1 A .


Fig. 2.23. a) Simplified representation of an electric motor; b) system to find the rotation direction
Solution:
The motor turns clockwise (Fig. 2.23b). The direction of force for each of the current-carrying conductors is clockwise. The torque is:

$$
M=F_{\text {total }} \cdot \frac{d}{2}=8 \cdot I \cdot s \cdot B \cdot \frac{d}{2}=8 \cdot 1 \mathrm{~A} \cdot 0.1 \mathrm{~m} \cdot 0.5 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \cdot \frac{0.1 \mathrm{~m}}{2}=20 \cdot 10^{-3} \mathrm{VAs}=20 \cdot 10^{-3} \mathrm{Nm}
$$

Note: The conversion from electrical into mechanical units can be done by considering the energy: $1 \mathrm{VAs}=1 \mathrm{Ws}=1 \mathrm{~J}=1 \mathrm{Nm}$.

### 2.3.3 Biot-Savart's Law

Biot-Savart's law gives the magnetic flux density at any given point, in magnitude and direction, caused by a moving point charge (Fig. 2.24).

$$
\begin{equation*}
\vec{B}=\frac{\mu}{4 \mathrm{a}} \cdot \frac{Q}{r^{2}}\left(\vec{v} \times \vec{e}_{\mathrm{r}}\right) \tag{2.61}
\end{equation*}
$$

where $\vec{e}_{\mathrm{r}}$ is the unity vector in direction $\vec{r}$.

a)

b)

Fig. 2.24. Biot-Savart's law: a) for a moving charge; b) for a current-carrying conductor
In order to calculate the magnetic flux density caused by a very thin arbitrarily shaped current-carrying conductor, each infinitesimal current-carrying conductor element $\mathrm{d} I \cdot \vec{l}$ is considered as a moving charge $Q \cdot \vec{v}$ (see also Sect. 2.3.2). In this case, each conductor element creates an infinitesimal flux density $\mathrm{d} \vec{B}$ in the space under consideration. BiotSavart's law states for the current-carrying conductor that:

$$
\begin{equation*}
\mathrm{d} \vec{B}=\frac{\mu}{4 \mathrm{a}} \cdot \frac{I}{r^{2}} \cdot\left(\mathrm{~d} \vec{l} \times \vec{e}_{\mathrm{r}}\right) \tag{2.62}
\end{equation*}
$$

The magnetic flux density $\vec{B}$ can be found by integrating according to the superposition theorem, $\vec{B}=\int \mathrm{d} \vec{B}$.
Example: Calculation of the magnetic field of an infinitely long current-carrying conductor with a negligibly small diameter: Given that the field must be radially symmetric around the conductor, the evaluation using Biot-Savart's law can be treated as a planar problem (Fig. 2.25). In this case, Biot-Savart's law can be


Fig. 2.25. Field of a straight current-carrying conductor
simplified. Note that from vector algebra $|\vec{a} \times \vec{b}|=|\vec{a}| \cdot|\vec{b}| \cdot \sin \angle \vec{a}, \vec{b}$ :

$$
\mathrm{d} B=\frac{\mu}{4 \mathrm{a}} \cdot \frac{I}{r^{2}} \cdot \mathrm{~d} l \cdot \sin \alpha
$$

with $r=\sqrt{x^{2}+R^{2}}, \quad$ and $\quad \sin \alpha=\frac{R}{\sqrt{x^{2}+R^{2}}}, \quad$ then

$$
B=\int_{-\infty}^{+\infty} \frac{\mu}{4 \mathbf{a}} \cdot \underbrace{\frac{I}{x^{2}+R^{2}}}_{I / r^{2}} \cdot \underbrace{\frac{R}{\sqrt{x^{2}+R^{2}}}}_{\sin \alpha} \mathrm{d} x=\frac{\mu \cdot I \cdot R}{2 \mathbf{a}} \cdot \int_{0}^{+\infty}\left(x^{2}+R^{2}\right)^{-3 / 2} \mathrm{~d} x=\frac{\mu \cdot I}{2 \mathbf{a} R}
$$

The magnetic flux density lies tangentially around the conductor and decreases in proportion to the distance from the conductor.
Note: Biot-Savart's law is also valid for the magnetic field strength $\vec{H}$. Since $\vec{B}=$ $\mu \cdot \vec{H}$, then:

$$
\begin{equation*}
\vec{H}=\frac{1}{4 \mathrm{a}} \cdot \frac{Q}{r^{2}}\left(\vec{v} \times \vec{e}_{\mathrm{r}}\right) \tag{2.63}
\end{equation*}
$$

### 2.3.4 Magnetic Field Strength

The magnetic field strength $\vec{H}$ is, after the magnetic flux density $\vec{B}$, the second field quantity of the magnetic field. The magnetic flux density $\vec{B}$ was defined in Sect. 2.3.2 in terms of the force on moving charges. It is dependent on the surrounding medium through the permeability $\mu$. The magnetic field strength $\vec{H}$ is defined independently of the surrounding medium:

$$
F=\left(Q_{1} \mathrm{v}_{1}\right) \cdot \underbrace{\mu \cdot \frac{\left(Q_{2} \mathrm{v}_{2}\right)}{4 \mathrm{a} r^{2}}}_{B}=\left(Q_{1} \mathrm{v}_{1}\right) \cdot \mu \cdot \underbrace{\frac{\left(Q_{2} \mathrm{v}_{2}\right)}{4 \mathrm{a} r^{2}}}_{H}
$$

It follows that:

$$
\begin{equation*}
\vec{H}=\frac{1}{\mu} \cdot \vec{B}, \quad \text { or } \quad \vec{B}=\mu \cdot \vec{H} \tag{2.64}
\end{equation*}
$$

The SI unit of magnetic field strength $\vec{H}$ is amperes per meter, $\frac{\mathrm{A}}{\mathrm{m}}$. For isotropic media:

- The cause of the magnetic field strength $\vec{H}$ is the moving charge or the electric current $I$.
- Vectors $\vec{B}$ and $\vec{H}$ point in the same direction.
- The permeability $\mu$ is the proportionality constant between the magnetic flux density $\vec{B}$ and the magnetic field strength $\vec{H}$.

The permeability is formed by the permeability of free space $\mu_{0}$ and the relative permeability $\mu_{\mathrm{r}}$ :

$$
\begin{equation*}
\mu=\mu_{0} \cdot \mu_{\mathrm{r}} \tag{2.65}
\end{equation*}
$$

The value of the permeability of free space is:

$$
\begin{equation*}
\mu_{0}=4 \mathbf{a} \cdot 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}}=1.257 \cdot 10^{-6} \frac{\mathrm{Vs}}{\mathrm{Am}} \tag{2.66}
\end{equation*}
$$

The relative permeability can have values less than one (diamagnetism), and also greater than one (paramagnetism).

- The relative permeability of a vacuum is $\mu_{\mathrm{r}}=1$. This is also the value for air and for most gases.


### 2.3.5 Magnetic Flux

The magnetic flux $\Phi$ is the surface integral of the magnetic flux density.

$$
\begin{equation*}
\Phi=\int_{A} \vec{B} \mathrm{~d} \vec{A} \tag{2.67}
\end{equation*}
$$

The SI unit of magnetic flux is weber, $1 \mathrm{~Wb}=1 \mathrm{Vs}$.


$\prod_{d \Phi}$

Fig. 2.26. Magnetic flux and magnetic flux density

Note: The magnetic flux density defines the magnetic flux per unit area.
Magnetic flux always forms a closed loop. The surface integral of the magnetic flux density is always zero (Fig. 2.26).

$$
\begin{equation*}
\oint_{A} \vec{B} \mathrm{~d} \vec{A}=0 \tag{2.68}
\end{equation*}
$$

This can also be written as:

$$
\begin{equation*}
\nabla \cdot \vec{B}=0 \tag{2.69}
\end{equation*}
$$

- The magnetic flux density is a solenoidal field.
- Magnetic flux always forms a closed loop.


## Flux Linkage

The flux linkage $\Psi$ is the flux encircled by a conductor winding that can consist of more than one turn. Of particular interest is the special case where $N$ windings of a conductor are linked $N$ times by the same flux. Then:

$$
\begin{equation*}
\Psi=N \cdot \Phi \tag{2.70}
\end{equation*}
$$

The unit of flux linkage is volt seconds, Vs. The flux linkage is the effective flux for the application of Faraday's laws. It is used specifically in the calculations for transformers and electric machines.

### 2.3.6 Magnetic Voltage and Ampere's Law

The magnetic voltage $V$ is the line integral of the magnetic field strength.

$$
\begin{equation*}
V_{12}=\int_{1}^{2} \vec{H} \mathrm{~d} \vec{s} \tag{2.71}
\end{equation*}
$$

- The magnetic voltage between two points is equal to the line integral of the magnetic field strength between the points. It is therefore not independent of the path over which the integration occurs. Depending on how often the current $I$ loops, the result can vary by $n \cdot I, n= \pm 1,2, \ldots, i$ (Fig. 2.27).

The SI unit of the magnetic voltage is the ampere, A.


(2)

Fig. 2.27. Magnetic voltage $V$

## Ampere's Law

If the magnetic voltage is calculated over a closed loop, then the result for the magnetic voltage is equal to the circulating current. Ampere's law states:

$$
\begin{equation*}
\oint \vec{H} \mathrm{~d} \vec{s}=\sum I=\Theta=\mathrm{MMF} \tag{2.72}
\end{equation*}
$$

- The magnetic field strength $\vec{H}$ is directly related to the current $I$.
- The circular integral of the magnetic field strength is equal to the circulated current. If a current $I$ is circulated $n$ times, then the result of the circular integral is $\sum I=n \cdot I$ (Fig. 2.28a).
- If the current flows through a coil with $N$ windings and if the line integral is calculated for all of the windings, then the result of the circular integral is $I \cdot N$ (Fig. 2.28b).
- The sum of the circulating currents is known as the magnetomotive force (MMF), or also as ampere turns $\Theta$.

If the current $\sum I$ is described by the current density and the electric flux density, then Ampere's law states:

$$
\begin{equation*}
\oint_{s} \vec{H} \cdot \mathrm{~d} \vec{s}=\int_{A}\left(\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t}\right) \mathrm{d} \vec{A} \tag{2.73}
\end{equation*}
$$



Fig. 2.28. Application of Ampere's law: a) circular integral enlosing the current $I$; b) flux through a coil with $N$ windings

In this form Ampere's law is Maxwell's first equation. This is also written as:

$$
\begin{equation*}
\nabla \times \vec{H}=\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t} \tag{2.74}
\end{equation*}
$$

- The curl of the magnetic field is not zero.

Ampere's law permits the calculation of the magnetic field strength in simple geometric configurations, namely when the flux lines and their direction are known.

Example: Calculation of the magnetic field strength of an infinitely long, straight currentcarrying conductor with a circular cross section (Fig. 2.29): The current density in the conductor is homogeneous. For symmetry reasons the magnetic field strength lies tangentially (circularly) around the centre of the conductor. The calculation can be carried out in two sections: a) inside, and b) outside the conductor:

$$
\begin{array}{rlrl}
\text { a) } \begin{aligned}
\oint \vec{H} \mathrm{~d} \vec{s}=\int \vec{J} \mathrm{~d} \vec{A}, & J=\frac{I}{\mathbf{a} r_{1}^{2}} \Rightarrow H \cdot 2 \mathbf{a} r=\frac{I}{\mathrm{a} r_{1}^{2}} \mathbf{\mathrm { a }} r^{2} \\
\Rightarrow H(r)=\frac{I}{2 \mathrm{a} r_{1}^{2}} \cdot r, & \text { for } r \leq r_{1}
\end{aligned} \\
& \Rightarrow H \cdot 2 \mathbf{a} r=I \\
\text { b) } \oint \vec{H} \mathrm{~d} \vec{s}=I & \Rightarrow H(r)=\frac{I}{2 \mathbf{a} r}, & \text { for } r \geq r_{1}
\end{array}
$$




Fig. 2.29. Magnetic field of a round conductor

### 2.3.7 Magnetic Resistance, Magnetic Conductance, Inductance

The magnetic resistance $R_{\mathrm{m}}$ is defined as:

$$
\begin{equation*}
R_{\mathrm{m}}=\frac{V}{\Phi} \tag{2.75}
\end{equation*}
$$

- It depends only on the geometric configuration and the permeability.

The unit of magnetic resistance is the inverse henry, $\frac{1}{\mathrm{H}}=\frac{\mathrm{A}}{\mathrm{Vs}}$. If the quantities $V$ and $\Phi$ are replaced by vector field quantities, then $R_{\mathrm{m}}$ may be calculated as:

$$
\begin{equation*}
R_{\mathrm{m}}=\frac{V}{\Phi}=\frac{\int \vec{H} \mathrm{~d} \vec{s}}{\int \vec{B} \mathrm{~d} \vec{A}}, \quad \text { with } \quad \vec{e}_{A} \| \vec{e}_{s} \tag{2.76}
\end{equation*}
$$

Equation (2.76) is valid for the case where the path element $\mathrm{d} \vec{s}$ lies perpendicular to the area element $\mathrm{d} \vec{A}\left(\vec{e}_{A}=\vec{e}_{s}\right)$. To evaluate this integral, the field must be known qualitatively, i.e. the direction of the magnetic flux density and the magnetic field strength must be known. For a homogeneous magnetic material with a homogeneous field distribution, the magnetic resistance for a length $l$ and a cross-sectional area $A$ is:

$$
\begin{equation*}
R_{\mathrm{m}}=\frac{1}{\mu} \cdot \frac{l}{A}=\frac{1}{\mu_{0} \mu_{\mathrm{r}}} \cdot \frac{l}{A} \tag{2.77}
\end{equation*}
$$

- The magnetic resistance is proportional to the magnetic path length and inversely proportional to the cross section of the magnetic resistance.

The magnetic conductance $G_{\mathrm{m}}$ is the reciprocal of the magnetic resistance:

$$
\begin{equation*}
G_{\mathrm{m}}=\frac{1}{R_{\mathrm{m}}} \tag{2.78}
\end{equation*}
$$

The total magnetic resistance of a closed loop is (see also following section):

$$
\begin{equation*}
R_{\text {total }}=\frac{I \cdot N}{\Phi} \tag{2.79}
\end{equation*}
$$

The reciprocal of the resistance $R_{\text {total }}$ is the magnetic conductance $A_{\mathrm{L}}$ :

$$
\begin{equation*}
A_{\mathrm{L}}=\frac{\Phi}{I \cdot N} \tag{2.80}
\end{equation*}
$$

The unit of $A_{\mathrm{L}}$ is the henry, $1 \mathrm{H}=1 \frac{\mathrm{Vs}}{\mathrm{A}}$.

- The value of $\mathbf{A}_{\mathrm{L}}$ depends only on the geometric dimensions and the material characteristics of the configuration (of the magnetic loop).
- For the saturation of ferromagnetic materials, the value of $A_{\mathrm{L}}$ decreases with increasing saturation (the magnetic resistance increases).

Note: The value of $A_{\mathrm{L}}$ is given in data books for cores for the construction of chokes with its dependence on the air gap, mostly in nH . The bigger the air gap is, the smaller is the value of $A_{\mathrm{L}}$. It should be mentioned here that most of the energy in an inductance is stored in the air gap, i.e. the air gap is necessary in a choke (see Sect. 2.3.16).

## Inductance

The inductance $L$ defines the relationship between current and voltage (see Sect. 1.1.7): With Faraday's law $\mathrm{v}=N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}$ (see Sect. 2.3.13.2), the relationship between current and voltage $\mathrm{v}=L \cdot \frac{\mathrm{~d} i}{\mathrm{~d} t}$ and the value of $A_{\mathrm{L}}=\frac{\Phi}{i \cdot N}$ follows:

$$
\begin{equation*}
L=N^{2} \cdot A_{\mathrm{L}} \tag{2.81}
\end{equation*}
$$

The unit of inductance is the henry, $1 \mathrm{H}=1 \frac{\mathrm{Vs}}{\mathrm{A}}$.

- The inductance $L$ is the product of the value of $A_{\mathrm{L}}$ and the square of the number of windings.
- The inductance depends only on the geometric dimensions and the material characteristics of the core as well as the number of windings.

The relationship between the inductance $L$, the current $I$ and the magnetic flux $\Phi$ is given by the value of $A_{\mathrm{L}}$ : with $\quad A_{\mathrm{L}}=\frac{\Phi}{I \cdot N} \quad$ and $\quad L=N^{2} \cdot A_{\mathrm{L}}, \quad$ it follows that $\quad L=\frac{N \cdot \Phi}{I}$, or:

$$
\begin{equation*}
L \cdot I=N \cdot \Phi \tag{2.82}
\end{equation*}
$$

Note: The value of inductance for ferromagnetic materials decreases with increasing saturation.

### 2.3.8 Materials in a Magnetic Field

The permeability $\mu$ is determined by the permeability of free-space $\mu_{0}$ and the relative permeability $\mu_{\mathrm{r}}$.

$$
\begin{gather*}
\mu=\mu_{0} \cdot \mu_{\mathrm{r}}  \tag{2.83}\\
\mu_{0}=4 \mathbf{a} \cdot 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}}=1.257 \cdot 10^{-6} \frac{\mathrm{Vs}}{\mathrm{Am}} \tag{2.84}
\end{gather*}
$$

The relative permeability $\mu_{\mathrm{r}}$ can have values less than one (diamagnetism) or greater than one (paramagnetism).

- The relative permeability of a vacuum is $\mu_{\mathrm{r}}=1$. This is also approximately the value for air and for most gases.
- Paramagnetic materials concentrate the magnetic flux, while diamagnetic materials spread the magnetic flux out.

Materials with $\mu_{\mathrm{r}} \gg 1$, known as ferromagnetic materials, are of particular importance. The characteristics of materials with very high $\mu_{\mathrm{r}}$ are:

- They concentrate the present magnetic flux. This is used, for example, in shielding (Fig. 2.30).
- Large inductance values can be realised with them.
- For an applied voltage at the winding (and the consequent magnetic flux), only a small winding current is required (Fig. 2.31).
- For an applied current to the winding (and the consequent magnetic field strength), large magnetic fluxes or high flux densities can be obtained (Fig. 2.31).


Fig. 2.30. Concentration of a magnetic field by materials with $\mu_{\mathrm{r}} \gg 1$, that is, ferromagnetics


Fig. 2.31. Effect of materials with $\mu_{\mathrm{r}} \gg 1$ for an applied current and voltage

### 2.3.8.1 Ferromagnetic Materials

Ferromagnetics: Ferromagnetics are of particular technical importance. Their relative permeability depends on the magnetic field strength. Values typically used are much bigger than one, amd usually lie between 1000 and 100000 . Weiss domains: Ferromagnetic materials contain small crystalline magnetic dipoles, whose directions are statistically distributed in the unmagnetised state. These are known as Weiss domains. With increasing magnetic field strength the Weiss domains become orientated, i.e. the magnetic path is shortened, and the magnetic flux density is high. With further increases in field strength saturation occurs, when practically all Weiss domains are orientated. At this point the flux density no longer increases in the same manner, but increases approximately with $\mu_{0}$.

Hysteresis loop: The relationship between the magnetic flux density $B$ and the electric field strength $H$ for ferromagnetics is represented by the hysteresis loop (Fig. 2.32).


Fig. 2.32. Hysteresis loop: a) hysteresis quantities; b) hysteresis loss

## Magnetic saturation:

The saturation flux density $B_{S}$ is the flux density that is present after the orientation of all the Weiss domains. Any further increase in the magnetic field strength only yields a minor increase in the the flux density. The saturation flux density for iron usually lies in the range between 1 and 2 Tesla, for ferrites between 0.3 and 0.4 Tesla. Remanent flux density: The remanent flux density $B_{\mathrm{R}}$ is the flux density, which remains after the magnetisation up to the saturation flux density and the subsequent return to $H=0$. In practice it occurs when a closed ring of constant cross section is magnetised up to the saturation flux density and then the coil current is switched off. If an air gap is inserted in the magnetic ring, then the remaining flux density will be smaller (see Sect. 2.3.11). Coercivity: The coercive magnetic field strength $H_{\mathrm{C}}$ is the field strength required to bring the flux density back to zero after being magnetised up to the saturation flux density. Hysteresis loss, iron loss: Work must be done to magnetise ferromagnetic materials. The enclosed area of the hysteresis loop is a measure of the work required. The enclosed area has the dimension work per unit volume $\frac{\mathrm{d} W}{\mathrm{~d} V}$. It is dissipated as heat during every full passage through the hysteresis loop. The corresponding work for a given core volume is thus:

$$
\begin{equation*}
W=\frac{\mathrm{d} W}{\mathrm{~d} V} \cdot V \tag{2.85}
\end{equation*}
$$

and the power loss at a frequency $f$ :

$$
\begin{equation*}
P=\frac{\mathrm{d} W}{\mathrm{~d} V} \cdot V \cdot f \tag{2.86}
\end{equation*}
$$

The hysteresis losses can be found by calculation of the enclosed area of the hysteresis loop (if they are not known from other sources, e.g. data sheets). At high-frequency magnetisation the hysteresis losses can lead to excessive overheating of the material. In this case the magnetisation level must be decreased. The losses decreases quadratically with the magnetisation level, i.e. by halving the maximum field strength, the losses are quartered (Fig. 2.32b).

Note: The expression iron losses also includes the eddy current losses with the hysteresis losses.

Soft iron: Soft iron is the name given to a ferromagnetic material that has a narrow hysteresis curve, i.e. a small enclosed area, and therefore with small hysteresis losses. Soft
iron materials are used, for example, in transformers and electric machines. Hard iron: Hard iron is the name given to a ferromagnetic material that has a large hysteresis curve. They have a high remanence flux density and coercivity. They are suitable for permanent magnets.

Demagnetisation: There are several ways to demagnetise a core:

- Surpass the Curie temperature. The Curie temperature is the temperature at which the molecular thermal motion in the material is so great that the fixed orientation of the Weiss domains cannot be maintained, and they return to a random orientation.
- Demagnetisation through high-frequency withdrawal of the magnetisation level. The core magnetisation level is controlled at high frequency, while the level is slowly decreased. The magnetisation returns slowly to zero.
- By mechanical vibration: mechanical motion can destroy the orientation of the Weiss domains. Strong blows remove the magnetisation. Modern hard magnetic materials are occasionally very sensitive to mechanical forces.


### 2.3.9 Magnetic Fields at Boundaries

A magnetic field that passes a material boundary changes its direction depending on the permeability of the materials (Fig. 2.33).

$$
\begin{equation*}
\vec{H}_{\mathrm{t} 2}=\vec{H}_{\mathrm{t} 1}, \quad \text { and } \quad \vec{H}_{\mathrm{n} 2}=\frac{\mu_{1}}{\mu_{2}} \cdot \vec{H}_{\mathrm{n} 1} \tag{2.87}
\end{equation*}
$$

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\mu_{2}}{\mu_{1}} \cdot \tan \alpha_{1} \tag{2.89}
\end{equation*}
$$

$$
\begin{equation*}
\vec{B}_{\mathrm{n} 2}=\vec{B}_{\mathrm{n} 1}, \quad \text { and } \quad \vec{B}_{\mathrm{t} 2}=\frac{\mu_{2}}{\mu_{1}} \cdot \vec{B}_{\mathrm{t} 1} \tag{2.88}
\end{equation*}
$$



Fig. 2.33. Field quantities at boundaries
At the boundary:

- The tangential component of the magnetic field strength is constant.
- The normal component of the magnetic field strength is inversely proportional to the permeability.
- The tangential component of the magnetic flux density is proportional to the permeability.
- The normal component of the magnetic flux density is constant.


### 2.3.10 The Magnetic Circuit

In analogy to the current circuits in electrical networks, the magnetic circuit is defined for the magnetic field. The magnetic circuit can, as in electrical networks, be represented by an equivalent circuit diagram. The magnetic voltage $V$ is put in instead of the electric voltage $V$, the magnetic flux $\Phi$ is put in instead of the electric current $I$ and the magnetic resistance $R_{\mathrm{m}}$ is put in instead of the ohmic resistance $R$ (Fig. 2.34).


Fig. 2.34. Magnetic circuit
For the magnetic circuit with the air gap shown in Fig. 2.34 the following relations may be written:

- The magnetic flux $\Phi$ forms closed loops.
- For a constant cross section $A$ the magnetic flux density $\vec{B}$ is equal in all places to: $B=\frac{\Phi}{A}$. This is true both in the iron and also in the air gap: $B_{\mathrm{Fe}}=B_{\delta}$ (field widening in the air gap and field narrowing in the corners of the core are negligible).
- The magnetic field strength $\vec{H}$ is bigger in the air gap than in the iron by a factor $\mu_{\mathrm{r}}$.

$$
\begin{equation*}
B=\mu \cdot H \quad \Rightarrow \quad B=\mu_{0} \mu_{\mathrm{r}} \cdot H_{\mathrm{Fe}}=\mu_{0} \cdot H_{\delta} \quad \Rightarrow \quad \mu_{\mathrm{r}} \cdot H_{\mathrm{Fe}}=H_{\delta} \tag{2.90}
\end{equation*}
$$

- The magnetic voltage drop $V$ is equal to the magnetic flux multiplied by the magnetic resistance:

$$
\begin{equation*}
V=\Phi \cdot R_{\mathrm{m}} \tag{2.91}
\end{equation*}
$$

- The magnetomotive force $I \cdot N$ is equal to the sum of the magnetic voltage drops:

$$
\begin{equation*}
I \cdot N \approx H_{\mathrm{Fe}} \cdot l_{\mathrm{Fe}}+H_{\delta} \cdot \delta \tag{2.92}
\end{equation*}
$$

- The magnitudes of the magnetic resistances $R_{\mathrm{m}}$ are:

$$
\begin{equation*}
R_{\mathrm{m} \mathrm{Fe}} \approx \frac{1}{\mu_{0} \mu_{\mathrm{r}}} \cdot \frac{l_{\mathrm{Fe}}}{A}, \quad \text { and } \quad R_{\mathrm{m} \delta} \approx \frac{1}{\mu_{0}} \cdot \frac{\delta}{A} \tag{2.93}
\end{equation*}
$$

- The magnitude of the value of $\boldsymbol{A}_{L}$ is:

$$
\begin{equation*}
A_{\mathrm{L}}=\frac{\mu_{0} \cdot A}{\left(\frac{l_{\mathrm{Fe}}}{\mu_{\mathrm{r}}}+\delta\right)} \tag{2.94}
\end{equation*}
$$

- The magnitude of the inductance $L$ of the circuit is:

$$
\begin{equation*}
L=N^{2} \cdot A_{\mathrm{L}}=N^{2 \cdot} \frac{\mu_{0} \cdot A}{\left(\frac{l_{\mathrm{Fe}}}{\mu_{\mathrm{r}}}+\delta\right)} \tag{2.95}
\end{equation*}
$$

- The magnitude of the linked magnetic flux $\Psi$ is:

$$
\begin{equation*}
\Psi=N \cdot \Phi=L \cdot I \tag{2.96}
\end{equation*}
$$

Note: The iron path length $l_{\mathrm{Fe}}$ is divided only by $\mu_{\mathrm{r}}$ in the calculation of the inductance. Considering that usual values for $\mu_{\mathrm{r}} \approx 1000-10000$, it can be seen that the inductance mainly depends on the length of the air gap.


Fig. 2.35. a) Air gap outside the winding: large field broadening; b) air gap inside the winding: small field broadening

Note: The field broadening in the air gap is not insignificant and in practical calculations should not be ignored. Field broadening causes a much smaller value of inductance compared to a homogeneous field distribution. This is especially true when the air gap lies outside the winding (Fig. 2.35a). For this reason, the air gap lies inside the winding for practical cores (Fig. 2.35b). It is better in any case to calculate with the measured value of $A_{\mathrm{L}}$ from the manufacturer's data sheets and not to try to derive this from the core geometry.

Example: The following data are from the datasheet of a core: Value of $A_{\mathrm{L}}: A_{\mathrm{L}}=250 \mathrm{nH}$, minimum cross-sectional area: $A_{\min }=280 \mathrm{~mm}^{2}$, maximum flux density: $B_{\max }=0.3 \mathrm{~T}$ Question: What is the maximum inductance $L$ that can be achieved with this core for a current of $I=2 \mathrm{~A}$, and how many windings are required? With $L=N^{2} \cdot A_{\mathrm{L}}$ and $L \cdot I=N \cdot \Phi$ then:

$$
N^{2} \cdot A_{\mathrm{L}} \cdot I=N \cdot \Phi
$$

The magnitude of the maximum allowable flux is:

$$
\Phi_{\max }=B_{\max } \cdot A_{\min }
$$

Thus the maximum number of windings can be calculated:

$$
N=\frac{\Phi_{\max }}{A_{\mathrm{L}} \cdot I}=\frac{B_{\max } \cdot A_{\min }}{A_{\mathrm{L}} \cdot I}=168
$$

The magnitude of the maximum inductance is:

$$
L=N^{2} \cdot A_{\mathrm{L}}=7 \mathrm{mH}
$$

### 2.3.11 Magnetic Circuit with a Permanent Magnet

The purpose of a magnetic circuit with a permanent magnet is usually to produce a magnetic field in an air gap, for example, in a permanently magnetised electric motor, an electric measurement device or a loudspeaker. The configuration in Fig. 2.36 is used in the analysis of such a magnetic circuit. A permanent magnet has the air gap as a load, and the magnetic resistance of the iron is negligible. The application of Ampere's law yields:

$$
\oint \vec{H} \mathrm{~d} \vec{s}=H_{\mathrm{M}} \cdot l_{\mathrm{M}}+H_{\delta} \cdot \delta=0
$$

It follows that:

$$
\begin{equation*}
H_{\mathrm{M}}=-H_{\delta} \cdot \frac{\delta}{l_{\mathrm{M}}} \tag{2.97}
\end{equation*}
$$

- The magnetomotive force is zero! Thus the magnetic voltage drops over the permanent magnet and the air gap are equally large and opposite to one another.


Fig. 2.36. Magnetic circuit with a permanent magnet
The magnetic flux $\Phi$ forms a closed loop. The flux $\Phi$ in the permanent magnet is the same as in the air gap. It follows that:

$$
\Phi=\text { const. }=B_{\mathrm{M}} \cdot A_{\mathrm{M}}=B_{\delta} \cdot A_{\delta}
$$

and:

$$
\begin{equation*}
B_{\mathrm{M}}=B_{\delta} \cdot \frac{A_{\delta}}{A_{\mathrm{M}}} \tag{2.98}
\end{equation*}
$$

It further holds for the air gap that:

$$
\begin{equation*}
B_{\mathrm{L}}=\mu_{0} \cdot H_{\delta} \tag{2.99}
\end{equation*}
$$

From Eqs. (2.97)-(2.99) it follows that the load line $B_{\mathrm{M}}\left(H_{\mathrm{M}}\right)$ of the air gap:

$$
\begin{equation*}
B_{\mathrm{M}}\left(H_{\mathrm{M}}\right)=B_{\delta} \cdot \frac{A_{\delta}}{A_{\mathrm{M}}}=H_{\delta} \cdot \mu_{0} \frac{A_{\delta}}{A_{\mathrm{M}}}=-H_{\mathrm{M}} \cdot \mu_{0} \cdot \frac{A_{\delta}}{A_{\mathrm{M}}} \cdot \frac{l_{\mathrm{M}}}{\delta} \tag{2.100}
\end{equation*}
$$

$$
\begin{equation*}
B_{\mathrm{M}}=-H_{\mathrm{M}} \cdot \mu_{0} \cdot \frac{A_{\delta}}{A_{\mathrm{M}}} \cdot \frac{l_{\mathrm{M}}}{\delta} \tag{2.101}
\end{equation*}
$$

The connection of an active element (the permanent magnet) and a passive element (the air gap) leads to an intersection of the load lines in the graphical solution. This intersection is the operating point $\left(H_{0}, B_{0}\right)$.

- The permanent magnet is loaded by the air gap. The higher the magnetic resistance of the air gap, the smaller the air gap flux density.
- For small magnetic resistance of the air gap, the operating point moves on the hysteresis loop of the magnetic material near the remanence flux density, and for large magnetic resistance it moves near the coercivity.

The flux density and the magnetic field strength in the air gap can be calculated from the operating point with Eqs. (2.97) and (2.98):

$$
\begin{equation*}
B_{\delta}=B_{0} \cdot \frac{A_{\mathrm{M}}}{A_{\delta}} \quad \text { and } \quad H_{\delta}=-H_{0} \cdot \frac{l_{\mathrm{M}}}{\delta} \tag{2.102}
\end{equation*}
$$

Note: The minus sign on $H_{0}$ highlights the fact that in the magnet the magnetic flux density and the magnetic field strength have opposite directions.

## Designing a Permanent Magnet

Question: What size of a permanent magnet is needed for certain air gap dimensions $A_{\delta}$ and $l_{\delta}$ and a defined air gap energy $W_{\delta}$ ? The permanent magnet gives maximum energy when the product of $B_{0}$ and $H_{0}$ in the operating point is a maximum. (For the straight-line hysteresis curve of a permanent magnet, this maximum lies at $B_{0}=B_{\mathrm{R}} / 2$ and $H_{0}=H_{\mathrm{C}} / 2$ ). With the chosen operating point $\left(B_{0}, H_{0}\right)$ the required volume $V_{\mathrm{M}}$ of the magnet can be found:

$$
W_{\delta}=\frac{1}{2} \cdot \underbrace{H_{\delta}}_{B_{0} \cdot \frac{A_{\mathrm{M}}}{A_{\delta}}} \cdot \underbrace{B_{\delta}}_{H_{0} \cdot \frac{\mathrm{M}}{\delta}}=\frac{1}{2} B_{0} H_{0} V_{\mathrm{M}} \quad \Rightarrow \quad V_{\mathrm{M}}=\frac{2 W_{\delta}}{B_{0} H_{0}}
$$

Equation (2.101) yields the ratio of the magnet's cross-sectional area $A_{\mathrm{M}}$ to the length $l_{\mathrm{M}}$ :

$$
\frac{A_{\mathrm{M}}}{l_{\mathrm{M}}}=\frac{H_{0}}{B_{0}} \cdot \mu_{0} \frac{A_{\delta}}{\delta}
$$

It follows for the magnet measurements that:

$$
\begin{equation*}
A_{\mathrm{M}}=\frac{1}{B_{0}} \cdot \sqrt{2 W_{\delta} \cdot \mu_{0} \frac{A_{\delta}}{\delta}}, \quad \text { and } \quad l_{\mathrm{M}}=\frac{1}{H_{0}} \cdot \sqrt{2 W_{\delta} \cdot \frac{\delta}{\mu_{0} \cdot A_{\delta}}} \tag{2.103}
\end{equation*}
$$

Note: Besides maximising the air gap energy and minimising the volume of the magnet, there are further (if necessary, more important) reasons for the choice of the operating point. For example, the question of the demagnetisation of a permanent magnet by the operating current (or also by a short-circuit current) in permanently magnetised electric motors.

### 2.3.12 Overview: Inductances of Different Geometric Configurations

Table 2.4. Overview of inductances

| Parallel round conductors | $L=\frac{\mu}{\square} \cdot l\left(\ln \frac{2 a}{r_{1}}+\frac{1}{4}\right)$ |
| :---: | :---: |
| Parallel rectangular conductors <br> b <br> $\bigotimes$ <br> a <br> $b$ $e$ <br>  $h$ |  |
| Coaxial conductor | $L=\frac{\mu_{0}}{2 \mathrm{a}} \cdot l \cdot \ln \frac{r_{2}}{r_{1}} \quad \begin{aligned} & \text { Without internal } \\ & \text { conductor } \\ & \text { and coating } \end{aligned}$ |
|  | $L=\mu_{0} R\left(\ln \frac{R}{d / 2}+\frac{1}{4}\right)$ |
| Coil around toroidal core | $L=N^{2} \cdot \mu_{\mathrm{r}} \mu_{0} \cdot \frac{b}{2 \mathbf{a}} \ln \frac{r_{2}}{r_{1}}$ |
|  | $L \approx N^{2} \cdot \mu_{0} \cdot \frac{\square R^{2}}{l}$ |

### 2.3.13 Induction

### 2.3.13.1 Induction in a Moving Electrical Conductor

The induction on a moving charge in a magnetic field, known as the magnetic induction, can be explained as follows: an electrical conductor is moved in a magnetic field (Fig. 2.37). A force $\vec{F}_{\mathrm{M}}$, which in Fig. 2.37 points backwards, is exerted on the positive charge carriers in the electrical conductor. A force that points forwards is exerted on the negative charges. The positive and negative charge carriers are separated by the Lorentz force. At the same time, a Coulomb force $\vec{F}_{\mathrm{E}}$ builds up between the positive and negative charge carriers, which works against the separation of the charge carriers. In the steady-state case, these forces balance each other.

$$
\vec{F}_{\mathrm{M}}=Q \cdot(\vec{v} \times \vec{B})=-\vec{F}_{\mathrm{E}}=-Q \cdot \vec{E}
$$

It follows that:

$$
\begin{equation*}
-(\vec{v} \times \vec{B})=\vec{E} \tag{2.104}
\end{equation*}
$$

- The electric field strength in a moving conductor is equal to the cross-product of the velocity and the magnetic induction.


Fig. 2.37. Moving conductor in a magnetic field
The voltage $\mathrm{v}_{\mathrm{i}}$ is the line integral of the electrical field strength over the length $l$ of the moving conductor:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=\int_{l} \vec{E} \mathrm{~d} \vec{l}=\int_{l}-(\vec{v} \times \vec{B}) \mathrm{d} \vec{l} \tag{2.105}
\end{equation*}
$$

If the electrical conductor is straight and if the vectors $\vec{v}, \vec{B}$ and $\vec{s}$ are each perpendicular to one another, the calculation is simplified:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=l \cdot \mathrm{v} \cdot B \tag{2.106}
\end{equation*}
$$

If a resistance $R$ is connected across the voltage $\mathrm{v}_{\mathrm{i}}$, it can be seen that a charge equalisation in the moving conductor is possible: a current $I$ flows in direction shown in Fig. 2.37. The conductor loop with the moving conductor becomes a generator.

### 2.3.13.2 Faraday's Law of Induction

Around a time-varying magnetic field there is an electric field.

- The line integral of the electric field strength along a closed loop is equal to the negative change in the magnetic flux enclosed by the integration path (Fig. 2.38a).


Fig. 2.38. Faraday's law of induction: a) ; b)

$$
\begin{equation*}
\oint_{s} \vec{E} \mathrm{~d} \vec{s}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{A} \vec{B} \mathrm{~d} \vec{A} \tag{2.107}
\end{equation*}
$$

This is also written as:

$$
\begin{equation*}
\nabla \times \vec{E}=-\frac{\mathrm{d} \vec{B}}{\mathrm{~d} t} \tag{2.108}
\end{equation*}
$$

If a conductor loop is placed around the time-varying magnetic flux $\Phi$, then Faraday's law states that the terminal voltage $V_{\mathrm{i}}$ (Fig. 2.38b) is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t} \tag{2.109}
\end{equation*}
$$

- The induced voltage at the terminals of a conductor loop is proportional to the time variation in the magnetic flux, which cuts through the conductor loop.
- In Fig. 2.38b the induced voltage $\mathrm{v}_{\mathrm{i}}$ is in the direction shown, if the change in the magnetic flux is negative, i.e. if the magnetic flux is decreasing. If the magnetic field is increasing, then the sign of the induced voltage changes.

If a resistor terminates the conductor loop, then the current flows in the direction shown in Fig. 2.38b. Lenz's law: The current always flows in a direction such that its magnetic field opposes the flux responsible for inducing the voltage.

Note: Lenz's law is most useful in determining the direction of the induced voltage. The current that flows when a conductive load is present creates a magnetic field that opposes the original magnetic field. The direction of the current can be determined therefore from the right-hand rule. If the direction of the current is known, then the voltage on the load resistance and and the direction of $v_{i}$ are also known.

- If the conductor loop is shorted and if it is an ideal conductor (superconductor), then the size of the current flowing in it is always large enough to cancel out any change in the flux in the loop.

If the flux $\Phi$ links the conductor $N$ times, then the magnitude of the induced voltage is (Fig. 2.38b):

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} \tag{2.110}
\end{equation*}
$$

A conductor loop with $N$ windings is known as a coil. The converse of the Faraday's law is also true. If a voltage is applied to an ideal conductor loop (with $N$ windings), then the flux change in it is:

$$
\begin{equation*}
N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=v(t) \tag{2.111}
\end{equation*}
$$

It can be seen that $v_{i}$ and $v$ have opposite signs, since $v_{i}$ produces energy and $v$ comsumes energy. The flux $\Phi$ is the integral of the voltage over the time:

$$
\begin{equation*}
N \cdot \Phi\left(t_{1}\right)=\int_{0}^{t_{1}} v(t) \mathrm{d} t+\Phi(0) \tag{2.112}
\end{equation*}
$$

- The magnetic flux in a conductor loop (in a coil, in an inductance) depends only on the integral of the applied voltage over time $\int v \mathrm{~d} t$.
Example: The application of the Faraday's law to coupled coils that are linked by the same flux: At time $t_{0}$ the voltage $V_{0}$ is applied to winding 1 . At time $t_{1}$ switch $B$ is closed, and at time $t_{2}$ switch $A$ is opened. Figure 2.39a shows the configuration and Fig. 2.39b shows the related voltages, currents and magnetic flux. The solution to the problem could equally be provided by the equivalent circuit in Fig. 2.39c.

Calculation:

| $t_{0}<t<t_{1}$ |  |  |
| :---: | :---: | :---: |
| $\mathrm{v}_{1}$ is given by $V_{0}$ | $t_{1}<t<t_{2}$ <br> $\mathrm{v}_{1}$ is given by $V_{0}$ | $t>t_{2}$ <br> $\Phi$ is continuous, <br> $i_{2(t 2)}=-\frac{N_{2} \cdot \Phi\left(t_{2}\right)}{L_{2}}$ |
| $\mathrm{v}_{1}=V_{0}$ | $\mathrm{v}_{1}=V_{0}$ | $i_{2}=i_{2(t 2)} \cdot \mathrm{e}^{-\frac{t}{L_{2} / R}}$ |
| $i_{1}=\frac{1}{L_{1}} \cdot \int_{t_{0}}^{t_{1}} \mathrm{v}_{1} \mathrm{~d} t$ | $i_{1}=\frac{1}{L_{1}} \cdot \int_{t_{1}}^{t_{2}} \mathrm{v}_{1} \mathrm{~d} t+i_{1(t 1)}+\frac{V_{2}}{R} \frac{N_{2}}{N_{1}}$ | $\mathrm{v}_{2}=i_{2} \cdot R$ |
| $\Phi=\frac{1}{N_{1}} \int_{t_{0}}^{t_{1}} \mathrm{v}_{1} \mathrm{~d} t$ | $\Phi=\frac{1}{N_{1}} \int_{t_{1}}^{t_{2}} \mathrm{v}_{1} \mathrm{~d} t+\Phi \Phi_{(t 1)}$ | $\Phi=\frac{1}{N_{2}} \int_{t_{2}}^{t} \mathrm{v}_{2} \mathrm{~d} t+\Phi{ }_{(t 2)}$ |
| $\mathrm{v}_{2}=-N_{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=\mathrm{v}_{1} \frac{N_{2}}{N_{1}}$ | $\mathrm{v}_{2}=-N_{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=\mathrm{v}_{1} \frac{N_{2}}{N_{1}}$ | $i_{1}=0$ |
| $i_{2}=0$ | $i_{2}=\frac{V_{2}}{R}$ | $\mathrm{v}_{1}=\mathrm{v}_{2} \frac{N_{1}}{N_{2}}$ |


a)

$$
\text { 《 } \begin{aligned}
& \mathrm{L}_{1}=\mathrm{A}_{\mathrm{L}} \cdot \mathrm{~N}_{1}^{2} \\
& \mathrm{~L}_{2}=\mathrm{A}_{\mathrm{L}} \cdot \mathrm{~N}_{2}^{2}
\end{aligned}
$$


c)


Fig. 2.39. Voltages, currents and magnetic flux for coupled coils

## Calculation of the Induced Voltage

A change in the magnetic flux linking a conductor loop can come about in two ways: first if the flux density is time-varying, and second if the enclosed area is changing:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{~d} t}(\vec{B} \cdot \vec{A})=-\left(\vec{B} \cdot \frac{\mathrm{a} \vec{A}}{\mathrm{a} t}+\vec{A} \cdot \frac{\mathrm{a} \vec{B}}{\mathrm{a} t}\right) \tag{2.113}
\end{equation*}
$$

Induction caused by motion as in Fig. 2.37 is also covered by Eq. (2.113). The conductor motion causes the enclosed area to decrease, so that:

$$
-\vec{B} \cdot \frac{\mathrm{~d} \vec{A}}{\mathrm{~d} t}=\int_{l}\left(\frac{\mathrm{~d} \vec{s}}{\mathrm{~d} t} \times \vec{B}\right) \mathrm{d} \vec{l}
$$

In this case Faraday's law states:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-\left[\int_{l}(\vec{v} \times \vec{B}) \mathrm{d} \vec{l}+\vec{A} \cdot \frac{\mathrm{a} \vec{B}}{\mathrm{a} t}\right] \tag{2.114}
\end{equation*}
$$

Example: A conductor loop with $N=200$ windings is rotating with an angular speed of $\omega=314 \mathrm{~s}^{-1}$ (radians per second) in a homogeneous magnetic field with a magnetic flux density of $B=50 \mathrm{mT}$. The conductor loop dimensions are $10 \times 10 \mathrm{~cm}$ (Fig. 2.40a). What voltage $\mathrm{v}_{\mathrm{i}}$ can be measured at its terminals?
a) Application of Eq. (2.113):

$$
\begin{aligned}
\mathrm{v}_{\mathrm{i}} & =-N \cdot(\vec{B} \cdot \frac{\mathbf{\square} \vec{A}}{\mathbf{a} t}+\underbrace{\vec{A} \cdot \frac{\mathbf{a} \vec{B}}{\mathbf{a} t}}_{=0})=-N \cdot B \cdot \frac{\mathrm{~d}[A \cdot \cos \omega t]}{\mathrm{d} t} \\
& =-\underbrace{N \cdot B \cdot A \cdot \omega}_{31.4 \mathrm{~V}} \cdot \underbrace{\sin \omega t}_{50 \mathrm{~Hz}}=-31.4 \mathrm{~V} \cdot \sin \omega t
\end{aligned}
$$

b) Application of Eq. (2.114) (motion induction):

$$
\begin{aligned}
\mathrm{v}_{\mathrm{i}} & =-N \cdot(\int_{l}(\vec{v} \times \vec{B}) \mathrm{d} \vec{l}+\underbrace{\vec{A} \cdot \frac{\mathrm{a} \vec{B}}{\mathrm{a} t}}_{=0}) \\
& =-N \cdot \underbrace{\omega \cdot \frac{b}{2}}_{v} \cdot B \cdot \sin (\omega t) \cdot 2 \cdot l=-31.4 \mathrm{~V} \cdot \sin \omega t
\end{aligned}
$$

The direction of the induced voltage in a moving conductor (Fig. 2.40) can be best determined with Eq. (2.104): $\vec{v} \times \vec{B}=-\vec{E}$. Since $\vec{v} \times \vec{B}$ is a vector product, the direction of $\vec{E}$ and therefore also $\mathrm{v}_{\mathrm{i}}$ can be determined by the corkscrew rule.


Fig. 2.40. a) Rotating conductor loop in a homogeneous magnetic field; b) change of flux in a coil
Example: A coil with $N=5$ windings is linked by $\hat{B}=1.5 \mathrm{~T}, f=50 \mathrm{~Hz}$. Its crosssectional area is $200 \mathrm{~mm}^{2}$ (Fig. 2.40b). What is the peak value of the voltage $v_{\mathrm{i}}$ ?

$$
\begin{aligned}
v_{\mathrm{i}} & =-N \cdot(\underbrace{\vec{B} \cdot \frac{\mathrm{a} \vec{A}}{\mathrm{a} t}}_{=0}+\vec{A} \cdot \frac{\mathrm{a} \vec{B}}{\mathbf{a} t})=-N \cdot A \cdot \frac{\mathrm{~d}(\hat{B} \cdot \sin \omega t)}{\mathrm{d} t} \\
& =-N \cdot \hat{B} \cdot A \cdot \omega \cos \omega t \Rightarrow \hat{V}_{i}=0.47 \mathrm{~V}
\end{aligned}
$$

### 2.3.13.3 Self-Induction

If a current $I$ flows in a conductor loop, then this causes a magnetic flux $\Phi$. If the current is switched off, then the magnetic flux is simultaneously removed. The instant that the current is switched off there is a large rate of change of flux. This flux change creates an induced voltage at the terminals of the conductor. This process is known as self-induction.

- According to Lenz's law, the induced voltage opposes the original voltage.

With $\mathrm{v}_{\mathrm{i}}=-N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}$, and $L \cdot I=N \cdot \Phi$ then:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=-L \cdot \frac{\mathrm{~d} i}{\mathrm{~d} t} \tag{2.115}
\end{equation*}
$$

Voltage $\mathrm{v}_{\mathrm{i}}$ is given in Eq. (2.115). In the instant the current $I$ is turned off, $\frac{\mathrm{d} i}{\mathrm{~d} t}$ is negative. The induced voltage in Fig. 2.41a lies across the inductance $L$.


Fig. 2.41. The induced voltage on an inductance: $\mathbf{a}$ ) induced voltage polarity; $\mathbf{b}$ ) switch protection in inductive circuits

Note: Switching off an inductive current can cause large induced voltages. By examining the circuit shown in Fig. 2.41b, it can be seen that in the instant the current is removed that practically all of the induced voltage falls across the switch. This can cause arcing in the switch and can destroy it. The destruction of the switch can also be explained by performing an energy analysis: the magnetic field stores energy. This energy is forced out of the inductor when the switch is opened. This energy is transformed into heat in the switch and thus can lead to its destruction. A diode parallel to the inductance or an RC circuit across the switch gives protection.

### 2.3.14 Mutual Induction

When a coil's magnetic flux, or a part thereof, links another coil, this is referred to as magnetic coupling. In Fig. 2.42 the portion $\Phi_{21}$ of the magnetic flux $\Phi_{1}$ links coil 2. The coupling coefficient is defined to describe this condition: Coupling coefficient $k_{1}$ :

$$
\begin{equation*}
\Phi_{21}=k_{1} \cdot \Phi_{1} \tag{2.116}
\end{equation*}
$$

For coil 1 there is a corresponding definition:

$$
\begin{equation*}
\Phi_{12}=k_{2} \cdot \Phi_{2} \tag{2.117}
\end{equation*}
$$

The coupling coefficients can be determined from the geometry of the configuration with the aid of the equivalent magnetic circuit:

$$
\frac{\Phi_{21}}{\Phi_{1}}=k_{1}=\frac{R_{\mathrm{m} 3}}{R_{\mathrm{m} 2}+R_{\mathrm{m} 3}}, \quad \text { and } \quad k_{2}=\frac{R_{\mathrm{m} 3}}{R_{\mathrm{m} 1}+R_{\mathrm{m} 3}}
$$

Alternatively, a determination based on measurement is also possible: an alternating voltage $V_{1}^{\prime}$ is applied to $N_{1}$, then the voltage $V_{2}^{\prime}$ is measured, or $V_{2}^{\prime \prime}$ is applied to $N_{2}$ and $V_{1}^{\prime \prime}$ is measured. With $V_{2}=N_{2} \cdot \frac{\mathrm{~d} \Phi_{21}}{\mathrm{~d} t}=N_{2} \cdot \frac{k_{1} \mathrm{~d} \Phi_{1}}{\mathrm{~d} t}$, and $V_{1}=N_{1} \cdot \frac{\mathrm{~d} \Phi_{1}}{\mathrm{~d} t}, k_{1}$ and the corresponding $k_{2}$ are given by:

$$
k_{1}=\frac{V_{2}^{\prime}}{V_{1}^{\prime}} \cdot \frac{N_{1}}{N_{2}}, \quad \text { and } \quad k_{2}=\frac{V_{1}^{\prime \prime}}{V_{2}^{\prime \prime}} \cdot \frac{N_{2}}{N_{1}}
$$

- The coupling coefficients can have a maximum value of 1 . For smaller coupling coefficients the expression 'loose coupling' is used.


Fig. 2.42. Magnetically coupled coils: a) geometric configuration; b) equivalent circuit

## Mutual Inductance

The mutual inductances $M_{21}$ and $M_{12}$ can be defined as:

$$
M_{12}=\frac{N_{1} \cdot \Phi_{12}}{I_{2}}, \quad \text { and } \quad M_{21}=\frac{N_{2} \cdot \Phi_{21}}{I_{1}}
$$

For isotropic magnetic materials it is always true that:

$$
M_{21}=M_{12}=M
$$

With the coupling coefficients $k_{1}$ and $k_{2}$ and the individual inductances $L_{1}$ and $L_{2}$, the mutual inductance $M$ can be calculated:

$$
\begin{equation*}
M=\sqrt{k_{1} \cdot k_{2} \cdot L_{1} \cdot L_{2}}=k \cdot \sqrt{L_{1} \cdot L_{2}}, \quad \text { with } \quad k=\sqrt{k_{1} \cdot k_{2}} \tag{2.118}
\end{equation*}
$$

where $k$ is the total coupling coefficient.
The mutual inductance is required to describe a magnetically coupled system by Kirchhoff's laws. For two magnetically coupled resistor-terminated coils as given in Fig. 2.42:

$$
\begin{align*}
& \mathrm{v}_{1}=+L_{1} \cdot \frac{\mathrm{~d} i_{1}}{\mathrm{~d} t}+i_{1} \cdot R_{1}-M \cdot \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t} \\
& \mathrm{v}_{2}=-L_{2} \cdot \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}-i_{2} \cdot R_{2}+M \cdot \frac{\mathrm{~d} i_{1}}{\mathrm{~d} t} \tag{2.119}
\end{align*}
$$

For sinusoidal operation in the complex domain:

$$
\begin{align*}
& v_{1}=+i_{1} \cdot\left(\mathrm{j} \omega L_{1}+R_{1}\right)-i_{2} \cdot \mathrm{j} \omega M,  \tag{2.120}\\
& v_{2}=-i_{2} \cdot\left(\mathrm{j} \omega L_{2}+R_{2}\right)+i_{1} \cdot \mathrm{j} \omega M
\end{align*}
$$

### 2.3.15 Transformer Principle

The transformer is made out of magnetically coupled coils, whose coupling coefficient $k \approx 1$. In Fig. 2.43a a voltage $V_{1}$ is applied to winding 1 . The magnetic flux change in winding 1 is thus $\frac{\mathrm{d} \Phi}{\mathrm{d} t}=\frac{V_{1}}{N_{1}}$. The flux $\Phi$ passes through the iron core and therefore also links winding 2 . The induced voltage in winding 2 is thus $V_{2}=-N_{2} \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}$.


Fig. 2.43. Principle of the transformer: a) flux linking and winding sense; b) circuit representation of the winding sense

For correct orientation of the flux direction through winding 2, the voltage $V_{2}$ for the winding sense shown in Fig. 2.43a is given by:

$$
\begin{equation*}
V_{2}=V_{1} \cdot \frac{N_{2}}{N_{1}} \tag{2.121}
\end{equation*}
$$

- The voltage $V_{2}$ only depends on the voltage $V_{1}$ and the number of windings.
- The voltages on a transformer are proportional to the number of windings.

The circuit representation of the winding sense is shown in Fig. 2.43b). The winding sense is given by the dots. For windings with the same sense with respect to the magnetic flux, the dots are drawn on the same side of the terminals of the inductance. For windings with an opposite sense, the dots are drawn on different sides of the terminals.

### 2.3.16 Energy in a Magnetic Field

Like the electrostatic field, the magnetic field stores energy. An inductance's energy is stored in its magnetic field. Its magnitude is:

$$
\begin{equation*}
W=\frac{1}{2} L \cdot I^{2}=\frac{1}{2} \cdot N \cdot I \cdot \Phi \tag{2.122}
\end{equation*}
$$

This can also be represented by the field quantities $\vec{B}$ and $\vec{H}$ :

$$
\begin{equation*}
W=\frac{1}{2} \oint_{s} \vec{H} \mathrm{~d} \vec{s} \cdot \int_{A} \vec{B} \mathrm{~d} \vec{A}=\frac{1}{2} \int_{V} \vec{H} \cdot \vec{B} \mathrm{~d} V \text {, with } \quad \vec{e}_{s} \| \vec{e}_{A} \tag{2.123}
\end{equation*}
$$

The unity vector $\vec{e}_{s}$ points in the same direction as the unity vector of the normal to the area $\vec{e}_{A}$, so that the integral $\int \mathrm{d} s \mathrm{~d} A$ yields the volume element $\mathrm{d} V$. The magnitude of the energy density of the magnetic field is:

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} V}=\frac{1}{2} \cdot \vec{H} \cdot \vec{B} \tag{2.124}
\end{equation*}
$$

### 2.3.16.1 Energy in a Magnetic Circuit with an Air Gap

The magnetic circuit with an air gap is shown in Fig. 2.44. Magnetic circuits, which store energy, are known as choking coils or chokes. The magnitude of the energy stored by a choke is:

$$
\begin{equation*}
W=\frac{1}{2} \cdot L \cdot I^{2} \tag{2.125}
\end{equation*}
$$



Fig. 2.44. Magnetic circuit with an air gap
This energy is stored in the form of magnetic field energy, both in the iron and also in the air gap.

$$
\begin{equation*}
W=W_{\mathrm{Fe}}+W_{\delta}=\frac{1}{2} B_{\mathrm{Fe}} \cdot H_{\mathrm{Fe}} \cdot V_{\mathrm{Fe}}+\frac{1}{2} B_{\delta} \cdot H_{\delta} \cdot V_{\delta} \tag{2.126}
\end{equation*}
$$

For the same cross-sectional area over the entire magnetic path $B_{\delta}=B_{\mathrm{Fe}}$, the magnetic field strength in the air gap is higher than in the iron by a factor of $\mu_{\mathrm{r}}$. Recalling that the relative permeability is usually in the region of $\mu_{\mathrm{r}}=1000-10000$ then it can be said to a good approximation that the magnetic energy is predominately concentrated in the air gap. The iron path is required in order to concentrate the magnetic flux and thus to create high magnetic field strength in the air gap. Large amounts of energy for small dimensions can be achieved using this construction.

- The energy stored in chokes is predominately concentrated in the air gap.
- Actual chokes always have an air gap.

Note: The air gap in actual chokes is not always realised in the form of a 'real' air gap. In so-called powder cores a loosely glued union of iron powder is 'distributed' inside the core.

- A large air gap is required to store a lot of magnetic energy

If Eq. (2.123) is evaluated, then:

$$
W=\frac{1}{2} \underbrace{\oint_{s} \vec{H} \mathrm{~d} \vec{s} \cdot \underbrace{\int_{A} \vec{B} \mathrm{~d} \vec{A}}_{\Phi}=\frac{1}{2} \cdot(\underbrace{V_{\mathrm{Fe}}}_{\Phi \cdot R_{m \mathrm{Fe}}}+\underbrace{V_{\mathrm{L}}}_{\Phi \cdot R_{m \delta}}) \cdot \Phi+\Phi) .}_{V_{\mathrm{Fe}}+V_{\delta}}
$$

It follows that:

- The magnetic energy is divided in proportion to the magnetic resistances.


### 2.3.17 Forces in a Magnetic Field

For all forces in a magnetic field:

- Forces in a magnetic field always point in the direction that flux lines would seek to shorten their path (Fig. 2.45).


Fig. 2.45. Forces in a magnetic field

### 2.3.17.1 Force on a Current-Carrying Conductor

See also Sect. 2.3.2. The magnitude of the force on a straight current-carrying conductor in a homogeneous magnetic field is:

$$
\begin{equation*}
\vec{F}=I \cdot(\vec{l} \times \vec{B}) \tag{2.127}
\end{equation*}
$$

The vector $\vec{l}$ thus points thus in the direction of the current $I$ (Fig. 2.46).


Fig. 2.46. Force on a current-carrying conductor

### 2.3.17.2 Force at the Boundaries

Forces are present at the boundaries between magnetically linked materials of different permeabilities. The calculation of the forces is most easily carried out by an energy balance between the mechanical, the electrical and the field energy. The boundary is assumed to have shifted infinitesimally, and the resulting change in potential energy is calculated. The sum of the energy changes must be zero:

$$
\begin{equation*}
\mathrm{d} W_{\text {mech }}+\mathrm{d} W_{\text {field }}+\mathrm{d} W_{\text {electr }}=0 \tag{2.128}
\end{equation*}
$$

In order to be able to evaluate the energy balance, the sign of these energy changes must be known, i.e. which energy increases and which decreases. Consider the following thought experiment: The magnetic circuit in the upper left of Fig. 2.45 is supplied by a constant current, i.e. is connected to a constant current source $I_{0}$. The yoke is drawn towards the core. If the yoke is pulled away from the core, then mechanical energy is supplied. The inductance will simultaneously decreases (the magnetic conductance decreases), i.e. the field energy stored $\frac{1}{2} L I^{2}$ decreases. Both energies, the mechanical and the change in the field energy, are absorbed by the current source. The energy balance above states therefore with $N \cdot \Phi=\int V \mathrm{~d} t$, and $L \cdot I=N \cdot \Phi$ :

$$
\underbrace{F \cdot \mathrm{~d} s}_{\mathrm{d} W_{\text {mech }}}+\underbrace{\mathrm{d}\left(\frac{1}{2} L I_{0}^{2}\right)}_{\mathrm{d} W_{\text {field }}}=\underbrace{\mathrm{d}(I_{0} \cdot \underbrace{V \cdot t}_{N \cdot \Phi})}_{\mathrm{d} W_{\text {electr }}}=\mathrm{d}(I_{0} \cdot \underbrace{N \cdot \Phi)}_{L \cdot I_{0}}=\mathrm{d}\left(L \cdot I_{0}^{2}\right)
$$

It follows that:

$$
\begin{equation*}
F=\frac{1}{2} I^{2} \cdot \frac{\mathrm{~d} L}{\mathrm{~d} s} \tag{2.129}
\end{equation*}
$$

- The force on the boundaries in a magnetic configuration is proportional to the change in the inductance relative to the shift in the boundaries.
- The force on a boundary points in the direction that increases the inductance.


### 2.3.18 Overview: Characteristics of a Magnetic Field

- The magnetic flux density $\vec{B}$ and the magnetic field strength $\vec{H}$ point in the same direction in isotropic materials.

$$
\begin{equation*}
\vec{B}=\mu \cdot \vec{H} \tag{2.130}
\end{equation*}
$$

- The magnetic flux always forms a closed loop.
- At boundaries of different permeability $\mu$, the normal component of the flux density is constant and the normal component of the magnetic field strength is variable (it increases if $\mu$ is smaller).
- The magnetic field is a solenoidal field. The surface integral of the magnetic flux density over a closed surface area is always zero:

$$
\begin{equation*}
\oint_{A} \vec{B} \mathrm{~d} \vec{A}=0, \quad \text { or } \quad \nabla \cdot \vec{B}=0 \tag{2.131}
\end{equation*}
$$

- The magnetic flux is directly related to the integral of the applied voltage over time:

$$
\begin{equation*}
N \cdot \Phi=\int_{0}^{t_{1}} v \mathrm{~d} t+\Phi(0) \tag{2.132}
\end{equation*}
$$

- The magnetic field strength is directly related to the electric current. Ampere's law yields the relationship:

$$
\begin{equation*}
\oint \vec{H} \mathrm{~d} \vec{s}=i \cdot N \tag{2.133}
\end{equation*}
$$

- The complete form of Ampere's law is Maxwell's first equation and states:

$$
\begin{equation*}
\oint_{s} \vec{H} \mathrm{~d} \vec{s}=\int_{A}\left(\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t}\right) \mathrm{d} \vec{A}, \quad \text { or } \quad \nabla \times \vec{H}=\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t} \tag{2.134}
\end{equation*}
$$

- A time-varying magnetic flux induces a voltage in a conductor linked by the flux. If the conductor loop is linked $N$ times by the flux, then the induced voltage is $N$ times higher.

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=-N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} \tag{2.135}
\end{equation*}
$$

- The relationship between the electrical quantity $I$ and the flux $\Phi$ is :

$$
\begin{equation*}
L \cdot I=N \cdot \Phi \tag{2.136}
\end{equation*}
$$

- The magnetic field stores energy:

$$
\begin{equation*}
W=\int_{V} \vec{B} \cdot \vec{H} \mathrm{~d} V \tag{2.137}
\end{equation*}
$$

### 2.3.19 Relationship between the Magnetic Field Quantities

Formulae of a magnetic circuit:

$$
\begin{array}{|cccc|}
\hline \Phi & \Leftarrow \quad \Phi=\int_{A} \vec{B} \mathrm{~d} \vec{A} & \Rightarrow & \vec{B} \\
\Uparrow & & & \Uparrow \\
I \cdot N=R_{\mathrm{m}} \cdot \Phi & & & \vec{B}=\mu \cdot \vec{H} \\
\Downarrow & & & \Downarrow \\
I \cdot N & \Leftarrow I \cdot N=\oint_{s} \vec{H} \mathrm{~d} \vec{s} \Rightarrow & \vec{H} \\
\hline
\end{array}
$$

Faraday's law:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}(t)=-N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}, \quad \text { or } \quad \Phi\left(t_{1}\right)=\frac{1}{N} \int_{0}^{t_{1}} v(t) \mathrm{d} t+\Phi(0) \tag{2.138}
\end{equation*}
$$

### 2.4 Maxwell's Equations

The numerous physical phenomena described in the sections on electrostatic fields, static steady-state current flow and magnetic fields, can be expressed together in four equations, Maxwell's equations. Maxwell's first equation (Ampere's law):

$$
\begin{equation*}
\oint_{s} \vec{H} \mathrm{~d} \vec{s}=\int_{A}\left(\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t}\right) \mathrm{d} \vec{A}, \quad \text { or } \quad \nabla \times \vec{H}=\vec{J}+\frac{\mathrm{d} \vec{D}}{\mathrm{~d} t} \tag{2.139}
\end{equation*}
$$

The electric current creates the magnetic field strength. Maxwell's first equation states that the circular integral of the magnetic field strength is equal to the enclosed current (Fig. 2.47). This is independent of whether the current is due to charge carriers or due to a time-varying alternating electric displacement.


Fig. 2.47. Maxwell's first equation

## Maxwell's second equation (Faraday's law):

$$
\begin{equation*}
\oint_{s} \vec{E} \mathrm{~d} \vec{s}=-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{A} \vec{B} \mathrm{~d} \vec{A}, \quad \text { or } \quad \nabla \times \vec{E}=-\frac{\mathrm{d} \vec{B}}{\mathrm{~d} t} \tag{2.140}
\end{equation*}
$$



Fig. 2.48. Maxwell's second equation
A time-varying magnetic flux density creates an electric field strength. Maxwell's second equation states that the circular integral of the electric field strength is equal to the negative change in the enclosed magnetic flux (Fig. 2.48). Maxwell's third equation :

$$
\begin{equation*}
\oint_{A} \vec{B} \mathrm{~d} \vec{A}=0, \quad \text { or } \quad \nabla \cdot \vec{B}=0 \tag{2.141}
\end{equation*}
$$

The magnetic flux density is a solenoidal field. Maxwell's third equation states that the surface integral of the magnetic flux density over an enclosed area is always zero. Maxwell's fourth equation (Gauss's Law):

$$
\begin{equation*}
\oint_{A} \vec{D} \mathrm{~d} \vec{A}=\int_{V} \varrho \mathrm{~d} V, \quad \text { or } \quad \nabla \cdot \vec{D}=\varrho \tag{2.142}
\end{equation*}
$$

where $\varrho$ : volume charge density. The electric displacement is a charge field. Maxwell's fourth equation states that the integral of the electric displacement over a closed surface is equal to the enclosed charge.

### 2.5 Notation Index

$a \quad$ acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$A$ area ( $\mathrm{m}^{2}$ )
$A_{\mathrm{L}} \quad$ magnetic conductance of the total magnetic circuit ( $\mathrm{H}=\mathrm{Vs} / \mathrm{A}$ ), normally given in ( nH )
$A_{\perp} \quad$ area element of an equipotential surface $\left(\mathrm{m}^{2}\right)$
$\vec{A} \quad$ area vector perpendicular to the area $\left(\mathrm{m}^{2}\right)$
$\vec{B} \quad$ magnetic flux density $\left(\mathrm{T}=\mathrm{V} \mathrm{s} / \mathrm{m}^{2}\right)$
$B_{\mathrm{R}} \quad$ remanence density $\left(\mathrm{T}=\mathrm{Vs} / \mathrm{m}^{2}\right)$
$C$ capacitance ( $\mathrm{F}=\mathrm{As} / \mathrm{V}$ )
$\vec{D} \quad$ electric displacement ( $\mathrm{As} / \mathrm{m}^{2}$ )
$d$ separation, distance (m)
$e \quad$ elemental charge, $e= \pm 1.602 \cdot 10^{-19} \mathrm{As}$
$\vec{e} \quad$ unity vector (index shows the respective quantities, e.g. $\vec{e}_{\mathrm{r}}=\vec{r} /|\vec{r}|$
$\vec{E} \quad$ electric field strength (V/m)
$f$ frequency (Hz)
$F$ force ( N )

```
\(G \quad\) conductance \((\mathrm{S}=\mathrm{A} / \mathrm{V})\)
\(G_{\mathrm{m}} \quad\) magnetic conductance \((\mathrm{H}=\mathrm{Vs} / \mathrm{A})\)
\(\vec{H} \quad\) magnetic field strength ( \(\mathrm{A} / \mathrm{m}\) )
\(H_{C} \quad\) coercivity strength (A/m)
\(i\) time-varying current (A)
\(I \quad\) DC current (A)
\(\vec{J} \quad\) current density \(\left(\mathrm{A} / \mathrm{m}^{2}\right)\)
\(k \quad\) coupling coefficient
\(l\) length (m)
\(L \quad\) inductance \((\mathrm{H}=\mathrm{V} / \mathrm{A} / \mathrm{A})\)
\(m \quad\) mass (kg)
\(M\) mutual inductance ( \(\mathrm{H}=\mathrm{V} / \mathrm{s} / \mathrm{A}\) )
\(M\) momentum (Nm)
\(M\) subscript: magnet
\(N\) number of windings
\(N\) magnetic north pole
\(P \quad\) power \((\mathrm{W}=\mathrm{VA})\)
\(Q \quad\) charge \((\mathrm{C}=\mathrm{As})\)
\(r, R\) radius, distance for polar coordinates (m)
\(R \quad\) resistance ( \(\Omega=\mathrm{V} / \mathrm{A}\) )
\(R_{\mathrm{m}} \quad\) magnetic resistance ( \(1 / \mathrm{H}=\mathrm{A} / \mathrm{Vs}\) )
\(s \quad\) path (m)
\(S\) magnetic south pole
\(t\) time (s)
\(T \quad\) period (s)
\(v \quad\) time varying voltage (V)
\(V \quad\) voltage (V)
\(V_{\mathrm{i}} \quad\) induced voltage (V)
\(v \quad\) velocity ( \(\mathrm{m} / \mathrm{s}\) )
\(V \quad\) volume ( \(\mathrm{m}^{3}\) )
\(V\) magnetic voltage (A)
\(W \quad\) energy (Ws = VAs)
\(\delta \quad\) air gap length (m)
\(\delta \quad\) subscript: air gap
\(\varepsilon \quad\) dielectric constant ( \(\mathrm{As} / \mathrm{Vm}\) )
\(\varepsilon_{0} \quad\) free-space permittivity, absolute dielectric constant, \(8.85 \cdot 10^{-12} \mathrm{As} / \mathrm{Vm}\)
\(\varepsilon_{\mathrm{r}} \quad\) relative permittivity, relative dielectric constant
\(\vartheta\) temperature ( \(\mathrm{K},{ }^{\circ} \mathrm{C}\) )
\(\eta \quad\) charge carrier concentration (As \(/ \mathrm{m}^{3}\) )
\(\sigma \quad\) specific conductance, conductivity ( \(\mathrm{S} / \mathrm{m}\) )
\(\lambda \quad\) line charge density (As/m)
\(\mu \quad\) permeability (Vs/Am)
\(\mu_{0} \quad\) permeability of free space, \(1.257 \cdot 10^{-6} \mathrm{Vs} / \mathrm{Am}\)
```

```
\mu
@ volume charge density (As/m}\mp@subsup{}{}{3}
@ specific resistance, resistivity (\Omegam), (\Omega\mp@subsup{mm}{}{2}/\textrm{m})
\sigma surface charge (As/m}\mp@subsup{}{}{2}
\varphi ~ p o t e n t i a l ~ ( V )
magnetic flux (Wb = Vs)
\Psi linked magnetic flux (Vs)
angular speed or frequency ( }\mp@subsup{\textrm{s}}{}{-1}\mathrm{ )
magnetomotive force, MMF
```


### 2.6 Further Reading

Duffin, W. J.: Electricity and Magnetism, 4th Edition
McGraw-Hill (1990)
Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)
Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications, 5th Edition Prentice Hall (2000)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1998)
Giancoli, D. C.: Physics for Scientists and Engineers, Volume 1, 3rd Edition Prentice Hall (2000)

Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)
Muncaster, R.: A-Level Physics
Stanley Thornes Ltd. (1997)
Nelkon, M.; Parker, P.: Advanced Level Physics
Heinemann (1995)
Rao, N. N.: Elements of Engineering Electromagnetics, 5th Edition Prentice Hall (1999)

Someda, C. G.: Elecromagnetic Waves, 1st Edition
Chapman-Hall (1997)

## 3 AC Systems

AC quantities are described by trigonometric functions, complex numbers and complex functions. For clarity in graphical representation phasors are used. The mathematical basis and relations are explained in the following section.

### 3.1 Mathematical Basics of AC

### 3.1.1 Sine and Cosine Functions

A sine function is given by

$$
v=\hat{v} \sin \varphi
$$

where $\hat{v}$ is the peak magnitude or amplitude. The phase $\varphi$ often varies with time

$$
v(t)=\hat{v} \sin \left(\omega t+\varphi_{0}\right)
$$

here $v(t)$ is called the instantaneous value or transient or actual value of the function. $\omega$ is the angular frequency and $\varphi_{0}$ the phase shift. The sine function is periodic with a period of 2 a (Fig. 3.1).


Fig. 3.1. Period and phase shift of the sine function; sine and cosine functions
The interval of time between two identical values of the function is called the period $T$. The frequency $f$ of the sine function is the inverse of the period.

$$
\begin{equation*}
T=\frac{2 \mathrm{a}}{\omega} \quad f=\frac{1}{T} \quad \omega=2 \mathbf{q} f \tag{3.1}
\end{equation*}
$$

The cosine is a similar function

$$
v=\hat{v} \cos \varphi
$$

Both functions are related thus

$$
\begin{align*}
& \sin \varphi=\cos (\mathbf{0} / 2-\varphi)  \tag{3.2}\\
& \cos \varphi=\sin (\mathbf{0} / 2+\varphi) \tag{3.3}
\end{align*}
$$

Sine and cosine functions together with the exponential function with imaginary exponents are known as harmonic functions.

### 3.1.1.1 Addition of Sinusoidal Waveforms

- The sum (difference) of two sinusoidal waveforms of the same frequency results in a sinusoidal waveform of the same frequency (Fig. 3.2).

The addition of cosine functions

$$
v_{1}(t)=\hat{v}_{1} \cdot \cos \left(\omega t+\varphi_{1}\right), \quad v_{2}(t)=\hat{v}_{2} \cdot \cos \left(\omega t+\varphi_{2}\right)
$$

results in the sum signal $v_{\mathrm{s}}=v_{1}+v_{2}$

$$
v_{\mathrm{s}}(t)=\hat{v}_{\mathrm{s}} \cdot \cos \left(\omega t+\varphi_{\mathrm{s}}\right)
$$

with the parameters

$$
\begin{equation*}
\hat{v}_{\mathrm{s}}=\sqrt{\hat{v}_{1}^{2}+\hat{v}_{2}^{2}+2 \hat{v}_{1} \hat{v}_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}, \quad \tan \varphi_{\mathrm{s}}=\frac{\hat{v}_{1} \sin \varphi_{1}+\hat{v}_{2} \sin \varphi_{2}}{\hat{v}_{1} \cos \varphi_{1}+\hat{v}_{2} \cos \varphi_{2}} \tag{3.4}
\end{equation*}
$$

The addition of sine functions

$$
v_{1}=\hat{v}_{1} \sin \left(\omega t+\varphi_{1}\right), \quad v_{2}=\hat{v}_{2} \sin \left(\omega t+\varphi_{2}\right)
$$

results in the sum signal $v_{\mathrm{s}}=v_{1}+v_{2}$

$$
\begin{equation*}
v_{\mathrm{s}}=\hat{v}_{\mathrm{s}} \sin \left(\omega t+\varphi_{\mathrm{s}}\right), \tag{3.5}
\end{equation*}
$$

with the parameters $\hat{v}_{\mathrm{s}}$ and $\varphi_{\mathrm{s}}$ as in Eq. (3.4).


Fig. 3.2. The addition of sinusoidal waveforms results in a sinusoidal waveform
Example: Calculation of the sum of the sinusoidal functions $v_{1}(t)=\sin (\omega t)$ and $v_{2}(t)=$ $\sin \left(\omega t+\frac{\mathrm{a}}{2}\right)$.
According to Eq. (3.4) the amplitude of the sine waveform is

$$
v_{\mathrm{s}}=\sqrt{1+1+2 \cdot \cos (0-\mathrm{a} / 2)}=\sqrt{2} \approx 1.41
$$

For the phase shift of the sum signal

$$
\tan \varphi_{\mathrm{s}}=\frac{\hat{v}_{2}}{\hat{v}_{1}}=1 \quad \Rightarrow \quad \varphi_{\mathrm{s}}=\frac{\mathrm{a}}{4} \quad\left(\text { or } 45^{\circ}\right)
$$

The sum signal is therefore

$$
v_{\mathrm{s}}(t)=\sqrt{2} \cdot \sin \left(\omega t+\frac{\mathbf{q}}{4}\right)
$$

These parameters are shown in Fig. 3.2.

Note: The calculation becomes considerably easier when the time functions are represented as phasors. This method is explained in Sect. 3.1.7.

Note: In general, the sum of harmonic functions of different frequencies is not a harmonic function. It cannot be represented by stationary phasors.

### 3.1.2 Complex Numbers

The real numbers $\mathbb{R}$ are extended to the complex numbers $\mathbb{C}$ by joining with the imaginary numbers. Imaginary unit

$$
\mathrm{j}=\sqrt{-1}, \quad \mathrm{j}^{2}=-1
$$

Note: In mathematical literature the imaginary unit is named i. However, in electrical engineering the letter j is commonly used to avoid confusion with the symbol for current.

## Powers of $\mathbf{j}$

$$
\begin{aligned}
j^{1}=j & j^{-1}=\frac{1}{j}=-j \\
j^{2}=-1 & j^{-2}=\frac{1}{j^{2}}=-1 \\
j^{3}=-j & j^{-3}=\frac{1}{j^{3}}=j \\
j^{4}=1 & j^{-4}=\frac{1}{j^{4}}=1 \\
j^{5}=j & j^{-5}=\frac{1}{j^{5}}=-j
\end{aligned}
$$

## Imaginary Numbers

An imaginary number is the product of a real number with the imaginary unit. Examples: $5 \mathrm{j}, 2 \mathrm{aj}, \mathrm{j} b$.

- The product of two imaginary numbers is real (since $\mathrm{j} \cdot \mathrm{j}=-1$ ).

Complex numbers can be represented as the sum of a real number $x$ and an imaginary number $\mathrm{j} y$.

$$
z=x+\mathrm{j} y
$$

Notation: To emphasise that the number $z$ is complex, it is represented in this chapter with an underscore (z).
$x$ is known as the real part of the complex number $z: x=\operatorname{Re}(z)$,
$y$ is known as the imaginary part of the complex number $z: y=\operatorname{Im}(z)$.

- The imaginary part is a real number.
- Two complex numbers are equal if both their real parts as well as their imaginary parts are equal.
- Every real number is also complex (with an imaginary part of zero).

For the number $z=x+\mathrm{j} y$ the number $z^{*}=x-\mathrm{j} y$ is called the complex conjugate.

$$
\left(z^{*}\right)^{*}=z
$$

For a real number $w \in \mathbb{R}$, it follows that $w^{*}=w$.

The product of a complex number with its conjugate is called the absolute value squared.

$$
z \cdot z^{*}=|z|^{2}
$$

It is

$$
z \cdot z^{*}=x^{2}+y^{2}=(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}
$$

$\sqrt{z \cdot z^{*}}=\sqrt{x^{2}+y^{2}}=\sqrt{|z|^{2}}=|z|$ is called the absolute value or magnitude of the complex number $z$.

- The absolute value is a non-negative real number (positive or zero).


### 3.1.2.1 Complex Arithmetic

The addition and subtraction of complex numbers is done by adding or subtracting the relevant components.

$$
\begin{array}{r}
\text { If } z_{1}=x_{1}+\mathrm{j} y_{1}, \quad z_{2}=x_{2}+\mathrm{j} y_{2} \\
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\mathrm{j} \cdot\left(y_{1}+y_{2}\right) \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+\mathrm{j} \cdot\left(y_{1}-y_{2}\right)
\end{array}
$$

The multiplication is done like the multiplication of two binomial expressions given that $\mathrm{j} \cdot \mathrm{j}=-1$.

$$
z_{1} \cdot z_{2}=\left(x_{1}+\mathrm{j} y_{1}\right) \cdot\left(x_{2}+\mathrm{j} y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\mathrm{j} \cdot\left(x_{1} y_{2}+x_{2} \cdot y_{1}\right)
$$

The division is done as follows

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+\mathrm{j} \cdot \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}
$$

Division by a complex number can be transformed into a division by a real number. This can be done by multiplying the numerator and denominator with the complex conjugate of the denominator.

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1}}{z_{2}} \cdot \frac{z_{2}^{*}}{z_{2}^{*}}=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}}
$$

The basic rules for the addition and multiplication of real numbers are also valid for complex numbers:

$$
\begin{aligned}
z+0 & =z & & \\
z \cdot 1 & =z & & \\
z \cdot 0 & =0 & & \text { Commutative laws } \\
z_{1}+z_{2} & =z_{2}+z_{1} & & \\
z_{1} \cdot z_{2} & =z_{2} \cdot z_{1} & & \\
z_{1}+z_{2}+z_{3} & =\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) & & \text { Associative laws } \\
z_{1} \cdot z_{2} \cdot z_{3} & =\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right) & & \text { Distributive law } \\
z_{1} \cdot\left(z_{2}+z_{3}\right) & =z_{1} \cdot z_{2}+z_{1} \cdot z_{3} & &
\end{aligned}
$$

Division by zero is also not defined for complex numbers.

### 3.1.2.2 Representation of Complex Numbers

## Cartesian Form

The real and the imaginary parts of the complex number $z$ are interpreted as coordinates of a point in a plane. This plane is called the complex plane or Argand diagram (Fig. 3.3). The coordinates $z=(x, y)$ define a phasor.

- In this representation complex conjugate numbers are positioned symmetrically relative to the real axis.


Fig. 3.3. Complex plane and complex conjugate numbers

## Trigonometric or Polar Form

In polar form a complex number is represented by the length $r$ of its phasor and the angle $\varphi$ between the phasor and the real axis.

Polar coordinate system: $(x, y) \rightarrow(r, \varphi)$
The absolute value or magnitude of the complex number $r=|z|$; the phase, angle or argument is $\varphi$.


Fig. 3.4. Trigonometric representation of a complex number

- $\varphi$ is ambiguous. Every rotation of $2 \mathrm{a}\left(360^{\circ}\right)$ leads to the same point. The principal value of the argument is the angle measured anticlockwise between the phasor and the positive real axis (Fig. 3.4).


## Trigonometric Form

$$
\begin{aligned}
x & =r \cdot \cos \varphi, \quad y=r \cdot \sin \varphi \\
z & =r(\cos \varphi+\mathrm{j} \cdot \sin \varphi) \\
& =|z|(\cos \varphi+\mathrm{j} \cdot \sin \varphi) \\
\operatorname{Re}(z) & =|z| \cdot \cos \varphi, \quad \operatorname{Im}(z)=|z| \cdot \sin \varphi
\end{aligned}
$$

Because of the symmetrical position of the complex conjugate numbers, they differ only in the sign of the argument (Fig. 3.3).

$$
z^{*}=|z| \cdot(\cos \varphi-\mathrm{j} \cdot \sin \varphi)=|z| \cdot(\cos (-\varphi)+\mathrm{j} \cdot \sin (-\varphi))
$$

The absolute values of both numbers are equal

$$
|z|=\left|z^{*}\right|
$$

## Exponential Form

The Euler formula

$$
\mathrm{e}^{\mathrm{j} \varphi}=\cos \varphi+\mathrm{j} \sin \varphi
$$

leads to a compact representation of complex numbers

$$
z=r \cdot \mathrm{e}^{\mathrm{j} \varphi}=|z| \cdot \mathrm{e}^{\mathrm{j} \varphi}
$$

The absolute value or magnitude of the complex number $r=|z|$; The phase, angle or argument is $\varphi$.

- $r$ is a real number.
- $\mathrm{e}^{\mathrm{j} \varphi}$ is a complex number with an absolute value of one.

$$
|z|=\left|z \cdot \mathrm{e}^{\mathrm{j} \varphi}\right|=|z| \cdot\left|\mathrm{e}^{\mathrm{j} \varphi}\right|=r \cdot\left|\mathrm{e}^{\mathrm{j} \varphi}\right|=r \cdot 1=r
$$

A complex exponential function with an imaginary exponent is periodic with a period of 2 a . The values are located on a unity circle in the complex plane.


Fig. 3.5. Function values of the exponential function with imaginary exponent
Reading the values from Fig. 3.5 leads to:

$$
e^{j \cdot 0}=e^{j \cdot 0^{\circ}}=1, \quad e^{j 0}=e^{j \cdot 180^{\circ}}=-1, \quad e^{j \frac{0}{2}}=e^{j \cdot 90^{\circ}}=j, \quad e^{j \frac{30}{2}}=e^{j \cdot 270^{\circ}}=-j
$$

Note: In some literature the versor representation is also used.

$$
|z| \cdot \mathrm{e}^{\mathrm{j} \varphi}=|z| \cdot \underline{/ \varphi}
$$

This reads as: z magnitude versor $\varphi$. Therefore: $5 \Omega \cdot \mathrm{e}^{\mathrm{j} \frac{\mathrm{D}}{2}}$ is written as $5 \Omega / \underline{\frac{0}{2}}$ or $5 \Omega / 90^{\circ}$.

### 3.1.2.3 Changing Between Different Representations of Complex Numbers

Changing from $(x, y)$ to $(r, \varphi)$

$$
r=\sqrt{x^{2}+y^{2}}, \quad \varphi=\arctan \left(\frac{y}{x}\right) \quad \text { for } x \neq 0
$$

Note: On calculators the arctan function is labelled $\tan ^{-1}$.

Table 3.1. Special Cases, conversion from $(x, y)$ to $(r, \varphi)$

| Real part $x$ | Imaginary part $y$ | Argument $\varphi$ | $z$ |
| :---: | :---: | :---: | :---: |
| $x=0$ | $y=0$ | undefined | $z=0$ |
| $x=0$ | $y>0$ | $\varphi=\frac{\square}{2}$ | $z$ positive imaginary |
| $x=0$ | $y<0$ | $\varphi=\frac{30}{2}$ | $z$ negative imaginary |
| $x>0$ | $y=0$ | $\varphi=0$ | $z$ positive real |
| $x<0$ | $y=0$ | $\varphi=\mathbf{\square}$ | $z$ negative real |

Changing from $(r, \varphi)$ to $(x, y)$

$$
x=r \cdot \cos \varphi, \quad y=r \cdot \sin \varphi
$$

Note: Scientific calculators often provide a function to change coordinates from the polar notation to the Cartesian notation and vice versa.

### 3.1.3 Complex Calculus

### 3.1.3.1 Complex Addition and Subtraction

Complex numbers are added by summing their real components and their imaginary components, respectively. Therefore the addition of complex phasors can be performed as an addition of vectors (Fig. 3.6). The subtraction can be done geometrically by the addition of an inverted orientation of the phasor.



Fig. 3.6. Geometrical addition and subtraction of complex numbers
Note: There is a limitation for the analogy between vectors and phasors. The product of two complex numbers is neither similar to the scalar product nor the vector product of two vectors. The absolute value squared is, however, similar to the scalar product of a vector with itself.

In order to solve problems in electrical engineering, it is often necessary to determine the absolute values of sums of complex variables (Fig. 3.7). The cosine formula yields

$$
\left|z_{1}+z_{2}\right|=\sqrt{z_{1}^{2}+z_{2}^{2}+2 \cos \left(\varphi_{1}-\varphi_{2}\right)}
$$



Fig. 3.7. Absolute value of the sum of two complex numbers

### 3.1.3.2 Multiplication of Complex Numbers

The multiplication of a complex number with a (positive) real number $\alpha$ increases its magnitude by the factor $\alpha$. The orientation of the phasor is not affected. If $\alpha<1$ the magnitude of the phasor is decreased, and if $\alpha<0$ the orientation of the phasor is inverted. Multiplication of two complex numbers in trigonometric and exponential representation is given by

$$
z=z_{1} \cdot z_{2}=\left|z_{1}\right|\left|z_{2}\right| \mathrm{e}^{\mathrm{j}\left(\varphi_{1}+\varphi_{2}\right)}
$$

- The absolute value of the product of two complex numbers is identical to the product of their absolute values. The argument of the product is the sum of their arguments.

$$
r=r_{1} \cdot r_{2}, \quad \varphi=\varphi_{1}+\varphi_{2}
$$

The multiplication of a complex number with an absolute value of one $|z|=1$ is a special case. Any complex number with an absolute value of 1 can be represented as

$$
z=\mathrm{e}^{\mathrm{j} \varphi}
$$

For the multiplication of this number with a complex number $z_{1}$ it follows that

$$
z_{1} \cdot z=\left|z_{1}\right| \cdot \underbrace{|z|}_{=1} \cdot e^{\mathrm{j}\left(\varphi_{1}+\varphi\right)}=\left|z_{1}\right| \mathrm{e}^{\mathrm{j}\left(\varphi_{1}+\varphi\right)}
$$

The absolute value of the product remains unchanged, only the argument is changed. The phasor is rotated by an angle $\varphi$. If the argument of the number $\mathrm{e}^{\varphi}$ is a function of time, especially a linear function, then the representation is

$$
z_{1}=\mathrm{e}^{\mathrm{j} \omega t}
$$

The parameter $\omega$ is called the angular frequency. The product of a complex number $z$ and a phasor $\mathrm{e}^{\mathrm{j} \omega t}$ is equivalent to a rotation of the complex phasor $z$ with the angular frequency $\omega$, and $|z| \mathrm{e}^{\mathrm{j} \omega t}$ is a rotating phasor.

$$
\begin{array}{rll}
\alpha \cdot z & =\alpha x+\mathrm{j} \alpha y & \\
=\alpha|z| \cdot(\cos \varphi+\mathrm{j} \sin \varphi) & \text { Cartesian form } \\
=\alpha \cdot|z| \cdot \mathrm{e}^{\mathrm{j} \varphi} & \text { exponential form }
\end{array}
$$

### 3.1.4 Overview: Complex Number Arithmetic

Table 3.2. Overview of complex number arithmetic

| $z_{1}, z_{2} \neq 0$ | $z=x+\mathrm{j} y$ |
| :---: | :---: |
| $z$ | $x$ |
| $\operatorname{Re}(z)$ | $y$ |
| $\operatorname{Im}(z)$ | $z=x-\mathrm{j} y$ |
| $z^{*}$ | $\left(x_{1}+x_{2}\right)+\mathrm{j}\left(y_{1}+y_{2}\right)$ |
| $z_{1}+z_{2}$ | $\left(x_{1}-x_{2}\right)+\mathrm{j}\left(y_{1}-y_{2}\right)$ |
| $z_{1}-z_{2}$ | $\sqrt{\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}}$ |
| $\left\|z_{1}+z_{2}\right\|$ | $\frac{z_{1} z_{2}^{*}}{\left\|z_{2}\right\|^{2}}$ |
| $z_{1} \cdot z_{2}$ | $\left(x_{1} x_{2}-y_{1} y_{2}\right)+\mathrm{j}\left(x_{1} y_{2}+x_{2} y_{1}\right)$ |
| $\frac{z_{1}}{z_{2}}$ | $\frac{z^{*}}{\|z\|^{2}}$ |
| $1 / z$ | Change to exponential repres. |
| $z^{n}$ | Change to exponential repres. |
| $\sqrt[n]{z}$ |  |


| $z_{1}, z_{2} \neq 0$ | Trigonometric | Exponential |
| :---: | :---: | :---: |
| $z$ | $z=\|z\| \cdot(\cos \varphi+\mathrm{j} \sin \varphi)$ | $z=\|z\| \cdot \mathrm{e}^{\mathrm{j} \varphi}$ |
| $\operatorname{Re}(z)$ | $\|z\| \cdot \cos \varphi$ | $\|z\| \cdot \cos \varphi$ |
| $\operatorname{Im}(z)$ | $\|z\| \cdot \sin \varphi$ | $\|z\| \cdot \sin \varphi$ |
| $z^{*}$ | $z=\|z\| \cdot(\cos \varphi-\mathrm{j} \sin \varphi)$ | $z=\|z\| \cdot \mathrm{e}^{-\mathrm{j} \varphi}$ |
| $z_{1}+z_{2}$ | Change to Cartesian representation |  |
| $z_{1}-z_{2}$ | Change to Cartesian representation |  |
| $\left\|z_{1}+z_{2}\right\|$ | $\sqrt{r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}$ |  |
| $z_{1} \cdot z_{2}$ | $\left\|z_{1}\right\|\left\|z_{2}\right\|\left[\cos \left(\varphi_{1}+\varphi_{2}\right)+\mathrm{j} \sin \left(\varphi_{1}+\varphi_{2}\right)\right]$ | $\left\|z_{1}\right\|\left\|z_{2}\right\| \mathrm{e}^{\mathrm{j}\left(\varphi_{1}+\varphi_{2}\right)}$ |
| $z_{1}$ | $\frac{\left\|z_{1}\right\|}{\left\|z_{2}\right\|}\left[\cos \left(\varphi_{1}-\varphi_{2}\right)+\mathrm{j} \sin \left(\varphi_{1}-\varphi_{2}\right)\right]$ | $\frac{\left\|z_{1}\right\|}{\left\|z_{2}\right\|} \mathrm{e}^{\mathrm{j}\left(\varphi_{1}-\varphi_{2}\right)}$ |
| $1 / z$ | $\frac{1}{\|z\|}(\cos \varphi-\mathrm{j} \sin \varphi)$ | $\frac{1}{\|z\|} \mathrm{e}^{-\mathrm{j} \varphi}$ |
| $z^{n}$ | $\|z\|^{n}(\cos n \varphi+\mathrm{j} \sin n \varphi)$ | $\|z\|^{n} \mathrm{e}^{\mathrm{j} n \varphi}$ |
| $\sqrt[n]{z}$ | $\sqrt[n]{\|z\|}\left[\cos \left(\frac{\varphi}{n}\right)+\sin \left(\frac{\varphi}{n}\right)\right]$ | $\sqrt[n]{\|z\| \mathrm{e}^{\mathrm{j}} \frac{\varphi}{n}}$ |

### 3.1.5 The Complex Exponential Function

For real numbers the exponential function can be defined by a power series

$$
\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

This power series converges for any real number and therefore defines a function $f: \mathbb{R} \rightarrow$ $\mathbb{R}$. This can be extended to complex numbers. The power series converges for any complex number. In general, the function value will be complex, which means $f: \mathbb{C} \rightarrow \mathbb{C}$.

Note: For the exponential function $\mathrm{e}^{z}$ the representation as $\exp (z)$ can also be found. The latter is preferred when the exponent is a lengthy term.

### 3.1.5.1 Exponential Function with Imaginary Exponents

The exponential function with purely imaginary exponents has a special significance. Because of the relation

$$
\mathrm{e}^{\mathrm{j} \omega t}=\cos \omega t+\mathrm{j} \sin \omega t
$$

the real and the imaginary parts of the function value are defined. The function is periodic with a period of 2 a . The following holds for the derivatives

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{\mathrm{j} \omega t}=\mathrm{j} \omega \cdot \mathrm{e}^{\mathrm{j} \omega t}, \quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathrm{e}^{\mathrm{j} \omega t}=-\omega^{2} \cdot \mathrm{e}^{\mathrm{j} \omega t}
$$

Because of the second equation the exponential function with imaginary exponents is a harmonic function like the sine and the cosine functions. It follows for the integrals that

$$
\int \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} t=\frac{1}{\mathrm{j} \omega} \cdot \mathrm{e}^{\mathrm{j} \omega t}, \quad \int\left(\int \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} t\right) \mathrm{d} t=\frac{-1}{\omega^{2}} \cdot \mathrm{e}^{\mathrm{j} \omega t}
$$

The multiplication of a phasor $z$ with the term $\mathrm{e}^{\mathrm{j} \varphi}$ results in a rotation of the phasor by an angle of $\varphi$ (Fig. 3.8).


Fig. 3.8. Rotation of a phasor as a result of a multiplication with $\mathrm{e}^{\mathrm{j} \varphi}$

### 3.1.5.2 Exponential Function with Complex Exponents

The exponential function with complex exponents $s=\sigma+\mathrm{j} \omega$ can be separated into a real exponent and an imaginary exponent.

$$
\mathrm{e}^{s}=\mathrm{e}^{\sigma+\mathrm{j} \omega}=\mathrm{e}^{\sigma} \cdot \mathrm{e}^{\mathrm{j} \omega}
$$

The term $\mathrm{e}^{\mathrm{j} \omega}$ is a harmonic function, and the term $\mathrm{e}^{\sigma}$ can be regarded as an amplitude factor. This becomes clear when examining the function $\mathrm{e}^{s t}$

$$
f(t)=\mathrm{e}^{s t}=\mathrm{e}^{\sigma t} \cdot \mathrm{e}^{\mathrm{j} \omega t}
$$

For $\sigma=0$ the term $\mathrm{e}^{\sigma t}=1$. The function is thus a harmonic function of time. For $\sigma<0$ the term $\mathrm{e}^{\sigma t}$ leads to a damped oscillation. For $\sigma>0$ an exponentially increasing oscillation is the result (Fig. 3.9).


Fig. 3.9. Real part of the function $\mathrm{e}^{\sigma t} \cdot \mathrm{e}^{\mathrm{j} \omega t}$ for $\sigma=0, \sigma<0$ and $\sigma>0$

### 3.1.6 Trigonometric Functions with Complex Arguments

Sine and cosine functions can be extended to complex arguments like the exponential function. Their relationships to the exponential function are as follows

$$
\begin{align*}
& \cos z=\frac{1}{2}\left(\mathrm{e}^{\mathrm{j} z}+\mathrm{e}^{-\mathrm{j} \mathrm{z}}\right)  \tag{3.6}\\
& \sin z=\frac{1}{2 \mathrm{j}}\left(\mathrm{e}^{\mathrm{j} z}-\mathrm{e}^{-\mathrm{j} z}\right) \tag{3.7}
\end{align*}
$$

Adding Eq. (3.6) to Eq. (3.7) multiplied by j leads to the Euler formula

$$
\mathrm{e}^{\mathrm{j} z}=\cos z+\mathrm{j} \sin z
$$

Furthermore

$$
\cos ^{2} z+\sin ^{2} z=1
$$

as for real numbers.
Note: Addition theorems are found in Appendix A. Calculations with trigonometric functions are often simplified by using the transformations given in Eqs. (3.6) and (3.7). This eliminates the necessity to use the addition theorems. This particularly simplifies the calculation of integrals as only products of exponential functions will occur.

### 3.1.7 From Sinusoidal Waveforms to Phasors

The trigonometric and the exponential representations of complex numbers lead to a geometric analogy, which can be used to explain many aspects in science.

### 3.1.7.1 Complex Magnitude

A real harmonic function $v(t)=\hat{v} \cdot \cos (\omega t+\varphi)$ can be written as the real component of a complex function.

$$
v(t)=\hat{v} \cdot \operatorname{Re}\left\{\mathrm{e}^{\mathrm{j}(\omega t+\varphi)}\right\}=\underset{\text { complex function of time }}{\operatorname{Re} \hat{\hat{v}} \cdot \mathrm{e}^{\mathrm{j}(\omega t+\varphi)}}
$$

Formally, the latter term in brackets is regarded as a complex function of time, denoted in this chapter as $\underline{v}$.

$$
\underline{v}(t)=\hat{v} \cdot \mathrm{e}^{\mathrm{j}(\omega t+\varphi)}=\underset{\text { complex amplitude }}{\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi}} \cdot \underline{\mathrm{e}^{\mathrm{j} \omega t}}=\hat{\hat{v}} \cdot \mathrm{e}^{\mathrm{j} \omega t}
$$

The complex amplitude $\underline{\hat{v}}$ is a product of the amplitude $\hat{v}$ and the phase factor $\mathrm{e}^{j \varphi}$.

- The absolute value of a complex amplitude equals the real amplitude $|\hat{\underline{v}}|=\hat{v}$.

The complex RMS value $\underline{V}$ may be defined in analogy to the root mean square (RMS) value $V$ of sinusoidal waveforms. The amplitude and the complex RMS value of a sinusoidal waveform are represented as phasors in the complex plane.

Note: Similarly it is possible to look at a time function as the imaginary part of an exponential oscillation. Both models have equal qualities, but they must not be used simultaneously.

| Time function as real part |  |  |
| :---: | :---: | :---: |
| Sinusoidal | $\mapsto$ | Phasor |
| $\hat{v} \cos (\omega t+\varphi)$ | $\mapsto$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi}$ |
| $\hat{v} \sin (\omega t+\varphi)$ | $\mapsto$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j}(\varphi-\mathrm{a} / 2)}$ |
| Phasor | $\mapsto$ | $\operatorname{Sinusoidal}$ |
| $\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi}$ | $\mapsto$ | $\hat{v} \cos (\omega t+\varphi)$ |


| Time function as imaginary part |  |  |
| :---: | :---: | :---: |
| Sinusoidal | $\mapsto$ | Phasor |
| $\hat{v} \sin (\omega t+\varphi)$ | $\mapsto$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j}} \varphi$ |
| $\hat{v} \cos (\omega t+\varphi)$ | $\mapsto$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j}(\varphi+\mathrm{a} / 2)}$ |
| Phasor | $\mapsto$ | Sinusoidal |
| $\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi}$ | $\mapsto$ | $\hat{v} \sin (\omega t+\varphi)$ |

The amplitude $\hat{v}$ can be replaced by the RMS value $V$.
Time invariant complex phasors are called operators (e.g. complex impedance).

Table 3.3. Functions and their complex counterparts

| Symbol | Example | Notation |
| :---: | :---: | :--- |
| $v(t)=\hat{v} \cdot \cos (\omega t+\varphi)$ | Time-varying voltage |  |
| $\hat{v}=$ |  | Amplitude |
| $\underline{v}(t)=$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j}(\omega t+\varphi)}$ | Complex time-varying voltage |
| $\underline{\hat{v}}=$ | $\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi}$ | Complex amplitude |
| $V=$ | $\frac{\hat{v}}{\sqrt{2}}$ | RMS value |
| $\underline{V}=$ | $\frac{\underline{\hat{v}}}{\sqrt{2}}$ | Complex RMS value |

### 3.1.7.2 Relationship Between Sinusoidal Waveforms and Phasors

The sine function can be regarded as the vertical projection of the rotating phasor.
In the phasor diagram the phasor rotates with a constant angular frequency $\omega$ in a mathematically positive sense, i.e. anticlockwise. The vertical magnitudes of the phasors are drawn onto the time axis (Fig. 3.10). A phasor is described by four characteristic values:

- The physical quantity represented by the phasor. Often these are the voltage $\underline{v}$ or the current $\underline{i}$, but it can also be the flux $\Phi$ and other quantities. The symbol is written next to the phasor.
- The absolute value of the phasor is represented by the length of the phasor, where either amplitude or RMS are chosen.
- The phase shift $\varphi_{0}$ is represented by the orientation of the phasor with respect to the zero line (which is usually horizontal).


Fig. 3.10. Phasor diagram and time diagram of the sine function

- The angular frequency of the phasor is equal to the angular frequency of the represented quantity. In most cases it will be clearly defined by the problem and is not explicitly noted.

When the angular speed of all concerned phasors is the same (which means that the frequencies of the sine waves are equal) then only the relative phases of the phasors need to be considered. This leads to the representation with stationary (i.e. nonrotating) phasors.

Note: The cosine function can be similarly regarded as the horizontal projection of the phasor.

### 3.1.7.3 Addition and Subtraction of Phasors

- The sum (difference) of sinusoidal waveforms of the same frequency results in a sinusoidal waveform of the same frequency.

Sums and differences of sinusoidal waveforms can be obtained from the phasor diagram (Fig. 3.11).


Fig. 3.11. Sum and difference of sinusoidal waveforms in the phasor diagram
The sum of the cosine voltages

$$
v_{1}=\hat{v}_{1} \cos \left(\omega t+\varphi_{1}\right), \quad v_{2}=\hat{v}_{2} \cos \left(\omega t+\varphi_{2}\right)
$$

results in the sum signal $v_{\mathrm{s}}=v_{1}+v_{2}$

$$
\begin{equation*}
v_{\mathrm{s}}=\hat{v}_{\mathrm{s}} \cos \left(\omega t+\varphi_{\mathrm{s}}\right) \tag{3.8}
\end{equation*}
$$

For the calculation the phasor representation is used.

$$
v_{1} \mapsto \underline{v}_{1}=\hat{v}_{1} \cdot \mathrm{e}^{\mathrm{j}\left(\omega+\varphi_{1}\right)} \mapsto \underline{\hat{v}}_{1} \cdot \mathrm{e}^{\mathrm{j} \varphi_{1}}, \quad v_{2} \mapsto \underline{v}_{2}=\hat{v}_{2} \cdot \mathrm{e}^{\mathrm{j}\left(\omega+\varphi_{2}\right)} \mapsto \underline{\hat{v}}_{2} \cdot \mathrm{e}^{\mathrm{j} \varphi_{2}}
$$

The addition is done using complex notation $\underline{v}_{\mathrm{s}}=\underline{v}_{1}+\underline{v}_{2}$. The amplitude of the sum signal $v_{\mathrm{s}}(t)$ is obtained from the complex sum amplitude.

$$
\hat{v}_{\mathrm{s}}=\left|\underline{v}_{1}+\underline{v}_{2}\right|=\sqrt{\operatorname{Re}^{2}\left\{\underline{v}_{s}\right\}+\operatorname{Im}^{2}\left\{\underline{v}_{s}\right\}}, \quad \tan \varphi_{\mathrm{s}}=\frac{\operatorname{Im}\left\{\underline{v}_{1}+\underline{v}_{2}\right\}}{\operatorname{Re}\left\{\underline{v}_{1}+\underline{v}_{2}\right\}}
$$

This leads to the following:

$$
\begin{equation*}
\hat{v}_{\mathrm{s}}=\sqrt{\hat{v}_{1}^{2}+\hat{v}_{2}^{2}+2 \hat{v}_{1} \hat{v}_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}, \quad \tan \varphi_{\mathrm{s}}=\frac{\hat{v}_{1} \sin \varphi_{1}+\hat{v}_{2} \sin \varphi_{2}}{\hat{v}_{1} \cos \varphi_{1}+\hat{v}_{2} \cos \varphi_{2}} \tag{3.9}
\end{equation*}
$$

Note: In general, the sum of harmonic functions of different frequencies is not a harmonic function. It cannot be represented by stationary phasors.

### 3.2 Sinusoidal Waveforms

When considering voltages and currents the following distinctions are made (Fig. 3.12):
Constant quantity: a quantity that is constant over time, $v(t)=$ const.
Example: DC current, DC voltage, magnetic flux of a permanent magnet.
Pulsating quantity: a quantity with changing instantaneous value, but with a constant sign.

Example: Chopped DC voltage, 'humming' DC voltage.
Alternating quantity: a time-varying quantity with an average mean (over a longer period) of zero.

Example: Telephone signals, AC from 230 V mains.
Mixed quantity: a waveform with an alternating instantaneous value and magnitude. The RMS is not necessarily zero. It is also known as a general alternating quantity.

Periodic quantity: a waveform with a repeating progression after an interval of $T$.
Definition: A waveform of time is periodic, if there is a $T$ with $s(t)=s(t+T)$ for all $t$.
$T$ is called the period of the signal $s(t)$.
Sinusoidal quantity: an alternating waveform with a sinusoidal (i.e. harmonic) progression. Sinusoidal waveforms are elementary signals in AC. All periodic alternating signals (and for certain assumptions also nonperiodic signals) can be represented by sinusoidal signals (Fourier analysis and synthesis).


Fig. 3.12. Comparison of different waveforms: a) DC quantity, b) pulsating DC quantity; c) alternating quantity (non periodic); d) mixed quantity; $\mathbf{e}$ ) periodic quantity (nonharmonic); f) sinusoidal quantity

### 3.2.1 Characteristics of Sinusoidal Waveforms

Sinusoidal currents and voltages can be represented by

$$
v(t)=\hat{v} \cdot \sin \omega t, \quad \text { or } \quad v(t)=\hat{v} \cdot \cos \omega t
$$



Fig. 3.13. Harmonic signals
Both signals appear identical. The instantaneous value at time $t=0$ is zero in one case, and the maximum value in the other case (Fig. 3.13). The instantaneous value of the time signal $v(t)$ varies between the two values $\hat{v}$ and $-\hat{v}$. The most positive value is called the amplitude or peak value. The parameter $\omega$ is called the angular frequency or radian frequency.
The frequency of the signal is

$$
f=\frac{\omega}{2 \mathbf{a}}, \quad \omega=2 \mathbf{q} f
$$

The unit of frequency is Hz (hertz), and the unit of the angular frequency is $\mathrm{s}^{-1}$ or $\mathrm{rad} / \mathrm{s}$. The period of the signal is

$$
T=\frac{1}{f}=\frac{2 \mathrm{a}}{\omega}
$$

and is the distance between two consecutive maxima (minima) of the signal.
Example: A sinusoidal AC voltage with an amplitude of 300 V and a frequency of 50 Hz is measured with an oscilloscope. What is the instantaneous value of the signal 12 ms after the zero-crossing?

$$
v(t)=\hat{v} \cdot \sin \omega t, \quad \hat{v}=300 \mathrm{~V}, \quad \omega=2 \mathrm{a} \cdot 50 \mathrm{~s}^{-1} \approx 314.16 \mathrm{~s}^{-1}
$$

The signal has a zero-crossing at the time $t=0$.

$$
v(12 \mathrm{~ms})=\hat{v} \cdot \sin \left(\omega \cdot 12 \cdot 10^{-3} \mathrm{~s}\right)=300 \mathrm{~V} \cdot \sin (3.770)=-176 \mathrm{~V}
$$

For a single signal the positioning of the zero-crossing, $t=0$, can be made by choice. However, for interrelations between harmonic signals, the phase shift must be known.

$$
v(t)=\hat{v} \cdot \sin \left(\omega t+\varphi_{0}\right)
$$

At $t=0$ the phase shift $\varphi_{0}$ is present.
The relative phase position is regarded as leading for a positive phase shift $\varphi_{0}$, otherwise it is regarded as lagging.

Note: Usually the phase of the voltage is given with respect to the current, i.e. $\varphi=$ $\varphi_{\mathrm{V}}-\varphi_{\mathrm{I}}$. The phase of the complex impedance and the complex power is defined likewise. An exception is the complex admittance; its phase is expressed with respect to the voltage.


Fig. 3.14. Phase-shifted harmonic signals
Example: Two sinusoidal currents $i_{1}$ and $i_{2}$ with the same amplitude have a phase shift of $30^{\circ}$. Therefore, $i_{2}$ is leading $i_{1}$. What is the instantaneous value of $i_{2}$ at the zero-crossing of $i_{1}$ ?
$i_{1}=\hat{\imath} \cdot \sin \omega t, \quad i_{2}=\hat{\imath} \cdot \sin \left(\omega t+30^{\circ}\right), \quad i_{2}(t=0)=\hat{\imath} \cdot \sin \left(30^{\circ}\right)=0.5 \hat{\imath}$
For the description of alternating functions further quantities are used. The average or arithmetic mean is defined as

$$
\begin{equation*}
\bar{v}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v(\tau) \mathrm{d} \tau=\frac{1}{T} \int_{0}^{T} v(\tau) \mathrm{d} \tau \tag{3.10}
\end{equation*}
$$

This value represents the area underneath the time function over one period. Because of the periodicity of the function, the value $\bar{v}$ is independent of the starting point $t_{0}$. For sinusoidal functions this value is zero.


Fig. 3.15. Visualisation of average, average rectified value and RMS value of sinusoidal functions
The average rectified value is the average of the magnitude of the signal (Fig. 3.15)

$$
\begin{equation*}
\overline{|v|}=\frac{1}{T} \int_{0}^{T}|v(\tau)| \mathrm{d} \tau \tag{3.11}
\end{equation*}
$$

Note: The average rectified value has to be regarded when calculating the charge of capacitors after rectification, or for electrolytical processes. The dimensioning of rectifier diodes can also be based on the average rectified value of the current, as the voltage drop across the diode is nearly constant.

Specifically for sinusoidal voltages (and currents)

$$
\overline{|v|}=\frac{1}{T} \int_{0}^{T} \hat{v} \cdot|\sin \omega t| \mathrm{d} t=\frac{2}{T} \hat{v} \cdot \int_{0}^{T / 2} \sin \omega t \mathrm{~d} t=\frac{1}{\mathbf{a}} \hat{v}[-\cos \omega t]_{\omega t=0}^{\omega t=\mathbf{0}}=\frac{2}{\mathbf{a}} \hat{v} \approx 0.637 \hat{v}
$$

The RMS value of an AC voltage is related to the power. In Fig. 3.16 a DC voltage source with a 1 V terminal voltage causes a power dissipation of $P$ in the resistor $R$. An AC voltage source, which causes the same average power dissipation in the same resistor, i.e. it causes the same temperature increase, has a terminal voltage with an RMS of 1 V . This definition is independent of the actual shape of the AC voltage.

The definition of the RMS of a function is

$$
\begin{equation*}
V_{\mathrm{RMS}}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) \mathrm{d} t} \tag{3.12}
\end{equation*}
$$

For the special case of sinusoidal voltages and currents the result is

$$
\begin{gathered}
V_{\mathrm{RMS}}=\sqrt{\frac{1}{T} \int_{0}^{T}(\hat{v} \sin \omega t)^{2} \mathrm{~d} t}=\sqrt{\frac{1}{T} \hat{v}^{2} \int_{0}^{T} \sin ^{2} \omega t \mathrm{~d} t}=\frac{\hat{v}}{\sqrt{2}} \approx 0.707 \hat{v} \\
1 \mathrm{~V}=\mathrm{Q}^{2}
\end{gathered}
$$

Fig. 3.16. Concept of the RMS value
The square of the RMS is

$$
V_{\text {RMS }}^{2}=\frac{\hat{v}^{2}}{2} \Rightarrow \frac{V_{\text {RMS }}^{2}}{R}=\frac{1}{2} \frac{\hat{v}^{2}}{R} \quad \text { for sinusoidal waveforms }
$$

That is, the average dissipated power of an AC voltage source is only half the value of the dissipation of a DC voltage source whose terminal voltage is the same value as the peak value of the AC voltage.
For general forms of alternating functions it is always true that:

- The RMS value is always smaller than or equal to the peak value.

Note: The RMS value of the voltage or the current has to be considered for the correct thermal dimensioning of resistive components. The peak value must be considered to choose the breakdown voltage of a capacitor or the reverse voltage of semiconductors.

### 3.2.2 Characteristics of Nonsinusoidal Waveforms

The crest factor is the ratio of the peak value $\hat{v}$ to the RMS value $V_{\text {RMS }}$ of an alternating function of any shape.

$$
k_{\mathrm{c}}=\frac{\hat{v}}{V_{\mathrm{RMS}}}
$$

The form factor is the relationship between the RMS value and the average rectified value.

$$
k_{\mathrm{f}}=\frac{V_{\mathrm{RMS}}}{|\bar{v}|}
$$

The crest factor and the form factor are characteristic values providing a rough description of the shape of an alternating function. The 'flatter' the shape of the curve, the more the form factor approaches a value of 1 (from above). Table 3.4 shows crest and form factors for some selected waveforms.

Table 3.4. Crest and form factors for selected waveforms

| Waveform | $k_{\mathrm{c}}$ | $k_{\mathrm{f}}$ |
| :--- | :--- | :--- |
| Sine | 1.414 | 1.111 |
| Triangle | 1.732 | 1.155 |
| Square-wave, DC-free | 1.000 | 1.000 |
| Sawtooth | 1.732 | 1.155 |
| Half-wave rectified sine | 2.000 | 1.571 |
| Full-wave rectified sine | 1.414 | 1.111 |
| Three-phase rectified sine | 1.190 | 1.017 |

Application: The deflection of the pointer of a moving-coil meter with rectifier bridges is proportional to the average rectified value of the AC. On the contrary, moving-iron meters display the RMS value. However, the scales of both instruments are calibrated to the RMS value of a sinusoidal current. Therefore errors occur when a nonsinusoidal current is measured with a moving coil meter. This error can be rectified if the form factor of the measured AC is known.

Example: A square-wave voltage with a peak value of $\pm 1 \mathrm{~V}$ is measured with a movingcoil meter. The RMS and the average rectified value are 1 V for this waveform. The deflection of the pointer is proportional to the average rectified value.
A sinusoidal AC voltage with a average rectified value of 1 V has a RMS of $k_{\mathrm{f}} \cdot|\bar{v}| \approx 1.11 \mathrm{~V}$. For the rectangular voltage a moving-coil meter would show 1.11 V , which results in an error of $11 \%$.

Note: In telecommunications additional quantities are commonly used to characterise the deviation from the sinusoidal waveform, particularly the nonlinear distortion factor (total harmonic distortion, THD).

### 3.3 Complex Impedance and Admittance

### 3.3.1 Impedance

The complex impedance is defined analogously to the definition of DC resistance as

$$
\begin{equation*}
\underline{Z}=\frac{v}{\underline{i}}=\frac{\hat{v} \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{V}}}}{\hat{i} \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{I}}}}=\frac{\hat{v}}{\hat{\hat{l}}} \cdot \mathrm{e}^{\mathrm{j}\left(\varphi_{\mathrm{V}}-\varphi_{\mathrm{I}}\right)} \tag{3.13}
\end{equation*}
$$

Since $\underline{Z}$ is a complex value, it can be represented in exponential form

$$
\begin{equation*}
\underline{Z}=Z \cdot \mathrm{e}^{\mathrm{j} \varphi_{Z}} \tag{3.14}
\end{equation*}
$$

The phase angle $\varphi_{\mathrm{Z}}$ represents the phase shift of the voltage with respect to the current flowing through the AC impedance. In Cartesian form it is represented as follows:

$$
\begin{equation*}
\underline{Z}=R+\mathrm{j} X \tag{3.15}
\end{equation*}
$$

with

$$
\begin{equation*}
Z=\sqrt{R^{2}+X^{2}}, \quad \varphi_{Z}=\arctan \left[\frac{\operatorname{Im}(\underline{Z})}{\operatorname{Re}(\underline{Z})}\right]=\arctan \left(\frac{X}{R}\right) \tag{3.16}
\end{equation*}
$$

$R$ is referred to as resistance;
$X$ is referred to as reactive impedance or reactance;
$Z$ is referred to as impedance.
The unit of impedance is the ohm, $\Omega$.

- The complex resistance is the ratio of the voltage amplitude to the current amplitude (or their RMS values) and the phase shift of the voltage relative to the current flowing through the impedance.
- The impedance is the ratio of the voltage amplitude to the current amplitude (or of their RMS values), without considering the relative phase value.

The following relationships hold

$$
\begin{gather*}
Z=\frac{V}{I}  \tag{3.17}\\
R=Z \cdot \cos \varphi_{\mathrm{Z}}, \quad X=Z \cdot \sin \varphi_{\mathrm{Z}} \tag{3.18}
\end{gather*}
$$

The representation of the complex impedance as in Eq. (3.14) leads to a phasor analogy.



Fig. 3.17. Phasor of the impedance and of the voltage and current for an AC impedance
The phasor of the impedance is represented in the complex impedance plane (Fig. 3.17). According to the expression $\underline{V}=\underline{Z} \cdot \underline{I}$, the relationship between voltage and current can be represented by a phasor diagram. The impedance rotates the voltage phasor by an angle of $\varphi_{\mathrm{Z}}$ with respect to the current phasor. The ratio of the absolute values of voltage to current is $Z$.

Example: A current $i(t)=\hat{\imath} \cos \left(\omega t+\varphi_{\mathrm{I}}\right)$ flows through a component with an impedance $\underline{Z}$. How does the time function of the voltage behave?
Change to the phasor representation $i(t) \mapsto \underline{I}$

$$
\begin{gathered}
\underline{V}=\underline{Z} \cdot \underline{I}=Z \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Z}}} \cdot \underline{I}=Z \cdot \underline{I} \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Z}}} \\
\Longrightarrow \quad \underline{v}(t)=Z \cdot \hat{\imath} \cdot \mathrm{e}^{\mathrm{j}\left(\varphi_{Z}+\varphi_{\mathrm{I}}\right)} \\
\Longrightarrow \quad v(t)=\operatorname{Re}(\underline{v})=Z \cdot \hat{\imath} \cdot \cos \left(\omega t+\varphi_{\mathrm{Z}}+\varphi_{\mathrm{I}}\right)
\end{gathered}
$$

Example: A sinusoidal voltage with an amplitude of 1 V is applied to an impedance of $(4+\mathrm{j} 3) \Omega$ (Fig. 3.18). What are the absolute value and the phase of the current?
The impedance is $Z=\sqrt{4^{2}+3^{2}} \Omega=5 \Omega$. The current flowing through the impedance has an amplitude of $\hat{\imath}=\hat{v} / Z=200 \mathrm{~mA}$. The RMS value is $I=\hat{\imath} / \sqrt{2}=141 \mathrm{~mA}$. The phase shift of the voltage with respect to the current is $\varphi_{\mathrm{Z}}=\arctan (3 / 4)=0.64\left(37^{\circ}\right)$. The current lags the voltage by $37^{\circ}$ $\left(\varphi_{\mathrm{I}}=-37^{\circ}\right)$.


Fig. 3.18. Impedance phasor

### 3.3.2 Complex Impedance of Passive Components

This topic is treated (focusing on time-varying signals) more extensively in Sect. 3.4.

### 3.3.2.1 Resistor

For the voltage and the current in a resistor $R$ it follows from Ohm's law

$$
v(t)=R \cdot i(t) \quad \text { across the resistor }
$$

If the current $\underline{i}$ is complex then

$$
\begin{equation*}
\underline{Z}=\frac{v}{\underline{i}}=\frac{R \cdot \underline{i}}{\underline{i}}=R \tag{3.19}
\end{equation*}
$$

- The complex impedance of the resistor is real and equals $R$.


### 3.3.2.2 Inductor

In an inductor the induced voltage is proportional to the change of the current $\mathrm{d} i / \mathrm{d} t$.

$$
v(t)=L \cdot \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

For $\underline{i}(t)=\hat{\imath} \cdot \mathrm{e}^{\mathrm{j} \omega t}$ is then

$$
\begin{gather*}
\underline{v}(t)=L \cdot \hat{l} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{e}^{\mathrm{j} \omega t}=\mathrm{j} \omega L \cdot \hat{\imath} \cdot \mathrm{e}^{\mathrm{j} \omega t} \\
\underline{Z}=\frac{\underline{v}}{\underline{i}}=\mathrm{j} \omega L \tag{3.20}
\end{gather*}
$$

- The complex impedance of an inductor is imaginary positive. It is proportional to the inductance and to the angular frequency.


### 3.3.2.3 Capacitor

The voltage across a capacitor is proportional to the integral of the current flowing through the capacitor.

$$
v(t)=\frac{1}{C} \int i(t) \mathrm{d} t
$$

For $\underline{i}(t)=\hat{\imath} \cdot \mathrm{e}^{\mathrm{j} \omega t}$ is then

$$
\begin{gather*}
\underline{v}(t)=\frac{1}{C} \int \hat{\imath} \cdot \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} t=\frac{1}{C} \frac{1}{\mathrm{j} \omega} \cdot \hat{\imath} \cdot \mathrm{e}^{\mathrm{j} \omega t} \\
\underline{Z}=\frac{\underline{v}}{\underline{i}}=-\mathrm{j} \frac{1}{\omega C}=\frac{1}{\mathrm{j} \omega C} \tag{3.21}
\end{gather*}
$$

- The complex impedance operator of the capacitor is imaginary negative. It is inversely proportional to the capacitance and to the angular frequency.


### 3.3.3 Admittance

The complex conductance is defined analogously to the definition of the DC admittance.

$$
\begin{equation*}
\underline{Y}=\frac{i}{\underline{v}}=\frac{\hat{i} \cdot \mathrm{e}^{\mathrm{j}\left(\omega t+\varphi_{\mathrm{I}}\right)}}{\hat{v} \cdot \mathrm{e}^{\mathrm{j}\left(\omega t+\varphi_{\mathrm{V}}\right)}}=\frac{\hat{\imath}}{\hat{v}} \cdot \mathrm{e}^{\mathrm{j}\left(\varphi_{1}-\varphi_{\mathrm{V}}\right)} \tag{3.22}
\end{equation*}
$$

Because $\underline{Y}$ is a complex quantity it can be represented in exponential form

$$
\begin{equation*}
\underline{Y}=Y \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Y}}} \tag{3.23}
\end{equation*}
$$

For the complex conductance the phase angle $\varphi_{\mathrm{Y}}$ represents the phase shift of the current relative to the voltage in the AC impedance. In Cartesian form it is

$$
\begin{equation*}
\underline{Y}=G+\mathrm{j} B \tag{3.24}
\end{equation*}
$$

With

$$
\begin{equation*}
Y=\sqrt{G^{2}+B^{2}}, \quad \varphi_{\mathrm{Y}}=\arctan \left[\frac{\operatorname{Im}(\underline{Y})}{\operatorname{Re}(\underline{Y})}\right]=\arctan \left(\frac{B}{G}\right) \tag{3.25}
\end{equation*}
$$

$G$ is referred to as conductance;
$B$ is referred to as susceptance;
$Y$ is referred to as admittance.
Sometimes the complex conductance is also called admittance. The unit for the complex conductance is siemens ( S ) or mho ( $(\mathrm{J}$ ).

- The complex conductance is the ratio of the current amplitude to the voltage amplitude (or their RMS values) and the phase shift of the current relative to the voltage at the component.
- The admittance is the ratio of the current amplitude to the voltage amplitude (or their RMS values) without considering the relative phase value.

The following relationships hold

$$
\begin{gather*}
Y=\frac{I}{V}  \tag{3.26}\\
G=Y \cdot \cos \varphi_{\mathrm{Y}}, \quad B=Y \cdot \sin \varphi_{\mathrm{Y}} \tag{3.27}
\end{gather*}
$$

The representation of the complex admittance as in Eq. 3.23 leads to a phasor analogy.



Fig. 3.19. Phasor diagram of the admittance and of the current and voltage at the $A C$ impedance
The phasor of the admittance is represented in the complex admittance plane. According to the expression $\underline{I}=\underline{Y} \cdot \underline{V}$ the relationship of voltage and current at the resistor can be represented by a phasor diagram (Fig. 3.19). The admittance rotates the current phasor by an angle of $\varphi_{\mathrm{Y}}$ relative to the voltage phasor. The ratio of the absolute values of current to voltage is $Y$.

The following relationship between impedance and admittance holds

$$
\begin{equation*}
\underline{Y}=\frac{1}{\underline{Z}} \tag{3.28}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\underline{Y}=\frac{1}{R+\mathrm{j} X}=\frac{R}{R^{2}+X^{2}}-\mathrm{j} \frac{X}{R^{2}+X^{2}}=\underbrace{\frac{R}{Z^{2}}}_{=G} \underbrace{-\mathrm{j} \frac{X}{Z^{2}}}_{=\mathrm{j} B B} \tag{3.29}
\end{equation*}
$$

For the conductance and susceptance it follows directly that

$$
\begin{equation*}
G=\frac{R}{Z^{2}}, \quad B=-\frac{X}{Z^{2}} \tag{3.30}
\end{equation*}
$$

- A positive susceptance is equivalent to a negative impedance and vice versa.

Furthermore Eq. (3.28) leads to

$$
\begin{equation*}
Y=\frac{1}{Z}, \quad \text { and } \quad \varphi_{\mathrm{Y}}=-\varphi_{\mathrm{Z}} \tag{3.31}
\end{equation*}
$$

- The phase of the complex admittance equals the phase of the negative impedance.


### 3.3.4 Complex Admittance of Passive Components

From Eq. (3.28) the complex admittances of the resistor, inductor and capacitor are

$$
\begin{array}{ll}
\text { Resistor: } & \underline{Y}=G=1 / R \\
\text { Inductor: } & \underline{Y}=-\mathrm{j} \frac{1}{\omega L} \\
\text { Capacitor: } & \underline{Y}=\mathrm{j} \omega C
\end{array}
$$

### 3.3.5 Overview: Complex Impedance

## Terminology

| Symbol | Terminology |
| :---: | :--- |
| $\underline{Z}=R+\mathrm{j} X$ | (Complex) impedance |
| $Z$ | Impedance |
| $X$ | Reactance |
| $R$ | Resistance |
| $\underline{Y}=G+\mathrm{j} B$ | (Complex) admittance |
| $Y$ | Admittance |
| $B$ | Susceptance |
| $G$ | Conductance |

## Impedance and Admittance of Passive Components

Table 3.5. Impedance and admittance of passive components

| General expression | Resistor $R$ | Inductor $L$ | Capacitor $C$ |
| :---: | :---: | :---: | :---: |
| $\underline{Z}=R+\mathrm{j} X$ | $R$ | $\mathrm{j} \omega L$ | $-\mathrm{j} \frac{1}{\omega C}$ |
| $R$ | $R$ | 0 | 0 |
| $X$ | 0 | $\omega L$ | $-\frac{1}{\omega C}$ |
| $Z=\sqrt{R^{2}+X^{2}}$ | $R$ | $\omega L$ | $\frac{1}{\omega C}$ |
| $\varphi_{\mathrm{Z}}=\arctan (X / R)$ | 0 | $+\mathbf{a} / 2$ | $-\mathbf{a} / 2$ |
| $\underline{Y}=G+\mathrm{j} B$ | $1 / R$ | $-\mathrm{j} \frac{1}{\omega L}$ | $\mathrm{j} \omega C$ |
| $G$ | $1 / R$ | 0 | 0 |
| $B$ | 0 | $-\frac{1}{\omega L}$ | $\omega C$ |
| $Y=\sqrt{G^{2}+B^{2}}$ | $1 / R$ | $\frac{1}{\omega L}$ | $\omega C$ |
| $\varphi_{\mathrm{Y}}=\arctan (B / G)$ | 0 | $-\mathbf{a} / 2$ | $+\mathbf{a} / 2$ |

$$
\begin{array}{lll}
\underline{Y}=\frac{1}{\underline{Z}}, & Y=\frac{1}{Z}, & \varphi_{\mathrm{Y}}=-\varphi_{\mathrm{Z}} \\
\underline{Y}=G+\mathrm{j} B, & G=\frac{R}{Z^{2}}, & B=\frac{-X}{Z^{2}}
\end{array}
$$

### 3.4 Impedance of Passive Components

Passive linear electrical networks are composed of resistors, inductors and capacitors. This section examines the behaviour of these passive components for sinusoidal voltages and currents. See Table 3.5 for a summary.

For a resistor $R$ current and voltage are in phase. The resistance is

$$
Z=|\underline{Z}|=\left|\frac{\underline{v}}{\underline{i}}\right|=R
$$

For the conductance therefore

$$
Y=\frac{1}{Z}=\frac{1}{R}=G
$$

For an inductor $L$ the induced voltage is proportional to the rate of change of current $\mathrm{d} i / \mathrm{d} t$

$$
v(t)=L \cdot \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

For a sinusoidal current

$$
v(t)=L \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}(\hat{\imath} \sin \omega t)=\hat{\imath} \omega L \cos \omega t=\hat{\imath} \omega L \sin \left(\omega t+\frac{\mathrm{a}}{2}\right)
$$

- The voltage across an inductor leads the current by $90^{\circ}$ or $\mathrm{a} / 2$, see Fig. 3.20.


Fig. 3.20. Voltage and current in an inductor
The inductive reactance $X_{\mathrm{L}}$ is

$$
X_{\mathrm{L}}=\omega L
$$

For DC voltage the impedance of an ideal inductor is zero. It increases linearly with the frequency. The complex impedance is

$$
\begin{equation*}
\underline{Z}=\mathrm{j} X_{\mathrm{L}}=\mathrm{j} \omega L \tag{3.32}
\end{equation*}
$$

For the admittance

$$
\begin{equation*}
\underline{Y}=\frac{1}{\underline{Z}}=\frac{1}{\mathrm{j} \omega L}=-\mathrm{j} \frac{1}{\omega L} \tag{3.33}
\end{equation*}
$$

For a capacitor $C$ the voltage is the integral of the current flowing through the capacitor

$$
v(t)=\frac{1}{C} \int i(t) \mathrm{d} t
$$

Differentiation of both sides of the equation leads to

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{C} \cdot i(t) \quad \Rightarrow \quad i(t)=C \cdot \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

For a sinusoidal voltage

$$
i(t)=C \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}(\hat{v} \sin \omega t)=\hat{v} \omega C \cos \omega t=\hat{v} \omega C \sin \left(\omega t+\frac{\mathrm{a}}{2}\right)
$$

- The voltage across a capacitor lags the current by $90^{\circ}$ or $\mathrm{a} / 2\left(\varphi_{\mathrm{V}}=-90^{\circ}\right)$, see Fig. 3.21.


Fig. 3.21. Voltage and current in a capacitor
The capacitive reactance $X_{\mathrm{C}}$ is

$$
X_{\mathrm{C}}=-\frac{1}{\omega C}
$$

For DC voltage the impedance of an ideal capacitor is infinite. It decreases in inverse proportion to the frequency. For the complex impedance it follows that

$$
\begin{equation*}
\underline{Z}=\mathrm{j} X_{\mathrm{C}}=-\mathrm{j} \frac{1}{\omega C} \tag{3.34}
\end{equation*}
$$

For the admittance

$$
\begin{equation*}
\underline{Y}=\frac{1}{\underline{Z}}=\mathrm{j} B_{\mathrm{C}}=\mathrm{j} \omega C \tag{3.35}
\end{equation*}
$$

### 3.5 Combinations of Passive Components

### 3.5.1 Series Combinations

### 3.5.1.1 General Case



Fig. 3.22. Series combination of passive components
Figure 3.22 shows the general case of a series combination of passive components. For AC currents and voltages (in analogy to DC)

$$
\underline{V}=\underline{I} \cdot \underline{Z}
$$

The notation shows clearly that these are complex values. The same current flows through all components. For the total impedance $\underline{Z}$ it follows that

$$
\underline{Z}=\underline{Z}_{1}+\underline{Z}_{2}+\cdots+\underline{Z}_{n}
$$

As complex numbers are added by summing up the real parts and the imaginary parts, the resistive part and the reactive part of the impedance can be added separately

$$
\underline{Z}=\sum_{i=1}^{n} \operatorname{Re}\left(Z_{i}\right)+\mathrm{j} \sum_{i=1}^{n} \operatorname{Im}\left(Z_{i}\right)=\sum_{i=1}^{n} R_{i}+\mathrm{j} \sum_{i=1}^{n} X_{i}
$$

### 3.5.1.2 Resistor and Inductor in Series

The current flowing through both components is identical. For the resistor, the current and voltage are in phase; for the inductor the voltage leads the current by $90^{\circ}$ or $\mathrm{a} / 2$. The terminal voltage of the combination is the sum of the partial voltages (Fig. 3.23).


Fig. 3.23. Series combination of resistor and inductor
The phasor diagram yields (using the Pythagorean theorem)

$$
V=\sqrt{V_{\mathrm{R}}^{2}+V_{\mathrm{L}}^{2}}=\sqrt{I^{2} R^{2}+I^{2} X_{\mathrm{L}}^{2}}=I \cdot \sqrt{R^{2}+X_{\mathrm{L}}^{2}}
$$

$X_{\mathrm{L}}$ is the inductive reactance.

$$
\frac{V}{I}=\sqrt{R^{2}+X_{\mathrm{L}}^{2}}
$$

The ratio $V / I$ is called the impedance $Z$

$$
Z=|\underline{Z}|=\sqrt{R^{2}+X_{\mathrm{L}}^{2}}
$$

This result can be obtained directly by examining the impedance phasors in the complex impedance plane (Fig. 3.24b).

- The phase of the voltage relative to the current lies between $0^{\circ}$ and $90^{\circ}(\mathrm{a} / 2)$. The larger the resistive part in the series combination, the closer the phase value is to zero.


Fig. 3.24. a RMS phasors of the voltages; $\mathbf{b}$ phasor in the complex impedance plane
The phase can be obtained from the phasor triangle

$$
\tan \varphi=\frac{V_{\mathrm{L}}}{V_{\mathrm{R}}}=\frac{X_{\mathrm{L}}}{R}=\frac{\omega L}{R}
$$

In complex notation the complex impedances can be simply added

$$
\begin{equation*}
\underline{Z}=R+\mathrm{j} X_{\mathrm{L}}=R+\mathrm{j} \omega L \tag{3.36}
\end{equation*}
$$

with

$$
\begin{align*}
\underline{Z} & =|\underline{Z}| \mathrm{e}^{\mathrm{j} \varphi} \\
Z & =|\underline{Z}|=\sqrt{R^{2}+X_{\mathrm{L}}^{2}}=\sqrt{R^{2}+(\omega L)^{2}}  \tag{3.37}\\
\varphi & =\arctan \left(\frac{X_{\mathrm{L}}}{R}\right)=\arctan \left(\frac{\omega L}{R}\right)
\end{align*}
$$

### 3.5.1.3 Resistor and Capacitor in Series

The current flowing through both components is identical. For the resistor, the current and voltage are in phase, for the capacitor the voltage lags the current by $90^{\circ}$ or $\mathbf{a} / 2$. The terminal voltage of the combination is the sum of the partial voltages (Fig. 3.25).


Fig. 3.25. Series combination of resistor and capacitor
The phasor diagram yields (using the Pythagorean theorem)

$$
V=\sqrt{V_{\mathrm{R}}^{2}+V_{\mathrm{C}}^{2}}=\sqrt{I^{2} R^{2}+I^{2} X_{\mathrm{C}}^{2}}=I \cdot \sqrt{R^{2}+X_{\mathrm{C}}^{2}}
$$

where $X_{\mathrm{C}}$ is the capacitive reactance. The impedance $Z$ follows as

$$
Z=|\underline{Z}|=\sqrt{R^{2}+X_{\mathrm{C}}^{2}}
$$

This result can be obtained directly by examining the impedance phasors in the complex impedance plane (Fig. 3.26b).


Fig. 3.26. a) RMS phasors of the voltages; b) phasor in the complex impedance plane

- The phase of the voltage relative to the current lies between $0^{\circ}$ and $-90^{\circ}(-\mathrm{q} / 2)$. The larger the resistive part in the series combination, the smaller is the phase value.

The phase can be obtained from the phasor triangle

$$
\tan \varphi=\frac{V_{\mathrm{C}}}{V_{\mathrm{R}}}=\frac{X_{\mathrm{C}}}{R}=-\frac{1}{\omega R C}
$$

In complex notation the complex impedances can be simply added

$$
\begin{equation*}
\underline{Z}=R+\mathrm{j} X_{\mathrm{C}}=R-\mathrm{j} \frac{1}{\omega C} \tag{3.38}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{Z}=|\underline{Z}| \mathrm{e}^{\mathrm{j} \varphi} \\
& Z=|\underline{Z}|=\sqrt{R^{2}+X_{\mathrm{C}}^{2}}=\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}  \tag{3.39}\\
& \varphi=\arctan \left(\frac{X_{\mathrm{C}}}{R}\right)=-\arctan \left(\frac{1}{\omega R C}\right)
\end{align*}
$$

### 3.5.1.4 Resistor, Inductor and Capacitor in Series

Note: In practice a series combination of a pure capacitance and a pure inductance does not occur. This is because real components such as coils and capacitors always exhibit losses, which can be modelled as a resistor in series.


Fig. 3.27. Series combination of a resistor, an inductor and a capacitor
The arrangement shown in Fig. 3.27 is called a series-resonant circuit. The current flowing through all three components is identical. For the resistor current and voltage are in phase. For the inductor the voltage leads the current by $+90^{\circ} \mathrm{a} / 2$, while for the capacitor the
voltage lags the current by $-90^{\circ}-\mathbf{a} / 2$. Consequently, the voltages across $L$ and $C$ have opposite signs. The terminal voltage of the combination is the sum of the partial voltages.



Fig. 3.28. RMS phasors of the voltages in the series-resonant circuit
The phasor diagram yields (Fig. 3.28)

$$
V=\sqrt{V_{\mathrm{R}}^{2}+\left(V_{\mathrm{L}}+V_{\mathrm{C}}\right)^{2}}=\sqrt{I^{2} R^{2}+I^{2}\left(X_{\mathrm{L}}+X_{\mathrm{C}}\right)^{2}}
$$

where $X_{\mathrm{L}}$ is the inductive reactance, and $X_{\mathrm{C}}$ is the capacitive reactance. The impedance $Z$ follows as

$$
Z=|\underline{Z}|=\sqrt{R^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{C}}\right)^{2}}, \quad X_{\mathrm{L}}=\omega L, \quad X_{\mathrm{C}}=-\frac{1}{\omega C}
$$

The reactances $X_{\mathrm{L}}$ and $X_{\mathrm{C}}$ have opposite signs. Depending on the values of the capacitor and the inductor, either the capacitive or the inductive reactance dominates, as shown in Fig. 3.29.


Fig. 3.29. Phasor diagrams for different reactance values of $X_{\mathrm{L}}, X_{\mathrm{C}}$

- The phase of the voltage relative to the current in the series-resonant circuit lies between $-90^{\circ}$ and $+90^{\circ}( \pm \mathbf{a} / 2)$. If the capacitive reactance dominates, the circuit behaves like an RC combination; if the inductive reactance dominates, the circuit behaves like an RL combination.

The phase $\varphi$ can be obtained from the phasor diagram

$$
\tan \varphi=\frac{V_{\mathrm{L}}+V_{\mathrm{C}}}{V_{\mathrm{R}}}=\frac{X_{\mathrm{L}}+X_{\mathrm{C}}}{R}=\frac{\omega L-\frac{1}{\omega C}}{R}=\frac{\omega^{2} L C-1}{\omega R C}
$$

In complex notation

$$
\begin{equation*}
\underline{Z}=\underline{Z}_{\mathrm{R}}+\underline{Z}_{\mathrm{L}}+\underline{Z}_{\mathrm{C}}=R+\mathrm{j}\left(X_{\mathrm{L}}+X_{\mathrm{C}}\right)=R+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right) \tag{3.40}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{Z}=|\underline{Z}| \cdot \mathrm{e}^{\mathrm{j} \varphi} \\
& Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{C}}\right)^{2}}=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}  \tag{3.41}\\
& \varphi=\arctan \left(\frac{X_{\mathrm{L}}+X_{\mathrm{C}}}{R}\right)=\arctan \left(\frac{\omega L-\frac{1}{\omega C}}{R}\right)
\end{align*}
$$

The reactances vary with the frequency. The inductive reactance increases proportionally with the frequency, while the capacitive reactance decreases inversely with the frequency. At the resonant frequency both reactances are equal in magnitude, but have an opposite sign. As they cancel each other out at this frequency, only the resistance appears at the terminals of the combination. At resonance the voltages across $L$ and $C$ have the same magnitude.

$$
\left|V_{\mathrm{L}}\right|=\left|V_{\mathrm{C}}\right|, \quad\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|, \quad X_{\mathrm{L}}+X_{\mathrm{C}}=0 \quad \Rightarrow \quad \omega_{\mathrm{r}} L=\frac{1}{\omega_{\mathrm{r}} C}
$$

The equality of the magnitudes of the reactances at the resonant frequency leads to

$$
\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \Rightarrow f_{\mathrm{r}}=\frac{1}{2 \mathbf{a}} \frac{1}{\sqrt{L C}}
$$

- Below the resonant frequency the circuit behaves like a resistor-capacitor combination, and above the resonant frequency it behaves like a resistor-inductor combination (Fig. 3.30).


Fig. 3.30. Reactance and impedance of the series-resonant circuit with frequency

### 3.5.2 Parallel Combinations

### 3.5.2.1 General Case

Figure 3.31 shows the general AC case of parallel combinations of passive components. Similar to the DC case the alternating current and voltage are related by using the admittance

$$
\underline{I}=\underline{V} \cdot \underline{Y}
$$



Fig. 3.31. Parallel combination of passive components
The notation clearly shows that these are complex quantities. Each circuit element has the same voltage drop across its terminals. This leads to a general expression for the total admittance $\underline{Y}$

$$
\underline{Y}=\underline{Y}_{1}+\underline{Y}_{2}+\cdots+\underline{Y}_{n}
$$

As complex numbers are summed by adding the individual real and imaginary components, the conductive component $G_{\mathrm{S}}$ and the susceptive component $B_{\mathrm{S}}$ of the admittance can be added separately

$$
\underline{Y}=\sum_{i=1}^{n} G_{i}+\mathrm{j} \cdot \sum_{i=1}^{n} B_{i}
$$

The impedance $\underline{Z}$ of the parallel combination is given by

$$
\underline{Z}=\frac{1}{\underline{Y}}=\frac{1}{\underline{Z}_{1}}+\frac{1}{\underline{Z}_{2}}+\ldots \frac{1}{\underline{Z}_{\mathrm{n}}}
$$

In the special case of only two components in parallel, the resulting expression for the impedance is analogous to the case of two resistances in parallel

$$
\begin{equation*}
\underline{Z}=\frac{\underline{Z}_{1} \cdot \underline{Z}_{2}}{\underline{Z}_{1}+\underline{Z}_{2}} \tag{3.42}
\end{equation*}
$$

and if the impedance is separated into its conductive and susceptive components $\underline{Z}_{i}=$ $R_{i}+\mathrm{j} \cdot X_{i}$

$$
\underline{Z}=\frac{R_{1}\left(R_{2}^{2}+X_{2}^{2}\right)+R_{2}\left(R_{1}^{2}+X_{1}^{2}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}+\mathrm{j} \frac{X_{1}\left(R_{2}^{2}+X_{2}^{2}\right)+X_{2}\left(R_{1}^{2}+X_{1}^{2}\right)}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}
$$

### 3.5.2 2 Resistor and Inductor in Parallel

Each circuit element has the same voltage drop across its terminals. For the resistor, the current and voltage are in phase, while for the inductor the current lags the voltage by $90^{\circ}$


Fig. 3.32. Parallel combination of a resistor and an inductor


Fig. 3.33. a) RMS current phasor; b) phasor in the complex admittance plane
or a/2 (Fig. 3.32). The total current through the combination is the sum of the current in the individual branches.
The phasor diagram yields (using the Pythagorean theorem)

$$
I=\sqrt{I_{\mathrm{R}}^{2}+I_{\mathrm{L}}^{2}}=\sqrt{V^{2} G^{2}+V^{2} B_{\mathrm{L}}^{2}}=V \cdot \sqrt{G^{2}+B_{\mathrm{L}}^{2}}
$$

where $B_{\mathrm{L}}$ is the inductive susceptance.

$$
\frac{I}{V}=\sqrt{G^{2}+B_{\mathrm{L}}^{2}}
$$

The ratio $I / V$ is the admittance $Y$

$$
\begin{equation*}
Y=|\underline{Y}|=\sqrt{G^{2}+B_{\mathrm{L}}^{2}} \tag{3.43}
\end{equation*}
$$

This result can be obtained directly by using phasors in the complex admittance plane (Fig. 3.33b).

- The phase of the current relative to the voltage lies between $0^{\circ}$ and $-90^{\circ}(-\mathbf{a} / 2)$. This decreases in magnitude as the inductance increases.

The phase difference can be obtained from the phasor diagram

$$
\tan \varphi_{\mathrm{Y}}=\frac{I_{\mathrm{L}}}{I_{\mathrm{R}}}=\frac{B_{\mathrm{L}}}{G}=-\frac{R}{\omega L}
$$

In complex notation the complex admittances can be simply added.

$$
\begin{equation*}
\underline{Y}=G+\mathrm{j} B_{\mathrm{L}}=\frac{1}{R}-\mathrm{j} \frac{1}{\omega L} \tag{3.44}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{Y}=|\underline{Y}| \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Y}}} \\
& Y=|\underline{Y}|=\sqrt{G^{2}+B_{\mathrm{L}}^{2}}=\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{\omega L}\right)^{2}}  \tag{3.45}\\
& \varphi_{\mathrm{Y}}=\arctan \left(\frac{B_{\mathrm{L}}}{G}\right)=\arctan \left(\frac{R}{\omega L}\right)
\end{align*}
$$

### 3.5.2.3 Resistor and Capacitor in Parallel

Each circuit element has the same voltage drop across its terminals. For the resistor, the current and voltage are in phase, while for the capacitor the current leads the voltage by $90^{\circ}$ or $\mathrm{a} / 2$ (Fig. 3.34). The total current through the combination is the sum of the currents in the individual branches.


Fig. 3.34. Parallel combination of resistor and capacitor
The phasor diagram yields (using the Pythagorean theorem)

$$
I=\sqrt{I_{\mathrm{R}}^{2}+I_{\mathrm{C}}^{2}}=\sqrt{V^{2} G^{2}+V^{2} B_{\mathrm{C}}^{2}}=V \cdot \sqrt{G^{2}+B_{\mathrm{C}}^{2}}
$$

where $B_{\mathrm{C}}$ is the capacitive susceptance.

$$
\frac{I}{V}=\sqrt{G^{2}+B_{\mathrm{C}}^{2}}
$$

The ratio $I / V$ is the admittance $Y$

$$
Y=|\underline{Y}|=\sqrt{G^{2}+B_{\mathrm{C}}^{2}}
$$

This result can be obtained directly by using phasors in the complex admittance plane (Fig. 3.35 b)).

- The phase of the current relative to the voltage lies between $0^{\circ}$ and $-90^{\circ}(-\mathbf{a} / 2)$. This decreases in magnitude as the capacitance decreases.


Fig. 3.35. a) RMS phasor; b) phasor in the complex admittance plane
The phase difference can be obtained from the phasor diagram

$$
\tan \varphi_{\mathrm{Y}}=\frac{I_{\mathrm{C}}}{I_{\mathrm{R}}}=\frac{B_{\mathrm{C}}}{G}=\omega R C
$$

In complex notation the complex admittances can be simply added.

$$
\begin{equation*}
\underline{Y}=G+\mathrm{j} B_{\mathrm{C}}=\frac{1}{R}+\mathrm{j} \omega C \tag{3.46}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{Y}=|\underline{Y}| \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Y}}} \\
& Y=|\underline{Y}|=\sqrt{G^{2}+B_{\mathrm{C}}^{2}}=\sqrt{\left(\frac{1}{R}\right)^{2}+(\omega C)^{2}}  \tag{3.47}\\
& \varphi_{\mathrm{Y}}=\arctan \left(\frac{B_{\mathrm{C}}}{G}\right)=\arctan (\omega R C)
\end{align*}
$$

Note: It can be seen that the phase difference $\varphi_{Y}$ is measured with respect to the voltage, and $\varphi_{\mathrm{Y}}=-\varphi_{\mathrm{v}}$.

### 3.5.2.4 Resistor, Inductor and Capacitor in Parallel

Note: A parallel combination of a pure capacitance and a pure inductance is not realistic. Real capacitors and inductors suffer losses, which can be modelled by a resistor in parallel.



Fig. 3.36. A parallel combination of a resistor, a capacitor and an inductor
The arrangement shown in Fig. 3.5.2.4 is called a parallel-resonant circuit. Each circuit element has the same voltage drop across its terminals. For the resistor the current and voltage are in phase. For the inductor, the current lags the voltage by $90^{\circ}$ or $\mathrm{a} / 2$; for the capacitor, the current leads the voltage by $90^{\circ}$ or $\mathrm{a} / 2$. The currents through $L$ and $C$ have opposite signs. The total current through the combination is the sum of the current in the individual branches.
The phasor diagram yields

$$
I=\sqrt{I_{\mathrm{R}}^{2}+\left(I_{\mathrm{L}}+I_{\mathrm{C}}\right)^{2}}=\sqrt{V^{2} G^{2}+V^{2}\left(B_{\mathrm{L}}+B_{\mathrm{C}}\right)^{2}}=V \sqrt{G^{2}+\left(B_{\mathrm{L}}+B_{\mathrm{C}}\right)^{2}}
$$

where $B_{\mathrm{L}}$ is the inductor susceptance, and $B_{\mathrm{C}}$ is the capacitive susceptance. The admittance $Y$ follows as

$$
Y=|\underline{Y}|=\sqrt{G^{2}+\left(B_{\mathrm{L}}+B_{\mathrm{C}}\right)^{2}}, \quad B_{\mathrm{L}}=-\frac{1}{\omega L}, \quad B_{\mathrm{C}}=\omega C
$$

The susceptances $B_{\mathrm{L}}$ and $B_{\mathrm{C}}$ have opposite signs. Depending on the size of the inductance or capacitance, either the inductive or capacitive susceptance will dominate, as shown in Fig. 3.37.

- The phase $\varphi_{\mathrm{Y}}$ of the voltage with respect to the current varies between $-90^{\circ}$ and $+90^{\circ}$ ( $\pm \mathbf{o} / 2$ ). If the capacitive susceptance dominates, the circuit behaves like an RC combination; if the inductive susceptance dominates, the circuit behaves like an RL combination.

The phase angle $\varphi_{\mathrm{Y}}$ of the susceptance may be derived from the phasor diagram

$$
\tan \varphi_{\mathrm{Y}}=\frac{I_{\mathrm{L}}+I_{\mathrm{C}}}{I_{\mathrm{R}}}=\frac{B_{\mathrm{L}}+B_{\mathrm{C}}}{G}=\frac{\omega C-\frac{1}{\omega L}}{G}=R\left(\omega C-\frac{1}{\omega L}\right)
$$



Fig. 3.37. Phasor diagram for different susceptance values $B_{\mathrm{L}}, B_{\mathrm{C}}$
In complex notation

$$
\begin{equation*}
\underline{Y}=\underline{Y}_{\mathrm{R}}+\underline{Y}_{\mathrm{L}}+\underline{Y}_{\mathrm{C}}=G+\mathrm{j}\left(B_{\mathrm{L}}+B_{\mathrm{C}}\right)=\frac{1}{R}+\mathrm{j}\left(\omega C-\frac{1}{\omega L}\right) \tag{3.48}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{Y}=|\underline{Y}| \cdot \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{Y}}} \\
& Y=\sqrt{G^{2}+\left(B_{\mathrm{L}}+B_{\mathrm{C}}\right)^{2}}=\sqrt{\left(\frac{1}{R^{2}}\right)+\left(\omega C-\frac{1}{\omega L}\right)^{2}}  \tag{3.49}\\
& \varphi_{\mathrm{Y}}=\arctan \left(\frac{B_{\mathrm{L}}+B_{\mathrm{C}}}{G}\right)=\arctan \left[R\left(\omega C-\frac{1}{\omega L}\right)\right]
\end{align*}
$$

The susceptances are frequency dependent. The inductive susceptance decreases with frequency, while the capacitive susceptance increases with frequency (Fig. 3.38). At resonance both susceptances are equal in magnitude, but have opposite signs. As they cancel each other out at this frequency, only the resistance appears at the terminals of the combination. At resonance the currents through $L$ and $C$ have the same absolute value.

$$
\left|I_{\mathrm{L}}\right|=\left|I_{\mathrm{C}}\right|, \quad\left|B_{\mathrm{L}}\right|=\left|B_{\mathrm{C}}\right|, \quad B_{\mathrm{L}}+B_{\mathrm{C}}=0 \quad \Rightarrow \quad \frac{1}{\omega_{\mathrm{r}} L}=\omega_{\mathrm{r}} C
$$

It can be seen by equating the susceptances at the resonant frequency that

$$
\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}} \Rightarrow f_{\mathrm{r}}=\frac{1}{2 \mathbf{a}} \frac{1}{\sqrt{L C}}
$$

- Below the resonant frequency, the circuit behaves like a parallel resistor-inductor combination, while above the resonant frequency the circuit behaves like a parallel resistorcapacitor combination.


Fig. 3.38. Susceptance and admittance characteristic curves for a parallel-resonant circuit


Fig. 3.39. Impedance characteristic curve for a parallel-resonant circuit

### 3.5.3 Overview of Series and Parallel Circuits

Table 3.6. Series circuit

|  | Phasor diagram | $Z$ | $\tan \varphi_{\mathrm{Z}}=\frac{X}{R}$ |
| :--- | :---: | :---: | :---: |
| $R L$ | 2 | $\sqrt{R^{2}+(\omega L)^{2}}$ | $\frac{\omega L}{R}$ |
| $R C$ | $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$ | $\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}$ | $-\frac{1}{\omega R C}$ |
| $L C^{*}$ | $\mathrm{X}_{\mathrm{C}}=-\frac{1}{\omega \mathrm{C}}$ | $\left\|\omega L-\frac{1}{\omega C}\right\|$ | $\pm \infty$ |
| $R L C$ | See series-resonant circuits | $\sqrt{R_{\mathrm{C}}^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$ | $\frac{\omega^{2} L C-1}{\omega R C}$ |
| Phase values are given with respect to total current |  |  |  |

*The ideal case is with $R=0$. For frequencies below the resonant frequency the phase shift is $\varphi=-90^{\circ}$; above the phase shift is $\varphi=90^{\circ}$.

Table 3.7. Series resonant circuit

| Frequency | Phasor diagram | $\underline{Z}$ | $\varphi_{\mathrm{Z}}$ |
| :---: | :---: | :---: | :---: |
| $f<f_{\mathrm{r}}$ | $\left.\frac{\mathrm{R}}{\underline{\underline{z}}} \begin{aligned} & x_{\mathrm{L}} \end{aligned} \right\rvert\,$ | Resistive-capacitive | $-90^{\circ}$ to $0^{\circ}$ |
| $f=f_{\mathrm{r}}$ | $\left.\xrightarrow[R]{\underline{z}}\right\|^{x_{L}}$ | Purely-resistive | $0^{\circ}$ |
| $f>f_{\mathrm{r}}$ |  | Resistive-inductive | $0^{\circ}$ to $90^{\circ}$ |
| Resonant frequency $f_{\mathrm{r}}=\frac{1}{2 \boldsymbol{a}} \sqrt{\frac{1}{L C}}$ |  |  |  |

Table 3.8. Parallel circuit

|  | Phasor diagram | $Y$ | $\tan \varphi_{\mathrm{Y}}=\frac{B}{G}$ |
| :---: | :---: | :---: | :---: |
| $R L$ | $\xrightarrow[\underline{Y}]{G} \underline{\underline{V}} B_{L}=-\frac{1}{\omega L}$ | $\frac{\sqrt{R^{2}+(\omega L)^{2}}}{\omega R L}$ | $\frac{-R}{\omega L}$ |
| $R C$ |  | $\frac{\sqrt{(\omega R C)^{2}+1}}{R}$ | $\omega R C$ |
| $L C^{*}$ | $A_{C}^{B_{C}}$ | $\left\|\frac{\omega^{2} L C-1}{\omega L}\right\|$ | $\pm \infty^{*}$ |
| RLC | See parallel resonant circuit | $\frac{\sqrt{R^{2}\left(\omega^{2} L C-1\right)^{2}+(\omega L)^{2}}}{\omega R L}$ | $\frac{R\left(\omega^{2} L C-1\right)}{\omega L}$ |
| Phase values are given with respect to total voltage |  |  |  |

Table 3.9. Parallel resonant circuit

| Frequency | Phasor diagram | $\underline{Z}$ | $\varphi_{\mathrm{Z}}$ |
| :---: | :---: | :---: | :---: |
| $f<f_{\mathrm{r}}$ |  | Resistive-inductive | $90^{\circ}$ to $0^{\circ}$ |
| $f=f_{\mathrm{r}}$ |  | Purely resistive | $0^{\circ}$ |
| $f>f_{\mathrm{r}}$ |  | Resistive-capacitive | $0^{\circ}$ to $-90^{\circ}$ |
| Resonant frequency $f_{\mathrm{r}}=\frac{1}{2 \boldsymbol{a}} \sqrt{\frac{1}{L C}}$ |  |  |  |

### 3.6 Network Transformations

### 3.6.1 Transformation from Parallel to Series Circuits and Vice Versa

Any circuit consisting of the series combination of a resistive and a reactive component can be transformed into a parallel circuit consisting of a conductive and a susceptive component (Fig. 3.40). If an identical AC voltage causes identical AC currents to flow through two such circuits, they are known as equivalent circuits (see also Sect. 1.3.6.1).
The equivalence of the circuits implies that their impedances are equal.

$$
R_{\mathrm{s}}+\mathrm{j} X_{\mathrm{s}}=\underline{Z}=\frac{1}{G_{\mathrm{p}}+\mathrm{j} B_{\mathrm{p}}}
$$



Fig. 3.40. Transformation of a series circuit into an equivalent parallel circuit and vice versa
Expanding by multiplying the numerator and the denominator by the complex conjugate of the denominator yields

$$
R_{\mathrm{s}}+\mathrm{j} X_{\mathrm{s}}=\underline{Z}=\frac{G_{\mathrm{p}}-\mathrm{j} B_{\mathrm{p}}}{G_{\mathrm{p}}^{2}+B_{\mathrm{p}}^{2}}=\frac{G_{\mathrm{p}}}{G_{\mathrm{p}}^{2}+B_{\mathrm{p}}^{2}}-\mathrm{j} \frac{B_{\mathrm{p}}}{G_{\mathrm{p}}^{2}+B_{\mathrm{p}}^{2}}
$$

Thus the transformation of a parallel circuit to the equivalent series circuit yields the following for the resistive and reactive components:

$$
\begin{equation*}
R_{\mathrm{s}}=\frac{G_{\mathrm{p}}}{G_{\mathrm{p}}^{2}+B_{\mathrm{p}}^{2}}, \quad X_{\mathrm{s}}=-\frac{B_{\mathrm{p}}}{G_{\mathrm{p}}^{2}+B_{\mathrm{p}}^{2}} \tag{3.50}
\end{equation*}
$$

The transformation of a series circuit into the equivalent parallel circuit therefore implies the equality of the complex admittances.

$$
G_{\mathrm{p}}+\mathrm{j} B_{\mathrm{p}}=\underline{Y}=\frac{1}{R_{\mathrm{s}}+\mathrm{j} X_{\mathrm{s}}}
$$

Expanding by multiplying the numerator and the denominator by the complex conjugate of the denominator yields

$$
G_{\mathrm{p}}+\mathrm{j} B_{\mathrm{p}}=\underline{Y}=\frac{R_{\mathrm{s}}-\mathrm{j} X_{\mathrm{s}}}{R_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}}=\frac{R_{\mathrm{s}}}{G_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}}-\mathrm{j} \frac{X_{\mathrm{s}}}{R_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}}
$$

Thus the transformation of a series circuit to the equivalent parallel circuit yields the following for the resistive and reactive components:

$$
\begin{equation*}
G_{\mathrm{p}}=\frac{R_{\mathrm{s}}}{R_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}}, \quad B_{\mathrm{p}}=-\frac{X_{\mathrm{s}}}{R_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}} \tag{3.51}
\end{equation*}
$$

or, if expressed in terms of resistive and reactive values,

$$
R_{\mathrm{p}}=\frac{R_{\mathrm{s}}^{2}+X_{\mathrm{s}}^{2}}{R_{\mathrm{s}}}=\frac{Z^{2}}{R_{\mathrm{s}}}, \quad X_{\mathrm{p}}=\frac{Z^{2}}{X_{\mathrm{s}}}
$$

- These transformations are valid only for a fixed angular frequency $\omega$. All impedances are frequency dependent and thus experience different values in the transformed circuit as the frequency changes.
- The equivalence of the circuits only holds for sinusoidal voltages and currents.

Note: For network analysis series-parallel transformations are unnecessary, if the basic rules for combining impedances in series and parallel are applied.

### 3.6.2 Star-Delta (Wye-Delta) and Delta-Star (Delta-Wye) Transformations

For very complicated circuits, mesh or nodal analysis is frequently used. Depending on the type of analysis a star-delta or a delta-star transformation is required.*



Fig. 3.41. Star-delta and delta-star transformations
For a delta-star transformation, using the notation of Fig. 3.41

$$
\begin{align*}
& \underline{Z}_{1}=\frac{\underline{Z}_{12} \cdot \underline{Z}_{31}}{\underline{Z}_{12}+\underline{Z}_{23}+\underline{Z}_{31}}, \\
& \underline{Z}_{2}=\frac{\underline{Z}_{12} \cdot \underline{Z}_{23}}{\underline{Z}_{12}+\underline{Z}_{23}+\underline{Z}_{31}},  \tag{3.52}\\
& \underline{Z}_{3}=\frac{\underline{Z}_{23} \cdot \underline{Z}_{31}}{\underline{Z}_{12}+\underline{Z}_{23}+\underline{Z}_{31}},
\end{align*}
$$

Using the notation for impedance, resistance and reactance that $\underline{Z}_{i}=R_{i}+\mathrm{j} \cdot X_{i}$

$$
\begin{aligned}
& R_{1}=\frac{\left(R_{12} R_{31}-X_{12} X_{31}\right) R+\left(R_{12} X_{31}+R_{31} X_{12}\right) X}{R^{2}+X^{2}} \\
& X_{1}=\frac{\left(R_{12} X_{31}+R_{31} X_{12}\right) R-\left(R_{12} R_{31}-X_{12} X_{31}\right) X}{R^{2}+X^{2}} \\
& R_{2}=\frac{\left(R_{12} R_{23}-X_{12} X_{23}\right) R+\left(R_{23} X_{12}+R_{12} X_{23}\right) X}{R^{2}+X^{2}} \\
& X_{2}=\frac{\left(R_{23} X_{12}+R_{12} X_{23}\right) R-\left(R_{12} R_{23}-X_{12} X_{23}\right) X}{R^{2}+X^{2}} \\
& R_{3}=\frac{\left(R_{23} R_{31}-X_{23} X_{31}\right) R+\left(R_{31} X_{23}+R_{23} X_{31}\right) X}{R^{2}+X^{2}} \\
& X_{3}=\frac{\left(R_{31} X_{23}+R_{23} X_{31}\right) R-\left(R_{23} R_{31}-X_{23} X_{31}\right) X}{R^{2}+X^{2}}
\end{aligned}
$$

with

$$
R=R_{12}+R_{23}+R_{31}, \quad \text { and } \quad X=X_{12}+X_{23}+X_{31}
$$

[^2]For a star-delta transformation, using the notation of Fig. 3.41

$$
\begin{align*}
& \underline{Z}_{12}=\underline{Z}_{1}+\underline{Z}_{2}+\frac{\underline{Z}_{1} \cdot \underline{Z}_{2}}{\underline{Z}_{3}}  \tag{3.53}\\
& \underline{Z}_{23}=\underline{Z}_{2}+\underline{Z}_{3}+\frac{\underline{Z}_{2} \cdot \underline{Z}_{3}}{\underline{Z}_{1}} \\
& \underline{Z}_{31}=\underline{Z}_{1}+\underline{Z}_{3}+\frac{\underline{Z}_{3} \cdot \underline{Z}_{1}}{\underline{Z}_{2}}
\end{align*}
$$

Using the notation for impedance, resistance and reactance that $\underline{Z}_{i}=R_{i}+\mathrm{j} \cdot X_{i}$

$$
\begin{aligned}
& R_{12}=R_{1}+R_{2}+\frac{\left(R_{1} R_{2}-X_{1} X_{2}\right) R_{3}+\left(R_{1} X_{2}+R_{2} X_{1}\right) X_{3}}{R_{3}^{2}+X_{3}^{2}} \\
& X_{12}=X_{1}+X_{2}+\frac{\left(R_{1} X_{2}+R_{2} X_{1}\right) R_{3}-\left(R_{1} R_{2}-X_{1} X_{2}\right) X_{3}}{R_{3}^{2}+X_{3}^{2}} \\
& R_{23}=R_{2}+R_{3}+\frac{\left(R_{2} R_{3}-X_{2} X_{3}\right) R_{1}+\left(R_{2} X_{3}+R_{3} X_{2}\right) X_{1}}{R_{1}^{2}+X_{1}^{2}} \\
& X_{23}=X_{2}+X_{3}+\frac{\left(R_{2} X_{3}+R_{3} X_{2}\right) R_{1}-\left(R_{2} R_{3}-X_{2} X_{3}\right) X_{1}}{R_{1}^{2}+X_{1}^{2}} \\
& R_{31}=R_{1}+R_{3}+\frac{\left(R_{1} R_{3}-X_{1} X_{3}\right) R_{2}+\left(R_{3} X_{1}+R_{1} X_{3}\right) X_{2}}{R_{2}^{2}+X_{2}^{2}} \\
& X_{31}=X_{1}+X_{3}+\frac{\left(R_{1} X_{3}+R_{1} X_{3}\right) R_{2}-\left(R_{1} R_{3}-X_{1} X_{3}\right) X_{2}}{R_{2}^{2}+X_{2}^{2}}
\end{aligned}
$$

Example: The bridged T-configuration found in filters can be analysed by referring to the star-delta transformation (Fig. 3.42).


Fig. 3.42. Application of the star-delta transformation

- These transformations are valid only for a fixed angular frequency $\omega$. All impedances are frequency dependent and thus experience different values in the transformed circuit as the frequency changes.
- The equivalence of the circuits only holds for sinusoidal voltages and currents, unless the circuit is purely resistive.


### 3.6.3 Circuit Duality

Two passive elements are called dual if the impedance of one of the circuits is proportional to the admittance of the other for all frequencies. This can be expressed as follows:

$$
\begin{equation*}
\underline{Z}_{2}=R_{\mathrm{D}}^{2} \cdot \underline{Y}_{2} \quad \Longleftrightarrow \quad \underline{Y}_{2}=G_{\mathrm{D}}^{2} \cdot \underline{Z}_{2} \tag{3.54}
\end{equation*}
$$

$R_{\mathrm{D}}^{2}$ and $G_{\mathrm{D}}^{2}$ are real constants and are known as the duality constants. For elementary impedances the duality relationships in Table 3.10 hold.

Table 3.10. Duality relationships for circuit elements

| Passive element | Dual element |
| :--- | :--- |
| Resistance $R$ | Resistance $R_{\mathrm{D}}^{2} / R$ |
| Inductor $L$ | Capacitor $C=L / R_{\mathrm{D}}^{2}$ |
| Capacitor $C$ | Inductor $L=R_{\mathrm{D}}^{2} C$ |
| Voltage source $V_{\mathrm{S}}, R_{\mathrm{S}}$ | Current source $I_{\mathrm{S}}=V_{\mathrm{S}} / R_{\mathrm{S}}, G_{\mathrm{S}}=1 / R_{\mathrm{S}}$ |
| Current source $I_{\mathrm{S}}, G_{\mathrm{S}}$ | Voltage source $V_{\mathrm{S}}=I_{\mathrm{S}} G_{\mathrm{S}}, R_{\mathrm{S}}=1 / G_{\mathrm{S}}$ |
| short circuit | Open circuit |

There are also duality relationships for active elements. A voltage source with a voltage of $V_{\mathrm{S}}$ and an internal resistance of $R_{\mathrm{S}}$ is dual to a current source with a current of $I_{\mathrm{S}}=V_{\mathrm{S}} / R_{\mathrm{S}}$. The current source has an admittance in parallel with the value $G_{\mathrm{S}}=1 / R_{\mathrm{S}}$.

The following quantities are dual pairs: voltage to current, resistance to admittance. Where the same current flows through two elements in a circuit, then in the dual circuit the voltage across the two elements will be the same and vice versa. The circuits given in Table 3.11 are dual.

Table 3.11. Duality relationships for circuits

| Circuit | Dual circuit |
| :--- | :--- |
| Series circuit | Parallel circuit |
| Series-resonant circuit | Parallel-resonant circuit |
| Longitudinal resistor | Transverse resistor |
| Longitudinal inductor | Transverse capacitor |
| Longitudinal capacitor | Transverse inductor |
| T-configuration | П-configuration |
| Mesh | node |
| Delta circuit | Star circuit |
| Voltage driven | Current driven |
| Current source | Voltage source |

- When a circuit consists of a voltage source, with an internal resistance $R_{\mathrm{S}}$ and a load resistance $R_{\mathrm{L}}$, the duality constant is given by $R_{\mathrm{D}}=R_{\mathrm{S}} \cdot R_{\mathrm{L}}$. Voltage or current sources can be converted into their dual elements. For circuits that have been designed for openor short-circuit operation, $R_{\mathrm{D}}$ can be arbitrarily chosen.

Note: The duality constants should be chosen such that resulting quantities can easily be realised by available components.

Example: In the circuit shown in Fig. 3.43 a 1 MHz source with a $50 \Omega$ internal resistance supplies a $50 \Omega$ load. The circuit should be transformed into an equivalent circuit with fewer inductors.
In the dual circuit the two series inductors can be replaced by two parallel transverse capacitors. The capacitor can be translated into a series inductor. The duality constant is $R_{\mathrm{D}}^{2}=R_{\mathrm{S}} \cdot R_{\mathrm{L}}=2500 \Omega^{2}$. The dual quantities are
$C_{\mathrm{D}}=\frac{L}{R_{\mathrm{D}}^{2}}=\frac{8.2 \propto \mathrm{H}}{2500 \Omega^{2}}=3.3 \mathrm{nF}, \quad L_{\mathrm{D}}=C \cdot R_{\mathrm{D}}^{2}=2.2 \mathrm{nF} \cdot 2500 \Omega^{2}=5.5 \circ \mathrm{H}$


Fig. 3.43. Circuit and dual circuit

### 3.7 Simple Networks

### 3.7.1 Complex Voltage and Current Division



Fig. 3.44. Current and voltage division with complex impedances
With current division both impedances have the same alternating voltage across their terminals (Fig. 3.44). Therefore

$$
\begin{equation*}
\frac{\underline{I}_{1}}{\underline{I}_{2}}=\frac{\underline{Y}_{1}}{\underline{Y}_{2}}=\frac{\underline{Z}_{2}}{\underline{Z}_{1}} \tag{3.55}
\end{equation*}
$$

- The total current is divided proportionally to the values of the admittances.

With voltage division both impedances have the same alternating current flowing through them. Therefore

$$
\begin{equation*}
\frac{\underline{V}_{1}}{\underline{V}_{2}}=\frac{\underline{Z}_{1}}{\underline{Z}_{2}} \tag{3.56}
\end{equation*}
$$

- The total voltage is divided proportionally to the values of the impedances.

For a voltage $\underline{V}$ applied to a voltage divider, the output voltage $\underline{V}_{2}$ is given by

$$
\begin{equation*}
\underline{V}_{2}=\underline{V} \cdot \frac{\underline{Z}_{2}}{\underline{Z}_{1}+\underline{Z}_{2}} \tag{3.57}
\end{equation*}
$$

Note: For the special case where all impedances are purely resistive, the rules for DC voltage and current division apply.

Note: In general, the voltage-divider ratio is frequency dependent, since the reactive components of the impedance are frequency dependent. Circuits providing frequency-dependent ratios between the input and output voltages are known as filters.

For measurement purposes, it is preferable to have a voltage divider with a division ratio that is independent of frequency. Equation (3.56) yields

$$
\frac{\underline{V}_{1}}{\underline{V}_{2}}=\frac{\underline{Z}_{1}}{\underline{Z}_{2}}=\frac{Z_{1} \cdot \mathrm{e}^{\mathrm{j} \varphi_{1}}}{Z_{2} \cdot \mathrm{e}^{\mathrm{j} \varphi_{2}}}=\frac{Z_{1}}{Z_{2}} \cdot \mathrm{e}^{\mathrm{j}\left(\varphi_{1}-\varphi_{2}\right)}
$$

This ratio is thus frequency independent only when it is real, which means that the exponential expression must be real. For angles $\varphi$ between $-90^{\circ}$ and $+90^{\circ}$, this means that $\varphi_{1}=\varphi_{2}$. This also means that

$$
\begin{equation*}
\frac{X_{1}}{R_{1}}=\frac{X_{2}}{R_{2}} \Rightarrow \frac{R_{1}}{R_{2}}=\frac{X_{1}}{X_{2}} \tag{3.58}
\end{equation*}
$$

- The voltage ratio is thus frequency independent if the resistive and reactive components of the voltage divider are in the same ratio. Put another way, the respective time constants $\tau=R \cdot C$ or $L / R$ of the impedances must be equal.

Application: In oscilloscope measurements, the truest possible representation of the signal is required.


Fig. 3.45. Oscilloscope on a voltage source with an internal resistance, and the equivalent circuit
The AC voltage source with the internal resistance $R_{\mathrm{S}}$ is loaded by the input resistance $R_{\text {in }}$ of the oscilloscope. The unavoidable capacitance of the cable lies in parallel. Thus for sources with high source resistances the voltage divider ratio falls off at higher frequencies. This can be seen in the circuit diagram in Fig. 3.45. This can be remedied by use of a probe with a compensated voltage divider (Fig. 3.46).
By equalising the capacitance in the probe, equal time constants (phase angles) $R_{1} C_{1}=R_{2} C_{2}$ of the two RC parallel circuits can be achieved. This means a frequency-independent voltage-divider ratio. The increased voltage-divider ratio (usually $10: 1$ ) with a probe can be compensated in the oscilloscope by higher amplification. Simultaneously, the probe raises the input resistance of the measurement system by the division ratio.


Fig. 3.46. An oscilloscope probe and the equivalent circuit

### 3.7.2 Loaded Complex Voltage Divider

The relationship defined in Eq. (3.56) is valid for unloaded voltage division, that is, open circuit.


Fig. 3.47. Loaded voltage division on a voltage source with an internal resistance, and its equivalent circuit
In a real application a voltage divider is supplied by a voltage source with an internal resistance $R_{\mathrm{S}}$ and loaded by $Z_{\mathrm{L}}$ (Fig. 3.47). The voltage source is loaded by the input impedance of the voltage divider and load circuit. The load sees a voltage source with a complex internal impedance, which corresponds to the output impedance of the voltage divider.
The input impedance is

$$
\underline{Z}_{\text {in }}=\underline{Z}_{1}+\underline{Z}_{2} \| \underline{Z}_{\mathrm{L}}=\underline{Z}_{1}+\frac{\underline{Z}_{2} \cdot \underline{Z}_{\mathrm{L}}}{\underline{Z}_{2}+\underline{Z}_{\mathrm{L}}}
$$

The output impedance $\underline{Z}_{\text {out }}$ of the voltage divider is given by

$$
\underline{Z}_{\text {out }}=\underline{Z}_{2} \|\left(\underline{Z}_{1}+R_{\mathrm{S}}\right)=\frac{\underline{Z}_{2} \cdot\left(\underline{Z}_{1}+R_{\mathrm{S}}\right)}{\underline{Z}_{1}+\underline{Z}_{2}+R_{\mathrm{S}}}
$$

In the unloaded configuration, the open-circuit voltage of the voltage divider for a voltage source $\underline{V}_{S}$, is defined as

The short-circuit current is

$$
\underline{V}_{\infty}=\underline{V}_{\mathrm{S}} \cdot \frac{\underline{Z}_{2}}{\underline{Z}_{1}+\underline{Z}_{2}+R_{\mathrm{S}}}
$$

$$
\underline{I}_{0}=\frac{\underline{V}_{\mathrm{S}}}{\underline{Z}_{1}+R_{\mathrm{S}}}
$$

The output impedance $\underline{Z}_{\text {out }}$ is therefore given by

$$
\begin{equation*}
\underline{Z}_{\text {out }}=\frac{\text { Open-circuit voltage }}{\text { Short-circuit current }}=\frac{\underline{V}_{\infty}}{\underline{I}_{0}} \tag{3.59}
\end{equation*}
$$

The voltage source of the equivalent circuit 'seen' by the load is defined as

$$
\underline{V}_{\mathrm{E}}=\underline{V}_{\mathrm{S}} \cdot \frac{\underline{Z}_{2} \| \underline{Z}_{\mathrm{L}}}{\underline{Z}_{2} \| \underline{Z}_{\mathrm{L}}+\underline{Z}_{1}+R_{\mathrm{S}}}
$$

### 3.7.3 Impedance Matching

In RF communications it is important that the signal source and the load have the same impedance in order to avoid reflections over the connecting medium.


Fig. 3.48. Impedance matching for $R_{\mathrm{S}}>R_{\mathrm{L}}$
To that end, the circuit in Fig. 3.48 can be used. It is suitable when the internal impedance of the source is higher than the load impedance. The impedances must be so chosen so that the input impedance of the circuit with the load connected is the same as the internal impedance of the voltage source. On the other hand, the output impedance of the circuit must be the same as that of the load. For the standard situation where loads and source impedances are real

$$
Z_{\text {in }}=R_{12}+R_{3} \| R_{\mathrm{L}}=R_{12}+\frac{R_{3} \cdot R_{\mathrm{L}}}{R_{3}+R_{\mathrm{L}}}, \quad Z_{\text {out }}=\frac{R_{3}\left(R_{12}+R_{\mathrm{S}}\right)}{R_{3}+R_{12}+R_{\mathrm{S}}}
$$

To match the impedances the following must hold (Fig. 3.49):

$$
Z_{\text {in }}=R_{\mathrm{S}}, \quad \text { and } \quad Z_{\text {out }}=R_{\mathrm{L}}
$$

From these conditions, the resistances may be derived

$$
\begin{equation*}
R_{12}=R_{\mathrm{S}} \cdot \sqrt{1-\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}}}, \quad \text { and } \quad R_{3}=\frac{R_{\mathrm{L}}}{\sqrt{1-\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}}}}, \quad \text { for } R_{\mathrm{S}}>R_{\mathrm{L}} \tag{3.60}
\end{equation*}
$$

The voltage ratio

$$
\begin{equation*}
\frac{V_{1}}{V_{2}}=\frac{R_{\mathrm{S}}}{R_{\mathrm{L}}}\left(1+\sqrt{1-\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}}}\right)=\frac{1}{1-\sqrt{1-\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}}}} \tag{3.61}
\end{equation*}
$$

is always greater than 1 for the condition that $R_{\mathrm{S}}>R_{\mathrm{L}}$, so that the circuit attenuates the signal. Without changing the functionality of the circuit, the resistance $R_{12}$ can be divided between the two symmetrically placed resistors $R_{1}$ and $R_{2}$. Fig. 3.50 shows an example.
For the case where the load resistance is higher than the source resistance of the voltage source, the circuit in Fig. 3.49 is suitable. Here the transverse resistance is in parallel with the input terminals of the circuit.
The input and output impedance of the circuit are given by
$Z_{\text {in }}=R_{3} \|\left(R_{12}+R_{\mathrm{L}}\right)=\frac{R_{3} \cdot\left(R_{12}+R_{\mathrm{L}}\right)}{R_{3}+R_{12}+R_{\mathrm{L}}}, \quad Z_{\text {out }}=R_{12}+\left(R_{3} \| R_{\mathrm{S}}\right)=R_{12}+\frac{R_{3} \cdot R_{\mathrm{S}}}{R_{3}+R_{\mathrm{S}}}$


Fig. 3.49. Resistance matching for $R_{\mathrm{L}}>R_{\mathrm{S}}$


Fig. 3.50. Resistive circuit to match a source with an internal resistance of $240 \Omega$ to a load of $120 \Omega$
From the conditions for impedance matching where $Z_{\text {in }}=R_{\mathrm{S}}$ and $Z_{\text {out }}=R_{\mathrm{L}}$, the resistances are given by

$$
\begin{equation*}
R_{12}=R_{\mathrm{L}} \cdot \sqrt{1-\frac{R_{\mathrm{S}}}{R_{\mathrm{L}}}}, \quad \text { and } \quad R_{3}=\frac{R_{\mathrm{S}}}{\sqrt{1-\frac{R_{\mathrm{S}}}{R_{\mathrm{L}}}}} \text { for } R_{\mathrm{L}}>R_{\mathrm{S}} \tag{3.62}
\end{equation*}
$$

The voltage ratio

$$
\begin{equation*}
\frac{V_{1}}{V_{2}}=1+\frac{R_{12}}{R_{\mathrm{L}}}=1+\sqrt{1-\frac{R_{\mathrm{S}}}{R_{\mathrm{L}}}} \tag{3.63}
\end{equation*}
$$

is always greater than 1 , so the network attenuates the signal. Without changing the functioning of the circuit, the resistance $R_{12}$ can be divided between the two symmetrically placed resistors $R_{1}$ and $R_{2}$. An example is given in Fig. 3.51.


Fig. 3.51. Resistive circuit to match a source with an internal resistance of $60 \Omega$ to a load of $240 \Omega$
Note: To reduce the losses in the resistive components, transformers are frequently used for impedance matching.

### 3.7.4 Voltage Divider with Defined Input and Output Resistances

Voltage dividers can be realised using T-configurations or $\Pi$-configurations, which load the source with an input impedance that is equal to the load resistance $R_{\mathrm{L}}$, while showing the load a source with a given internal resistance (Fig. 3.52).


Fig. 3.52. T-configurations and $\Pi$-configurations and their symmetrical variations
For a predetermined voltage ratio of $a=\frac{V_{1}}{V_{2}}>1$ (attenuation), the values of the T-configuration are given by

$$
\begin{aligned}
R_{1}=R_{2} & =R_{\mathrm{L}} \cdot \frac{a-1}{a+1}, \quad \text { for } a>1 \quad \text { and } R_{\mathrm{S}}=R_{\mathrm{L}} \\
R_{3} & =R_{\mathrm{L}} \cdot \frac{2 a}{a^{2}-1}
\end{aligned}
$$

## For a П-configuration

$$
\begin{aligned}
R_{1}=R_{2} & =R_{\mathrm{L}} \cdot \frac{a+1}{a-1}, \text { for } a>1 \quad \text { and } R_{\mathrm{S}}=R_{\mathrm{L}} \\
R_{3} & =R_{\mathrm{L}} \cdot \frac{a^{2}-1}{2 a}
\end{aligned}
$$

Note: Both circuit types are dual to each other or form a dual pair with the duality constant $R_{\mathrm{S}} R_{\mathrm{L}}$.

Example: A T-configuration and a $\Pi$-configuration are required that divide the terminal voltage by a factor of $a=5$ for a source with an internal resistance of $600 \Omega$ and a load of $600 \Omega$ (Fig. 3.53).


Fig. 3.53. T- and $\Pi$-configurations as a $1: 5$ voltage divider for a $600 \Omega$ source and a $600 \Omega$ load

### 3.7.5 Phase-Shifting Circuits

The phase shift between two sinusoidal waveforms is

$$
\tan \varphi=\frac{\text { imaginary part of AC quantity }}{\text { real part of AC quantity }}
$$

The conditions for a phase shift of $45^{\circ}, 90^{\circ}$ or $180^{\circ}$ are relatively easy to formulate.
Table 3.12. Phase-shifting conditions

| Phase shift | Condition |
| :---: | :---: |
| $45^{\circ}=+\infty / 4$ | $\operatorname{Re}\left(\underline{V}_{2}\right)=\operatorname{Im}\left(\underline{V}_{2}\right)$ |
| $-45^{\circ}=-\infty / 4$ | $\operatorname{Re}\left(\underline{V}_{2}\right)=-\operatorname{Im}\left(\underline{V}_{2}\right)$ |
| $90^{\circ}=+\infty / 2$ | $\underline{V}_{2}=\mathrm{j} \underline{V}_{1} \cdot k$ |
| $-90^{\circ}=-\infty / 2$ | $\underline{V}_{2}=-\mathrm{j} \underline{V}_{1} \cdot k$ |
| $180^{\circ}=+\infty$ | $\underline{V}_{2}=-\underline{V}_{1} \cdot k$ |

In Table $3.12 k$ is thus a positive real constant, dependent on the $\mathrm{R}, \mathrm{L}, \mathrm{C}$ components of the circuit.

### 3.7.5.1 RC Phase Shifter

To achieve a phase shift of $45^{\circ}$ between the input and output voltage waveforms, an RC configuration can be used (Fig. 3.54).


Fig. 3.54. RC phase shifter for $45^{\circ}$
The output voltage $\underline{V}_{2}$ is given by

$$
\underline{V}_{2}=\underline{V}_{1} \cdot \frac{R}{R-\mathrm{j} \frac{1}{\omega C}}=\underline{V}_{1} \cdot \frac{\omega R C}{\omega R C-\mathrm{j}}
$$

Separating into real and imaginary components

$$
\underline{V}_{2}=\underline{V}_{1} \cdot \frac{\omega R C(\omega R C+\mathrm{j})}{(\omega R C)^{2}+1}=\underline{V}_{1} \cdot \frac{\omega^{2} R^{2} C^{2}+\mathrm{j} \omega R C}{\omega^{2} R^{2} C^{2}+1}
$$

For a phase shift of $45^{\circ} \operatorname{Re}\left(\underline{V}_{2}\right)=\operatorname{Im}\left(\underline{V}_{2}\right)$ must apply.

$$
\begin{equation*}
\omega^{2} R_{45}^{2} C^{2}=\omega R_{45} C \quad \Rightarrow \quad R_{45}=\frac{1}{\omega C} \tag{3.64}
\end{equation*}
$$

The voltage ratio in this situation is given by

$$
\frac{\left|\underline{V}_{2}\right|}{\left|\underline{V}_{1}\right|}=\left|\frac{R_{45}}{R_{45}-\mathrm{j} \frac{1}{\omega C}}\right|=\left|\frac{1}{1-\mathrm{j}}\right|=\frac{1}{\sqrt{2}} \approx 0.707
$$

Note: $\quad$ The value $\omega=\frac{1}{R C}$ is known as the corner or critical frequency, and $R \cdot C$ is known as the time constant of the RC configuration.

A phase shift of $90^{\circ}$ cannot be achieved with a simple RC configuration, as the resistance would have to be zero ( $R=0$ ). Two cascaded RC configurations can resolve this problem (Fig. 3.55). If the circuit is considered a voltage divider, then after some calculation with the capacitor impedance $\underline{Z}_{\mathrm{C}}$

$$
\begin{equation*}
\underline{V}_{2}=\underline{V}_{1} \cdot \frac{R^{2}}{\underline{Z}_{\mathrm{C}}^{2}+3 R \underline{Z}_{\mathrm{C}}+R^{2}} \tag{3.65}
\end{equation*}
$$

The condition that $\underline{V}_{2}$ should be shifted by $90^{\circ}$ with respect to $\underline{V}_{1}$ means that $\underline{V}_{1}=\mathrm{j} k \underline{V}_{2}$. By expanding Eq. (3.65) in j , it can be reduced to the following:

$$
\underline{V}_{2}=\mathrm{j} \underline{V}_{1} \frac{R^{2}}{\mathrm{j} \underbrace{\left(\underline{Z}_{\mathrm{C}}^{2}+R^{2}\right)}_{\text {real }}+\mathrm{j} 2 \underbrace{R \underline{Z}_{\mathrm{C}}}_{\text {imaginary }}}
$$

The expression in brackets in the denominator must disappear if the fraction is to be real.

$$
\begin{equation*}
\underline{Z}_{\mathrm{C}}^{2}+R^{2}=0 \Rightarrow \quad \text { with } \quad \underline{Z}_{\mathrm{C}}=-\mathrm{j} \frac{1}{\omega C}: R_{90}=\frac{1}{\omega C} \tag{3.66}
\end{equation*}
$$

The voltage ratio in this situation is given by

$$
\begin{equation*}
\frac{\left|\underline{V}_{2}\right|}{\left|\underline{V}_{1}\right|}=\frac{\omega R C}{2}=\frac{1}{2} \tag{3.67}
\end{equation*}
$$



Fig. 3.55. RC phase shifter for $90^{\circ}$ (left) and $180^{\circ}$ (right)
A phase shift of $180^{\circ}$ can be achieved with a three-stage RC configuration (Fig. 3.55). The fairly complicated analysis of the circuit under the condition that $\underline{V}_{2}=-k \underline{V}_{1}$ leads to the following result:

$$
R_{180}=\frac{1}{\sqrt{6} \omega C}
$$

The voltage ratio in this situation is given by

$$
\begin{equation*}
\frac{\left|\underline{V_{2}}\right|}{\left|\underline{V}_{1}\right|}=\frac{1}{29} \tag{3.68}
\end{equation*}
$$

Note: In order to achieve defined phase shifts, all-pass or AC bridges are employed.

### 3.7.5.2 Alternative Phase-Shifting Circuits

For suitable values, the circuit shown in Fig. 3.56 causes a phase shift of the current $I_{2}$ by $90^{\circ}$ with respect to the voltage across the circuit.


Fig. 3.56. Circuit for a phase shift of the current $I_{2}$
The total voltage across the circuit is

$$
\underline{V}=\underline{V}_{1}+\underline{V}_{2}=\left(\underline{I}_{2}+\underline{I}_{3}\right)\left(R_{1}+\mathrm{j} \omega L_{1}\right)+\underline{I}_{2}\left(R_{2}+\mathrm{j} \omega L_{2}\right)
$$

The same voltage appears across the resistor $R_{3}$ as appears across $R_{2} L_{2}$, so $\underline{I}_{3}$ can be equated as follows:

$$
\begin{gathered}
\underline{I}_{3} \cdot R_{3}=\underline{I}_{2}\left(R_{2}+\mathrm{j} \omega L_{2}\right) \Rightarrow \underline{I}_{3}=\underline{I}_{2} \frac{R_{2}+\mathrm{j} \omega L_{2}}{R_{3}} \\
\underline{V}=\underline{I}_{2}\left(R_{1}+\frac{R_{1} R_{2}}{R_{3}}+\mathrm{j} \frac{\omega R_{1} L_{2}}{R_{3}}+\mathrm{j} \omega L_{1}+\mathrm{j} \frac{\omega R_{2} L_{1}}{R_{3}}-\frac{\omega^{2} L_{1} L_{2}}{R_{3}}+R_{2}+\mathrm{j} \omega L_{2}\right)
\end{gathered}
$$

The expression in parentheses must be purely imaginary if the current is to lag by $90^{\circ}$. Therefore all real components must disappear.

$$
R_{1} R_{3}+R_{1} R_{2}-\omega^{2} L_{1} L_{2}+R_{2} R_{3}=0
$$

For

$$
\begin{equation*}
R_{3}=\frac{\omega^{2} L_{1} L_{2}-R_{1} R_{2}}{R_{1}+R_{2}} \tag{3.69}
\end{equation*}
$$

a current lag of $\propto / 2$ in the branch will be achieved.
The circuit shown in Fig. 3.57 also achieves a phase shift of the current through $L_{2}$, in that the parallel resistor in Fig. 3.56 is replaced by a low-loss capacitor. A $90^{\circ}$ phase shift of the inductor current with respect to the total voltage is achieved for

$$
\begin{equation*}
C=\frac{R_{1}+R_{2}}{\omega^{2}\left(L_{1} R_{2}+L_{2} R_{1}\right)} \tag{3.70}
\end{equation*}
$$



Fig. 3.57. Circuit for a $90^{\circ}$ phase shift of the inductor current with respect to the total voltage
A curiosity of AC analysis is the circuit shown in Fig. 3.58. A sinusoidal voltage is applied to the circuit. The resistance $R_{2}$ should be chosen such that the ammeter deflection does not change while throwing the switch.


Fig. 3.58. An AC paradox
A constant deflection of the meter means that the magnitude of AC current is equal in both cases. The impedance of the circuit when the switch is open is given by

$$
\underline{Z}_{\infty}=R_{1}+\mathrm{j} \omega L \quad \Rightarrow \quad Z_{\infty}^{2}=R_{1}^{2}+(\omega L)^{2}
$$

When the switch is closed
$\underline{Z}_{0}=R_{1}+\frac{\mathrm{j} \omega L \cdot R_{2}}{\mathrm{j} \omega L+R_{2}}=\frac{R_{1} R_{2}+\mathrm{j} \omega L\left(R_{1}+R_{2}\right)}{\mathrm{j} \omega L+R_{2}} \quad \Rightarrow \quad Z_{0}^{2}=\frac{R_{1}^{2} R_{2}^{2}+\omega^{2} L^{2}\left(R_{1}+R_{2}\right)^{2}}{\omega^{2} L^{2}+R_{2}^{2}}$
By equating both quadratic equations for the impedance, the requirement for the closedswitch circuit resistance $R_{2}$ is given by

$$
\begin{equation*}
R_{2}=\frac{(\omega L)^{2}}{2 R_{1}} \tag{3.71}
\end{equation*}
$$

Closing the switch changes the phase of the current, but not its magnitude.

### 3.7.6 AC Bridges

### 3.7.6.1 Balancing Condition

Several representations of bridge circuits are shown in Fig. 3.59.


Fig. 3.59. Various representations of bridge circuits
The same current flows through the impedances $\underline{Z}_{1}$ and $\underline{Z}_{2}$ for an unloaded bridge. Both impedances function as a voltage divider. The same is true for $\underline{Z}_{3}$ and $\underline{Z}_{4}$. The output voltage $\underline{V}_{2}$ is the difference between the voltages at the terminals of the voltage divider. It follows that

$$
\begin{equation*}
\underline{V}_{2}=0 \Longleftrightarrow \frac{\underline{Z}_{1}}{\underline{Z}_{2}}=\frac{\underline{Z}_{3}}{\underline{Z}_{4}} \tag{3.72}
\end{equation*}
$$

Under these conditions, this is known as a balanced bridge (Fig. 3.59).

The impedance ratio in Eq. (3.72) is complex. Therefore both of the following conditions must hold

$$
\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}, \quad \text { and } \quad \varphi_{1}-\varphi_{2}=\varphi_{3}-\varphi_{4}
$$

- A balanced AC bridge must fulfil two conditions, one for the magnitudes and the other for the phases of the complex impedances.

Note: The balancing condition for AC bridges only holds for a single frequency. Measurement bridges are therefore used only with sinusoidal waveforms. Frequency independence can be achieved only with special bridge circuits.

### 3.7.6.2 Application: Measurement Technique

The balanced condition from Eq. (3.72) can be used to determine the value of an unknown impedance on one of the bridge branches.


Fig. 3.60. Wien bridge to measure a capacitance $C_{x}$ and its loss resistance $R_{x}$
Figure 3.60 shows a Wien bridge for measuring the equivalent circuit of a capacitor. A null instrument is placed in the diagonal branch (earphones could also be used), so that the minimum condition can be found. Initially the imaginary part of the unknown impedance is found by varying $R_{4}$ to find a minimum in the detector. Then

$$
\frac{X_{C_{x}}}{X_{C_{2}}}=\frac{\frac{1}{\omega C_{x}}}{\frac{1}{\omega C_{2}}}=\frac{C_{2}}{C_{x}}=\frac{R_{3}}{R_{4}} \quad \text { 1. Balance }
$$

Then the real part of the impedance can be balanced using $R_{2}$.

$$
\frac{R_{x}}{R_{2}}=\frac{R_{3}}{R_{4}} \quad \text { 2. Balance }
$$

The magnitude on the right side of the equation does not change during this adjustment. The equivalent circuit values of the capacitor are thus

$$
C_{x}=C_{2} \cdot \frac{R_{4}}{R_{3}}, \quad R_{x}=R_{2} \cdot \frac{R_{3}}{R_{4}}
$$

### 3.8 Power in AC Circuits

### 3.8.1 Instantaneous Power

The instantaneous power of an AC waveform is given by

$$
p(t)=v(t) \cdot i(t)
$$

### 3.8.1.1 Power in a Resistance

The current and voltage are in phase on the resistor (Fig. 3.61). For a sinusoidal voltage instantaneous power is

$$
p(t)=\hat{v} \sin \omega t \cdot \hat{\imath} \sin \omega t=\hat{v} \hat{\imath} \sin ^{2} \omega t=V I(1-\cos 2 \omega t)
$$

Here $V$ and $I$ are the RMS values of the voltage and current. The instantaneous power is a periodic value and is always positive in a resistor. The power consumption oscillates at twice the frequency of the voltage.


Fig. 3.61. Current, voltage and instantaneous power for a resistance

### 3.8.1.2 Power in a Reactive Element

The voltage on a capacitor leads the current by $90^{\circ}(\varphi=-\propto / 2)$, where $\varphi$ is the phase angle of the voltage, relative to the current. The product $p(t)=v(t) i(t)$ has thus both positive and negative values.
The positive and negative parts of the power curve are equal in magnitude (Fig. 3.62, left). The capacitor temporarily stores energy and gives it back to the source in the following quarter period. A mixed result exists in the case of a capacitive-resistive load (Fig. 3.62, right). One part of the power is consumed in the resistive component of the load, while the other part flows back to the source. The power in an inductive and an inductive-resistive load produces an analogous result.
For sinusoidal current the instantaneous power can be written as

$$
p(t)=\underbrace{V I \cdot \cos \varphi}_{\text {constant }}-\underbrace{V I \cdot \cos (2 \omega t-\varphi)}_{\text {varying }}
$$

Where $\varphi$ is the phase difference of the voltage with respect to the current.

- The instantaneous power has a constant component and a component which varies at twice the frequency of the current or voltage waveforms.



Fig. 3.62. Current, voltage and instantaneous power in a capacitor and in a resistive-capacitive load
Alternatively, the instantaneous power can be represented by

$$
\begin{equation*}
p(t)=\underbrace{V I \cos \varphi[1-\cos 2 \omega t}_{\text {resistive component }}-\underbrace{V I \sin \varphi \sin 2 \omega t}_{\text {reactive component }} \tag{3.73}
\end{equation*}
$$

The first term, known as the resistive component, is always positive. The second term alternates between positive and negative values and is known as the reactive component (Fig. 3.63).


Fig. 3.63. Separation of the instantaneous power into a resistive and a reactive component

### 3.8.2 Average Power

The average power is defined as

$$
\begin{equation*}
P=\bar{p}=\frac{1}{T} \int_{t}^{t+T} p(t) \mathrm{d} t \tag{3.74}
\end{equation*}
$$

When reference is made to power in circuit theory, usually the average power is meant.

### 3.8.2.1 Real Power

The real power for sinusoidal current and voltage waveforms is given by

$$
\begin{equation*}
P=V \cdot I \cdot \cos \varphi \tag{3.75}
\end{equation*}
$$

where $V$ and $I$ are the RMS values of the voltage and current. The expression $\cos \varphi$ is known as the power factor. The unit of real power is the watt (W).

- For purely resistive circuits $(\varphi=0)$ the power factor $\cos \varphi=1$, and the real power is $P=V I$.
- For purely reactive circuits $\left(\varphi= \pm 90^{\circ}\right)$ the power factor $\cos \varphi=0$, and the power is thus zero.
- For resistor-capacitor and resistor-inductor loads ( $-90^{\circ}<\varphi<90^{\circ}$ ) the real power is positive.
- The real power can be converted into other forms of power (heat, mechanical power, etc.).

When a complex circuit is represented by its parallel equivalent circuit of a resistance and a reactance the power factor $\cos \varphi$ can be modelled in relation to the current. This is known as in-phase or real current (Fig. 3.64).

$$
\begin{align*}
I_{\text {real }} & =I \cdot \cos \varphi  \tag{3.76}\\
P & =I_{\text {real }} \cdot V, \quad P=\frac{V^{2}}{R_{\mathrm{p}}} \tag{3.77}
\end{align*}
$$

- The real power is given by the product of the in-phase current and the RMS voltage. This approach can only be used on parallel combinations, where all of the components experience the same voltage across their terminals.


Fig. 3.64. In-phase currents and voltages for the equivalent circuit of a complex circuit
When a complex circuit is represented by its series equivalent circuit of a resistance and a reactance the power factor $\cos \varphi$ can be modelled in relation to the voltage. This is known as in-phase or real voltage.

$$
\begin{align*}
V_{\text {real }} & =V \cdot \cos \varphi  \tag{3.78}\\
P & =V_{\text {real }} \cdot I, \quad P=I^{2} \cdot R_{\mathrm{r}} \tag{3.79}
\end{align*}
$$

- The real power is given by the product of the in-phase voltage and the RMS current. This approach can only be used for series combinations, where the same current flows through all of the components.

Note: The real power is not the product of the in-phase current and the in-phase voltage. These quantities are derived from and applied to different equivalent circuits.

### 3.8.2.2 Reactive Power

The reactive power is defined as

$$
\begin{equation*}
Q=V \cdot I \cdot \sin \varphi \tag{3.80}
\end{equation*}
$$

$V$ and $I$ are the RMS values of the voltage and current, and $\varphi$ is the phase difference of the voltage with respect to the current. The factor $\sin \varphi$ is known as the leading or lagging power factor. ${ }^{\dagger}$ The unit for reactive power is the volt-ampere reactive (VAR).

- For purely resistive impedances $(\varphi=0)$ the reactive power is zero.
- The reactive power in an inductive-resistive load is positive, while in a capacitiveresistive load it is negative.
- Reactive power cannot be converted into other forms of power.

When a complex circuit is represented by its parallel equivalent circuit of a resistance and a reactance the power factor $\sin \varphi$ can be modelled in relation to the current. This is known as reactive or out-of-phase current (Fig. 3.65).

$$
\begin{align*}
I_{\text {react }} & =-I \cdot \sin \varphi_{\mathrm{Y}}  \tag{3.81}\\
Q & =-I_{\text {react }} \cdot V, \quad Q=\frac{V^{2}}{X_{\mathrm{p}}} \tag{3.82}
\end{align*}
$$

- The reactive power is given by the product of the negative reactive current and the RMS voltage. This approach can only be used on parallel combinations, where all of the components experience the same voltage across their terminals.

Note: The negative sign on the reactive current comes from the fact that in the parallel equivalent circuit the phase is expressed with respect to the voltage ( $\varphi_{\mathrm{Y}}=-\varphi_{\mathrm{Z}}$ ).


Fig. 3.65. Out-of-phase currents and voltages for the equivalent circuit of a complex circuit element
When a complex circuit is represented by its series equivalent circuit of a resistance and a reactance the power factor $\sin \varphi$ can be modelled in relation to the current. This is known as reactive or out-of-phase voltage.

$$
\begin{align*}
V_{\text {react }} & =V \cdot \sin \varphi  \tag{3.83}\\
Q & =V_{\text {react }} \cdot I, \quad Q=I^{2} \cdot X_{\mathrm{r}} \tag{3.84}
\end{align*}
$$

- The reactive power is given by the product of the out-of-phase voltage and the RMS current. This approach can only be used for series combinations, where the same current flows through all of the components.

Note: The reactive power is not the product of the out-of-phase current and the out-ofphase voltage. These quantities are derived from different equivalent circuits.

[^3]
### 3.8.2.3 Apparent Power

The apparent power is defined as

$$
\begin{equation*}
S=V \cdot I \tag{3.85}
\end{equation*}
$$

$V$ and $I$ are the RMS values of the voltage and the current, and $\varphi$ is the phase difference of the voltage with respect to the current. The unit of apparent power is the volt-ampere (VA). Thus

$$
\begin{equation*}
P=S \cdot \cos \varphi, \quad Q=S \cdot \sin \varphi \tag{3.86}
\end{equation*}
$$

This relation can be best represented geometrically (Fig. 3.66).


Fig. 3.66. Phasor triangle of the resistive, reactive and apparent power for a resistor-capacitor load and a resistor-inductor load

It can be seen from the phasor diagram that

$$
\begin{equation*}
S=\sqrt{P^{2}+Q^{2}} \tag{3.87}
\end{equation*}
$$

- Apparent powers from elements with different power factors cannot be added. On the contrary, resistive and reactive powers must be added independently. This yields the overall apparent power.


### 3.8.3 Complex Power

Complex power is defined as

$$
\begin{equation*}
\underline{S}=\underline{V} \cdot \underline{I}^{*} \tag{3.88}
\end{equation*}
$$

- The complex power is the product of the voltage and complex conjugate of the current.

$$
\underline{S}=V \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{V}}} \cdot I \mathrm{e}^{-\mathrm{j} \varphi_{\mathrm{I}}}=V I \mathrm{e}^{\mathrm{j}\left(\varphi_{\mathrm{V}}-\varphi_{\mathrm{I}}\right)}=V I \mathrm{e}^{\mathrm{j} \varphi}
$$

where $\varphi$ represents the phase shift of the voltage with respect to the current. It follows that

$$
\underline{S}=\underbrace{V I \cos \varphi}_{P}+\mathrm{j} \underbrace{V I \sin \varphi}_{Q}
$$

and thus

$$
\begin{equation*}
\underline{S}=P+\mathrm{j} Q, \quad S=|\underline{S}|=\sqrt{P^{2}+Q^{2}} \tag{3.89}
\end{equation*}
$$

- The real power is the real part of the complex power.
- The reactive power is the imaginary part of the complex power.
- The apparent power is the magnitude of the complex power.


Fig. 3.67. The complex power in a phasor diagram
As for other complex quantities, the complex power can be represented by a phasor diagram (Fig. 3.67).

### 3.8.4 Overview: AC Power

Table 3.13. Summary for AC power

| Load | $P=S \cos \varphi$ | $Q=S \sin \varphi$ | $S$ | $\cos \varphi$ |
| :--- | :---: | :---: | :---: | :---: |
| Purely inductive | 0 | Positive | $Q$ | 0 |
| Resistor-inductor | Positive | Positive | $\sqrt{P^{2}+Q^{2}}$ | 0 to 1 |
| Purely resistive | Positive | 0 | $P$ | 1 |
| Resistor-capacitor | Positive | Negative | $\sqrt{P^{2}+Q^{2}}$ | 0 to 1 |
| Purely capacitive | 0 | Negative | $Q$ | 0 |

$$
\begin{align*}
S & =\sqrt{P^{2}+Q^{2}}  \tag{3.90}\\
P & =S \cdot \cos \varphi  \tag{3.91}\\
Q & =S \cdot \sin \varphi  \tag{3.92}\\
Q & =P \cdot \tan \varphi  \tag{3.93}\\
P & =Q \cdot \cot \varphi  \tag{3.94}\\
\tan \varphi & =\frac{Q}{P} \tag{3.95}
\end{align*}
$$

### 3.8.5 Reactive Current Compensation

The power factor specifies the fractional contribution of real power $P$ to the apparent power $S$.
Although the reactive current does not contribute to transferable power, it must nonetheless be transported from the 7 supply to the load. In order to get useable power from the power

Table 3.14. Summary for equivalent circuits

|  | Parallel equivalent circuit | Series equivalent circuit |
| :---: | :---: | :---: |
| Configuration |  |  |
| Complex impedance Complex admittance | $\underline{Y}=G+\mathrm{j} B$ | $\underline{Z}=R+\mathrm{j} X$ |
| Impedance magnitude <br> Admittance magnitude | $Y=\sqrt{G^{2}+B^{2}}$ | $Z=\sqrt{R^{2}+X^{2}}$ |
| Real impedance Real admittance | $G=Y \cos \varphi_{\mathrm{Y}}=I_{\text {real }} / V$ | $R=Z \cos \varphi=V_{\text {real }} / I$ |
| Reactance <br> Susceptance | $B=-Y \sin \varphi_{\mathrm{Y}}=-I_{\text {react }} / V$ | $X=Z \sin \varphi=V_{\text {react }} / I$ |
| Complex power <br> Real power <br> Reactive power <br> Apparent power | $\begin{gathered} \underline{S}=\underline{Y}^{*} V^{2}=(G-\mathrm{j} B) V^{2} \\ P=I_{\text {real }} V=I_{\text {real }}^{2} / G=V^{2} G \\ Q=-I_{\text {react }} V=-I_{\text {react }}^{2} / B=-V^{2} B \\ S=V I=V \sqrt{I_{\text {real }}^{2}+I_{\text {react }}^{2}} \end{gathered}$ | $\begin{gathered} \underline{S}=\underline{Z} I^{2}=(R+\mathrm{j} X) I^{2} \\ P=V_{\text {real }} I=V_{\text {real }}^{2} / R=I^{2} R \\ Q=V_{\text {react }} I=V_{\text {react }}^{2} / X=I^{2} X \\ S=V I=I \sqrt{V_{\text {real }}^{2}+V_{\text {react }}^{2}} \end{gathered}$ |
| Power factor | $\cos \varphi=G / Y$ | $\cos \varphi=R / Z$ |
| In-phase current In-phase voltage | $I_{\text {real }}=I \cos \varphi_{\mathrm{Y}}=G V$ | $V_{\text {real }}=V \cos \varphi=R I$ |
| Reactive current <br> Reactive voltage | $I_{\text {react }}=-I \sin \varphi_{\mathrm{Y}}=-B V$ | $V_{\text {react }}=V \sin \varphi=X I$ |

source efforts must be made to minimise the reactive current. These actions are known as power factor correction (Fig. 3.68).


Fig. 3.68. Principle of power factor correction
A reactance is placed in parallel with the load and absorbs all of the reactive current. A capacitor is used for the resistive-inductive loads most often encountered. The reactive current of the capacitor must be equal in magnitude to that of the load. The effect is that the reactive current is diverted from the load to the compensation element, and thus the supply is no longer loaded (Fig. 3.69). If the reactive current of the compensation element exceeds that of the load, then this is known as overcompensation. In practice, compensation is designed for a power factor of about $\cos \varphi=0.9$.

Example: A motor with $230 \mathrm{~V} / 16 \mathrm{~A} / \cos \varphi=0.8$ should be compensated by a capacitor.
A real current of $16 \mathrm{~A} \cdot \cos \varphi=12.8 \mathrm{~A}$ flows through the motor. The reactive current is $I_{\text {react }}=\sqrt{I^{2}-I_{\text {real }}^{2}}=\sqrt{16^{2}-12.8^{2}}=9.6 \mathrm{~A}$. The reactive current


Fig. 3.69. Power and current phasor diagram for reactive current compensation
must be absorbed by the capacitor. Its reactance is $X_{\mathrm{C}}=230 \mathrm{~V} / 9.6 \mathrm{~A}=24 \Omega$. It follows therefore for a frequency of 50 Hz a capacitor of $C=1 / X_{\mathrm{C}} \cdot \omega=$ (24 $\left.\Omega \cdot 2 \propto \cdot 50 \mathrm{~s}^{-1}\right)^{-1}=133 \propto \mathrm{~F}$. For compensation of a power factor of $\cos \varphi=0.9$ a reactive current of only 6.2 A must be compensated, for which a capacitor of $86 \circ \mathrm{~F}$ suffices.

Note: The power factors of transformers and motors decline when they are unloaded. The reactive currents are caused by the buildup and reduction of the magnetic fields.

### 3.9 Three-Phase Supplies

### 3.9.1 Polyphase Systems

Figure 3.70 shows a circular arrangement of several coils, in whose centre a permanent magnet is rotating at a constant angular velocity. An alternating voltage is induced in each of the coils with the same frequency and a constant phase shift with respect to each other.


Fig. 3.70. Basic arrangement to produce constant-frequency alternating voltage in a polyphase system
Such arrangements of alternating voltage generators, conductors and loads are known as polyphase systems. For $n$ voltages there is an $n$-phase system. If the voltages have the same magnitude and frequency and a constant phase shift between them, then the polyphase system is said to be balanced.

The presence of such balanced voltages applies for generators with shifted windings (the rotating magnet is replaced by a DC excited rotor). Such polyphase voltage systems are produced by generators with shifted windings, where the voltage is induced by a rotating magnetic field (e.g. synchronous generators). More recent systems (e.g. uninterruptable power supplies, UPS) produce a three-phase system by using static inverters, using switching semiconductors. On the other hand, a rotating field can be created by applying
a polyphase voltage to symmetrically positioned coils, as shown in Fig. 3.70 (this is used in asynchronous and synchronous motors).

The three-phase system is of particular importance in the distribution of electricity. The advantages of the three-phase systems are

- fewer power lines compared to three single phase lines (three, four or five power lines instead of six);
- constant power delivery from the generator for symmetric loads (see Sect. 3.10.1);
- several voltage options available to the user;
- simple motor construction.


### 3.9.2 Three-Phase Systems



Fig. 3.71. Time variation of the voltages in a symmetrical three-phase system and their RMS values in a phasor diagram

In a three-phase circuit, only three or four wires must be brought to the user rather than six. Figure 3.72 shows the representation of the voltage sources and their transmission lines.


Fig. 3.72. Representation of the voltage sources and their transmission lines in a three-phase circuit
The terminal voltages $V_{12}$ etc. between the line conductors $L_{1}, L_{2}$ and $L_{3}$ are known as line-to-line voltages. The voltages with respect to the neutral conductor $N$ are known as the phase voltages. The generator voltages $V_{1}, V_{2}, V_{3}$ of the phase windings are also phase voltages. Line currents are the currents in the lines, and phase currents are the currents flowing in the generator windings.

Note: The most commonly used three-phase system in Europe employs voltages of $230 \mathrm{~V} / 400 \mathrm{~V}$.

In symmetrical three-phase circuits the instantaneous values of the phase voltages may be represented as

$$
\begin{align*}
& v_{1}(t)=\hat{v} \cdot \cos \omega t, \\
& v_{2}(t)=\hat{v} \cdot \cos \left(\omega t-\frac{2 \alpha}{3}\right), \\
& v_{3}(t)=\hat{v} \cdot \cos \left(\omega t+\frac{2 \propto}{3}\right) \tag{3.96}
\end{align*}
$$

They are shifted $120^{\circ}(2 \propto / 3)$ with respect to each other (Fig. 3.73). The complex RMS values of the voltages are given by

$$
\begin{align*}
& \underline{V}_{1}=\frac{\hat{v}}{\sqrt{2}}, \\
& \underline{V}_{2}=\frac{\hat{v}}{\sqrt{2}} \cdot e^{-\mathrm{j} 2 \alpha / 3}, \\
& \underline{V}_{3}=\frac{\hat{v}}{\sqrt{2}} \cdot e^{+\mathrm{j} 2 \alpha / 3} \tag{3.97}
\end{align*}
$$



Fig. 3.73. Phasor diagram of the phase voltages and line voltages for the arrangement in Fig. 3.72

### 3.9.2. $\quad$ Properties of the Complex Operator $\underline{a}$

For convenience in this chapter the complex operator $\mathrm{e}^{\mathrm{i} 2 \alpha / 3}$ is more compactly represented as $\underline{a}$ (Fig. 3.74). When multiplied by a phasor it causes a rotation of $2 \propto / 3\left(120^{\circ}\right)$ in the


Fig. 3.74. The complex operators $\underline{a}, \underline{a}^{2}$ and $\underline{a}^{3}$
complex plane. Some properties of $\underline{a}$ are as follows:

$$
\begin{align*}
& \underline{a}=\mathrm{e}^{\mathrm{j} 2 \alpha / 3}=\frac{1}{2}(-1+\mathrm{j} \sqrt{3})=-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2} \\
& \underline{a}^{2}=\mathrm{e}^{\mathrm{j} 4 \alpha / 3}=\mathrm{e}^{-\mathrm{j} 2 x / 3}=\frac{1}{2} \cdot(-1-\mathrm{j} \sqrt{3})=\underline{a}^{*}  \tag{3.98}\\
& \underline{a}^{3}=\mathrm{e}^{\mathrm{j} 2 \alpha}=1
\end{align*}
$$

By use of the complex operator, the complex three-phase phasor can be written as

$$
\begin{equation*}
\underline{V}_{1}=\underline{V}_{1}, \quad \underline{V}_{2}=\underline{V}_{1} \cdot \underline{a}^{2}, \quad \underline{V}_{3}=\underline{V}_{1} \cdot \underline{a} \tag{3.99}
\end{equation*}
$$

- A single application of the complex operator $\underline{a}$ rotates by $2 \propto / 3\left(120^{\circ}\right)$, two applications rotate by $4 \propto / 3\left(240^{\circ}\right)$ and three applications rotate by $2 \propto\left(360^{\circ}\right)$.

$$
\begin{equation*}
1+\underline{a}+\underline{a}^{2}=0 \tag{3.100}
\end{equation*}
$$

More rules applying to $\underline{a}$ can be derived from Fig. 3.75.

$$
\begin{align*}
& 1-\underline{a}^{2}=\frac{3}{2}+\mathrm{j} \frac{\sqrt{3}}{2}=-\mathrm{j} \sqrt{3} \cdot \underline{a}  \tag{3.101}\\
& \underline{a}^{2}-\underline{a}=-\mathrm{j} \sqrt{3} \\
& \underline{a}-1=-\frac{3}{2}+\mathrm{j} \frac{\sqrt{3}}{2}=-\mathrm{j} \sqrt{3} \cdot \underline{a}^{2}
\end{align*}
$$



Fig. 3.75. Sums and differences of the complex operators

### 3.9.3 Delta-Connected Generators

In the delta-connected generator the three-phase windings are connected one after the other in a daisy chain, and the series combination circuit is shorted (Fig. 3.76). The terminals



Fig. 3.76. Two representations of delta-connected generators
of the phase windings are mounted on a terminal board with standard markings. The phase windings and the terminal board of a three-phase generator in a delta configuration are shown in Fig. 3.77.

$$
\underline{V}_{12}=\underline{V}_{1}, \quad \underline{V}_{23}=\underline{V}_{2}, \quad \underline{V}_{31}=\underline{V}_{3}
$$



Fig. 3.77. Phase windings and the terminal board configuration in a delta-connected generator

- For delta-connected generators the line voltages are equal to the phase voltages (generator terminal voltages).

The sum of the phase voltages is given by (Fig. 3.78)

$$
\underline{V}_{\mathrm{s}}=\underline{V}_{1}+\underline{V}_{2}+\underline{V}_{3}=\underline{V}_{1} \cdot \underbrace{\left(1+\underline{a}^{2}+\underline{a}\right)}_{=0}=0
$$

By inserting Eq. (3.100) the sum of the complex operators in the parentheses disappears.


Fig. 3.78. Phasor diagram of the complex RMS voltages in the symmetrical delta-connected generators

- For ideal symmetrical generator voltages the sum of the voltages is zero. Therefore, for a short circuit (delta circuit) of the series combination of the phase windings no current will flow.


### 3.9.4 Star-Connected Generators

In the star-connected generator one side of each of the phase windings is connected to the generator star point (Fig. 3.79 and 3.80).
The following holds for the line voltages $\underline{V}_{12}$, etc. (Fig. 3.81)

$$
\begin{align*}
& \underline{V}_{12}=\underline{V}_{1}-\underline{V}_{2}=\underline{V}_{1} \cdot\left(1-\underline{a}^{2}\right)=-\mathrm{j} \sqrt{3} \underline{a} \underline{V_{1}}=-\mathrm{j} \sqrt{3} \underline{V}_{3} \\
& \underline{V}_{23}=\underline{V}_{2}-\underline{V}_{3}=\underline{V}_{1} \cdot\left(\underline{a}^{2}-\underline{a}\right)=-\mathrm{j} \sqrt{3} \underline{V}_{1}  \tag{3.102}\\
& \underline{V}_{31}=\underline{V}_{3}-\underline{V}_{1}=\underline{V}_{1} \cdot(\underline{a}-1)=-\mathrm{j} \sqrt{3} \underline{a}^{2} \underline{V}_{1}=-\mathrm{j} \sqrt{3} \underline{V}_{2}
\end{align*}
$$

Equations (3.98), (3.99) and (3.100) are instrumental in solving the above equations.


Fig. 3.79. Phase windings and terminal board configuration for a star-connected generator


$$
\begin{aligned}
& \underline{V}_{1 \mathrm{~N}}=\underline{V}_{1} \\
& \underline{V}_{2 \mathrm{~N}}=\underline{V}_{2} \\
& \underline{V}_{3 \mathrm{~N}}=\underline{V}_{3}
\end{aligned}
$$

Fig. 3.80. Two representations of star-connected generators


Fig. 3.81. Phasor diagram of line and phase voltages for a symmetrical star-connected generator

- The line voltages exceed the phase voltages by a factor of $\sqrt{3}$ in the symmetrical starconnected generator.

$$
\begin{array}{r}
V_{1 \mathrm{~N}}=V_{2 \mathrm{~N}}=V_{3 \mathrm{~N}} \\
V_{12}=V_{21}=V_{31}=\sqrt{3} \cdot V_{1 \mathrm{~N}}=\sqrt{3} \cdot V_{2 \mathrm{~N}}=\sqrt{3} \cdot V_{3 \mathrm{~N}}
\end{array}
$$

- The line voltages are, like the phase voltages, phase-shifted by $2 \propto / 3\left(120^{\circ}\right)$ with respect to each other.

$$
\underline{V}_{23}=\underline{a}^{2} \cdot \underline{V}_{12}, \quad \underline{V}_{31}=\underline{a} \cdot \underline{V}_{12}
$$

- The line voltages are phase-shifted by $\propto / 2\left(90^{\circ}\right)$ with respect to the opposite phase voltages.

$$
\underline{V}_{12}=-\mathrm{j} \sqrt{3} \underline{V}_{3}, \quad \underline{V}_{23}=-\mathrm{j} \sqrt{3} \underline{V}_{1}, \quad \underline{V}_{31}=-\mathrm{j} \sqrt{3} \underline{V}_{2}
$$

Note: This property is used in the measurement of the reactive power in a three-phase system. A $90^{\circ}$ phase-shifted voltage can thus be measured without employing a phase-shifting circuit.

### 3.10 Overview: Symmetrical Three-Phase Systems

Three-phase systems with symmetrical generators and loads are shown in Fig. 3.82 and summarised in Table 3.15. There are four different combinations of star and delta circuits. In all cases the line voltage is $V$, and all load impedances have the same value $\underline{Z}$.

Table 3.15. Symmetrical three-phase systems, see Fig. 3.82

| generator-load combination | star-star | star-delta | delta-star | delta-delta |
| :---: | :---: | :---: | :---: | :---: |
| phase voltages | $\frac{V}{\sqrt{3}}$ | $\frac{V}{\sqrt{3}}$ | V | V |
| voltage across the load $\underline{Z}$ | $\begin{gathered} V_{1 \mathrm{~N}}, V_{2 \mathrm{~N}}, V_{3 \mathrm{~N}} \\ \frac{V}{\sqrt{3}} \\ \hline \end{gathered}$ | $\begin{gathered} V_{12}, \quad V_{23}, \quad V_{31} \\ V \end{gathered}$ | $\begin{gathered} V_{1 \mathrm{~N}}, V_{2 \mathrm{~N}}, V_{3 \mathrm{~N}} \\ \frac{V}{\sqrt{3}} \\ \hline \end{gathered}$ | $\begin{gathered} V_{12}, V_{23}, V_{31} \\ V \end{gathered}$ |
| currents through the load $\underline{Z}$ | $\begin{gathered} I_{1 \mathrm{~N}}, I_{2 \mathrm{~N}}, I_{3 \mathrm{~N}} \\ \frac{1}{\sqrt{3}} \cdot \frac{V}{Z} \\ \hline \end{gathered}$ | $\begin{gathered} I_{12}, I_{23}, I_{31} \\ \frac{V}{Z} \end{gathered}$ | $\begin{gathered} I_{1 \mathrm{~N}}, I_{2 \mathrm{~N}}, I_{3 \mathrm{~N}} \\ \frac{1}{\sqrt{3}} \cdot \frac{V}{Z} \\ \hline \end{gathered}$ | $\begin{gathered} I_{12}, I_{23}, I_{31} \\ \frac{V}{Z} \end{gathered}$ |
| line currents | $\begin{gathered} I_{1}, I_{2}, I_{3} \\ \frac{1}{\sqrt{3}} \cdot \frac{V}{Z} \end{gathered}$ | $\begin{gathered} I_{1}, I_{2}, I_{3} \\ \sqrt{3} \cdot \frac{V}{Z} \\ \hline \end{gathered}$ | $\begin{gathered} I_{1}, I_{2}, I_{3} \\ \frac{1}{\sqrt{3}} \cdot \frac{V}{Z} \end{gathered}$ | $\begin{gathered} I_{1}, I_{2}, I_{3} \\ \sqrt{3} \cdot \frac{V}{Z} \end{gathered}$ |
| total real power | $\frac{V^{2}}{Z} \cdot \cos \varphi$ | $3 \cdot \frac{V^{2}}{Z} \cdot \cos \varphi$ | $\frac{V^{2}}{Z} \cdot \cos \varphi$ | $3 \cdot \frac{V^{2}}{Z} \cdot \cos \varphi$ |

- Three times more power is transferred to the resistive load in the delta circuit than in the star circuit.


Fig. 3.82. Symmetrical three-phase systems
Note: This property is used in three-phase motors for the so-called star-delta start. The motor is started in the star configuration and then switched over to the
delta configuration. In this manner, unnecessarily high transient currents are avoided.

- When using the line currents $I_{1}, I_{2}, I_{3}$ and voltages $V_{12}, V_{23}, V_{31}$, the configuration of the generator circuit is irrelevant for the power delivered.


### 3.10.1 Power in a Three-Phase System

See Sect. 4.4.3.1 on power measurement in three-phase systems.
The average real power delivered by a symmetrical three-phase system is

$$
\begin{equation*}
P=V \cdot I \cdot \sqrt{3} \tag{3.103}
\end{equation*}
$$

The instantaneous real power is

$$
p(t)=\frac{v_{1}^{2}(t)}{R_{1}}+\frac{v_{2}^{2}(t)}{R_{2}}+\frac{v_{3}^{2}(t)}{R_{3}}
$$

where $R$ is the real component of the load impedance. For a symmetrical load $R_{1}=R_{2}=$ $R_{3}=R$, the instantaneous power is given by

$$
\begin{align*}
p(t) & =\frac{\hat{V}^{2}}{R} \cdot\left[\cos ^{2} \omega t+\cos ^{2}\left(\omega t-\frac{2}{3} \propto\right)+\cos ^{2}\left(\omega t+\frac{2}{3} \propto\right)\right] \\
& =\frac{\hat{V}^{2}}{2 R} \cdot\left[1+\cos 2 \omega t+1+\cos \left(2 \omega t-\frac{4}{3} \propto\right)+1+\cos \left(2 \omega t+\frac{4}{3} \propto\right)\right]  \tag{3.104}\\
& =\frac{3 \hat{V}^{2}}{2 R}
\end{align*}
$$



Fig. 3.83. Instantaneous power delivered by each individual winding of the three-phase system $p_{i}(t)$ and the total power $p(t)$

- The total real power delivered by the generator is constant, although the power varies in each individual winding (Fig. 3.83).

This property has great advantages in the construction of electrical machines, because this also means that the mechanical torque is constant over a rotation, thus considerably reducing vibration.
Polyphase systems with constant power delivery are said to be balanced; otherwise they are said to be unbalanced.

Note: The property of constant power delivery can also be achieved in $n$-phase systems.

### 3.11 Notation Index

| $a$ | voltage ratio |
| :---: | :---: |
| $\underline{a}$ | complex operator $\mathrm{e}^{\mathrm{j} 2 x / 3}$ |
| B | susceptance (S) |
| B | bandwidth (Hz) |
| C | capacitor (F) |
| $f$ | frequency (Hz) |
| $f_{\mathrm{r}}$ | resonant frequency |
| G | conductance |
| $G_{\text {S }}$ | source conductance |
| $i$ | time-varying current |
| $\hat{\imath}$ | peak value of the current |
| I | RMS value of the current |
| $I_{\text {c }}$ | compensation current |
| $I_{\text {react }}$ | reactive current |
| $I_{\text {real }}$ | real current |
| $\operatorname{Im}$ () | imaginary part |
| $k_{\text {f }}$ | form factor |
| $k_{\text {c }}$ | crest factor |
| $L_{1}, L_{2}, L_{3}$ | line |
| $N$ | neutral conductor |
| $p$ | subscript: parallel combination |
| $p$ | instantaneous power (W) |
| $P$ | average power (W) |
| $Q$ | reactive power (VAR) |
| $r$ | subscript: resonant |
| $r$ | magnitude of complex number in polar coordinates |
| $R$ | resistor, resistance |
| $R_{\text {D }}^{2}$ | duality constant ( $\Omega^{2}$ ) |
| $R_{\text {L }}$ | load resistance |
| $R_{\text {s }}$ | series resistor (in Sect. 3.6.1) |
| $R_{\text {S }}$ | source resistance |
| $R_{45}, R_{90}$ | resistance for phase shift of $45^{\circ}$ or $90^{\circ}$ |
| $R \\| C$ | $R$ in parallel to $C$ |
| Re () | real part |
| $s$ | subscript: series combination |
| $S$ | apparent power (VA) |
| $\underline{S}$ | complex power |
| $T$ | period, periodic time |
| $v$ | time-varying voltage |
| $\underline{v}$ | complex time-varying voltage |
| $\hat{v}$ | peak value of the voltage |
| $\underline{\hat{v}}$ | complex amplitude |
| $\bar{v}$ | average value |
| $\overline{\|v\|}$ | average rectified value |


| $V$ | RMS value of the voltage |
| :--- | :--- |
| $\frac{V}{V_{1}}$ | complex RMS value of the voltage |
| $V_{2}$ | input voltage |
| $V_{12}, V_{23}, V_{31}$ | output voltage |
| $V_{1 \mathrm{~N}}, V_{2 \mathrm{~N}}, V_{3 \mathrm{~N}}$ | line voltages |
| $V_{\mathrm{C}}$ | voltage voltages |
| $V_{\mathrm{L}}$ | voltage across a capacitor an inductor |
| $V_{\mathrm{R}}$ | voltage across a resistor |
| $V_{\text {react }}$ | reactive voltage |
| $V_{\text {real }}$ | real voltage |
| $V_{\mathrm{S}}$ | source voltage |
| $X$ | reactance |
| $X_{\mathrm{C}}$ | capacitive reactance |
| $X_{\mathrm{L}}$ | inductive reactance |
| $Y$ | admittance |
| $Y$ | complex conductance, admittance |
| $z^{*}$ | complex conjugate |
| $Z$ | impedance |
| $Z$ | complex resistance, impedance |
| $Z_{\text {in }}$ | input impedance |
| $Z_{\text {out }}$ | output impedance |
| $\varphi$ | phase difference (rad) |
| $\varphi_{0}$ | phase shift |
| $\varphi_{\mathrm{I}}$ | phase of the current |
| $\varphi_{\mathrm{S}}$ | phase of the sum signal |
| $\varphi_{\mathrm{V}}$ | phase of the voltage |
| $\varphi_{\mathrm{Y}}$ | phase difference of the admittance |
| $\varphi_{\mathrm{Z}}$ | phase difference of the impedance |
| $\omega$ | angular frequency $\left(\mathrm{s}^{-1}\right)$ |
| $\omega_{\mathrm{r}}$ | resonant frequency $\left(\mathrm{s}^{-1}\right)$ |
|  |  |

### 3.12 Further Reading

Bird, J. O.: Electrical Circuit Theory and Technology
Butterworth/Heinemann (1999)
Boylestad, R. L.: Introductory Circuit Analysis, 9th Edition
Prentice Hall (1999)
Chapra, S. C.; Canale, R. P.: Numerical Methods for Engineers, 3rd Edition
McGraw-Hill (1998)
De Wolf, D. A.: Essentials of Electromagnetics for Engineering
Cambridge University Press (2000)

Dorf, R. C. : The Electrical Engineering Handbook, Section I
CRC press (1993)
Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)
Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications, 5th Edition Prentice Hall (2000)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1998)
Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)
Hughes, E.: Electrical Technology, 7th Edition
Longman (1995)
Jones, G. R.; Laughton, M. A.; Say, M. G.: Electrical Engineers Reference Book, 14th
Edition
Butterworth (1993)
Kovetz, A.: Electromagnetic Theory, 1st Edition Oxford University Press (2000)

Muncaster, R.: A-Level Physics
Stanley Thornes Ltd. (1997)
Nelkon, M.; Parker, P.: Advanced Level Physics
Heinemann (1995)
O'Neil, P. V.: Advanced Engineering Mathematics, 4th Edition Brooks/Cole Publishing Company (1997)

## 4 Current, Voltage and Power Measurement

This chapter focuses on the most basic measurement methods for electrical quantities using electrical measuring instruments.

### 4.1 Electrical Measuring Instruments

Electrical measuring instruments measure an electrical quantity by deflecting a pointer using magnetic or mechanical principles.

### 4.1.1 Moving-Coil Instrument

In a moving-coil instrument a coil turns in the field of a permanent magnet. The current flowing through the coil creates a torque, which is compensated by a reset spring. The rotation of the coil is displayed by a pointer. See also Sect. 2.3.17.1 on the force on a current-carrying conductor in a magnetic field.


Fig. 4.1. Principle of the moving-coil instrument and its circuit symbol

- The scale of a moving-coil instrument is linear for DC.
- The moving-coil instrument displays the arithmetic average value of the current. For purely AC current the pointer stays at zero.
- Moving-coil instruments with a rectifier display the rectified value.
- The moving-coil instrument is the most sensitive analogue instrument.

Note: Galvanometers are particularly sensitive moving-coil instruments.

### 4.1.2 Ratiometer Moving-Coil Instrument

The ratiometer moving-coil instrument works on the moving-coil principle, using two crossed coils mounted on the same iron core at $30^{\circ}$ to $60^{\circ}$ with respect to each other. The coils are configured such that the currents flowing through them exert opposing torques (Fig. 4.2). The position in which both torques are equal depends on the ratio of the currents in both coils. For this reason the instrument is known as a ratio instrument.
R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003


Fig. 4.2. Principle of the ratiometer-type moving-coil instrument and its circuit symbol

- The ratiometer-type moving-coil instrument displays the quotients of two coil currents.
- The scale is not linear, but has a wide linear range around the centre of the scale.


### 4.1.3 Electrodynamic Instrument

The electrodynamic instrument is similar in principle to the moving-coil instrument, except that the instrument's field is produced by a second current flowing in a measurement coil (Fig. 4.3). This was previously known as a dynamometer.


Fig. 4.3. Principle of the electrodynamic instrument and its circuit symbol for the iron-screened realisation

- The deflection of an electrodynamic instrument is proportional to the product of the currents in both coils.
- If both coils are excited by sinusoidal currents (of the same frequency), then the display is proportional to the product of the currents and depends on the relative phase shift. Maximum deflection occurs for $\Delta \varphi=0^{\circ}$, whereas there is no deflection for $\Delta \varphi=90^{\circ}$.

If both measurement coils are connected in series, then the same current flows through each coil.

- The electrodynamic instrument displays the root mean square (RMS) of the measurement current. The display is then to a large degree independent of the shape of the waveform. In this mode the scale is quadratic.

The main use for electrodynamic instrumenta is in power measurement. One of the coils is excited by the measurement current, while the other coil is excited by a current that is proportional to the voltage.

- The electrodynamic instrument serves as a power meter for both direct and alternating current and is to a large degree independent of the shape of the waveform.


### 4.1.4 Moving-Iron Instrument

The moving-iron instrument (soft-iron instrument) uses the opposing forces on equally polarised, magnetised soft-iron vanes in the magnetic field of a coil with a measurement current (Fig. 4.4). By suitably shaping the air gap the scale can cover a wide range.


Fig. 4.4. Principle of the moving-iron instrument and its circuit symbol
Note: Graduations are often extended in the upper region for accurate reading (operational instruments), or compressed in order to be able to quantitatively determine overloads.

- The deflection of the moving-iron instrument is independent of the current direction. It is thus equally suitable for DC and AC (for low frequencies such as the mains frequency).
- The moving-iron instrument is an RMS meter.
- The moving-iron instrument has a high internal power consumption.
- The moving-iron instrument can by its nature withstand high overloads.

Note: In the application of moving-iron instruments as current meters, the display is independent of the shape of the current waveform. Voltage measurements of nonsinusoidal waveforms require caution (Sect. 3.2.2). The large inductance of the meter attenuates the higher frequencies. This is why shunt resistors are rarely used for range extension. Instead, the current coil may be designed with several terminals, or, alternatively, a current transformer can be used.

### 4.1.5 Other Instruments

Rotary magnet instrument: In this case a small permanent magnet rotates in the field created by a coil carrying the measurement current. The reflex torque is provided by an additional magnet. The rotary magnet meter is very robust. Unlike the moving-coil instrument, no current leads are required to the moving parts.
Electrostatic movement: This technique uses the electrostatic force of two capacitor electrodes. It can only measure voltages, but with very small internal power consumption. Its application is for DC and AC voltage measurement (up to the RF range). The electrostatic instruments measure the RMS values of the voltage.
Thermal instruments: These instruments use the thermal expansion of current-carrying conductors and are implemented as hot-wire measuring systems or as bimetallic instruments. Their characteristics are high internal power consumption and long settling times. Thermal instruments are RMS meters.
Induction instruments: Two coils shifted $90^{\circ}$ with respect to each other have AC currents of the same frequency passing through them. They induce eddy currents in an aluminium cylinder, which produces a torque on a spring. Induction measurement devices are
instruments that use the product of the two currents (only for AC currents). The domestic electricity meter uses an aluminium disc that continuously rotates in the field of a permanent magnet (Fig. 4.5).


Fig. 4.5. Construction of an induction instrument to measure the electrical work performed
Electrodynamic ratio meter: This instrument is derived from the ratiometer-type moving-coil instrument seen earlier, but the outer magnetic field is generated by a second current coil. The pointer deflection depends on the quotients of the moving coil currents and on the phase of the measurement current with respect to the induction current. Electrodynamic ratio instruments are mostly used as power factor meters. The cross-coil instrument uses two right-angled inductor coils instead of the usual crosscoil. The inductor coils can rotate freely in its rotation field, thus enabling the use of a $360^{\circ}$ scale.
Vibration instrument: Several tuned steel reeds are spring-mounted in the alternating magnetic field of a current-carrying coil. The reed, whose resonant frequency corresponds to the actual current frequency, oscillates with the largest amplitude (Fig. 4.6).


Fig. 4.6. Scale of a reed frequency meter

### 4.1.6 Overview: Electrical Instruments

A summary of the types of electrical instruments is given in Table 4.1.

Table 4.1. Summary of electrical instruments

| Circuit symbol | Instrument | Measured quantity |  | Scale function |
| :---: | :---: | :---: | :---: | :---: |
| $\overparen{\square}$ | Moving-coil | $I, V$ | - | $\alpha=c \cdot \bar{i}$ <br> Average value |
| $\xrightarrow[\square]{\triangle( }$ | Moving-coil with rectifier | I, V | $\simeq$ | $\alpha=c \cdot \overline{i \mid}$ <br> Rectified value |
|  | Moving-coil with thermoconverter | I | $\simeq$ | $\begin{gathered} \alpha=c \cdot I^{2} \\ \text { RMS } \end{gathered}$ |
| $\underset{5}{5}$ | Moving-iron | $I,(V)$ | $\simeq$ | $\begin{gathered} \alpha=f\left(I^{2}\right) \\ \text { RMS } \end{gathered}$ |
| $<\beta$ | Moving magnet | I, V | - | $\alpha=c \cdot \bar{I}$ <br> Arithmetic average value |
| $\bigcap_{x}$ | Ratio moving-coil | $R$ | - | $\alpha=f\left(\frac{I_{1}}{I_{2}}\right)$ |
| $\square$ | Electrodynamic | $P$ | $\simeq$ | $\alpha=f\left(I_{1} \cdot I_{2} \cdot \cos \varphi_{12}\right)$ |
| $\stackrel{\perp}{1}$ | Electrostatic | V | $\simeq$ | $\begin{gathered} \alpha=f\left(V^{2}\right) \\ \text { RMS } \end{gathered}$ |
|  | Hot-wire bimetallic | I | $\simeq$ | $\begin{gathered} \alpha=f\left(I^{2}\right) \\ \text { RMS } \end{gathered}$ |
|  | Induction | W | $\sim$ | $\sigma=c \cdot \int I_{1} \cdot I_{2} \cdot \cos \varphi_{12} \mathrm{~d} t$ |
| 会 | Electrodynamic ratio | $\cos \varphi$ | $\sim$ | $\alpha=f\left(\frac{I_{1}}{I_{2}}, \varphi_{13}, \varphi_{23}\right)$ |

The scale function $\alpha$ represents the relationship between the measured quantities and the pointer deflection, and $c$ is the respective device constant.

### 4.2 Measurement of DC Current and Voltage

### 4.2.1 Moving-Coil Instrument

The moving-coil instrument is the most used DC measurement instrument because of its comparatively small internal power consumption and the high accuracy it achieves. The measured current flows through the instrument coil. Usual measured currents, for which the instrument displays full-scale deflection, lie between $10 \propto A$ and 10 mA . The internal resistance of an unconnected moving-coil instrument is relatively high. Due to this quality the moving-coil instrument can be used as voltmeter as well. The current through the measurement coil is proportional to the applied voltage. The scale is calibrated in volts.

$$
\begin{equation*}
V_{\mathrm{M}}=I_{\mathrm{M}} \cdot R_{\mathrm{M}} \tag{4.1}
\end{equation*}
$$

$V_{\mathrm{M}}$ : voltage on the instrument for full-scale deflection; $I_{\mathrm{M}}$ : measurement current for full-scale deflection; $R_{\mathrm{M}}$ : internal resistance of the instrument.

### 4.2.2 Range Extension for Current Measurements

To extend the measurement range, the measured current is split between the instrument coil and a parallel shunt resistor $R_{\text {Sh }}$. By varying the value of the shunt resistor, different measurement ranges can be obtained (Fig. 4.7).


Fig. 4.7. Measurement range extension using a shunt resistor
Example: An instrument with $I_{\mathrm{M}}=50 \propto \mathrm{~A}$ full-scale deflection and internal resistance $R_{\mathrm{M}}=2 \mathrm{k} \Omega$ is to be extended to a measurement range of 10 mA .
The magnitude of the voltage drop on the instrument for full-scale deflection is 100 mV . Therefore the value of the shunt resistor is $R_{\mathrm{Sh}}=100 \mathrm{mV} / 9950 \propto \mathrm{~A}=$ $10.05 \Omega$.

In general,

$$
\begin{equation*}
R_{\mathrm{Sh}}=\frac{I_{\mathrm{M}} \cdot R_{\mathrm{M}}}{I-I_{\mathrm{M}}} \tag{4.2}
\end{equation*}
$$

therefore $I$ is the current for full-scale deflection in the desired measurement range.
If several measurement ranges were desired, the switch would lie in series with the shunt resistor. In this case, the resistance of the switch would not be negligible because of the very low impedance of the shunt resistor $R_{\mathrm{Sh}}$. This is avoided in the circuit in Fig. 4.8.
Depending on the switch position, the resistors $R_{\mathrm{Sh} 1}, R_{\mathrm{Sh} 1}+R_{\mathrm{Sh} 2}$ or $R_{\mathrm{Sh} 1}+R_{\mathrm{Sh} 2}+R_{\mathrm{Sh} 3}$ act as the shunt resistor. The instrument, with some resistors in series, lies in parallel. The sum of all of the measurement resistances and the internal resistance of the instrument is

$$
R_{\mathrm{Sum}}=R_{\mathrm{Sh} 1}+R_{\mathrm{Sh} 2}+R_{\mathrm{Sh} 3}+R_{\mathrm{M}}
$$



Fig. 4.8. Current measurement range extension, where the conductivity resistance $R_{\mathrm{C}}$ of the switch does not affect the measurement

In order to determine the individual resistor values, $R_{\text {Sum }}$ is calculated as follows (Fig. 4.8):
Switch in position 3: The voltage drop on the instrument is equal to the drop over all the shunt resistors. Therefore, $I_{3}$ is the current for full-scale deflection in measurement range 3 .

$$
\begin{aligned}
I_{\mathrm{M}} \cdot R_{\mathrm{M}}= & V_{\mathrm{M}}=\left(I_{3}-I_{\mathrm{M}}\right) \cdot\left(R_{\mathrm{Sh} 1}+R_{\mathrm{Sh} 2}+R_{\mathrm{Sh} 3}\right) \\
& \Rightarrow \quad R_{\mathrm{Sum}}=\frac{I_{\mathrm{M}} \cdot R_{\mathrm{M}}}{I_{3}-I_{\mathrm{M}}}+R_{\mathrm{M}}
\end{aligned}
$$

Switch in position 1: Equating the voltage drop as before yields

$$
\begin{gathered}
\left(I_{1}-I_{\mathrm{M}}\right) \cdot R_{\mathrm{Sh} 1}=I_{\mathrm{M}} \cdot\left(R_{\mathrm{Sh} 2}+R_{\mathrm{Sh} 3}+R_{\mathrm{M}}\right)=I_{\mathrm{M}} \cdot\left(R_{\mathrm{Sum}}-R_{\mathrm{Sh} 1}\right) \\
\Rightarrow \quad R_{\mathrm{Sh} 1}=\frac{I_{\mathrm{M}}}{I_{1}} \cdot R_{\mathrm{Sum}}
\end{gathered}
$$

Switch in position 2:

$$
R_{\mathrm{Sh} 2}=\frac{I_{\mathrm{M}}}{I_{2}} \cdot R_{\mathrm{Sum}}-R_{\mathrm{Sh} 1}
$$

## Switch in position 3:

$$
R_{\mathrm{Sh} 3}=\frac{I_{\mathrm{M}}}{I_{3}} \cdot R_{\mathrm{Sum}}-\left(R_{\mathrm{Sh} 1}+R_{\mathrm{Sh} 2}\right)
$$

Example: An instrument with $I_{\mathrm{M}}=500 \propto \mathrm{~A}$ and an internal resistance $R_{\mathrm{M}}=1 \mathrm{k} \Omega$ is to be extended to an ammeter with a measurement range $I_{1}=100 \mathrm{~mA}, I_{2}=30 \mathrm{~mA}$ and $I_{3}=10 \mathrm{~mA}$. The magnitude of the sum resistance is $R_{\text {Sum }}=1052.63 \Omega$. The values of the shunt resistors are $R_{\mathrm{Sh} 1}=5.26 \Omega, R_{\mathrm{Sh} 2}=12.28 \Omega$ and $R_{\mathrm{Sh} 3}=35.09 \Omega$. The sum resistance value is given to several decimal digits as the equations require very similar resistance values to be subtracted from each other.

### 4.2.3 Range Extension for Voltage Measurements

To measure larger voltages, resistors are used in series with the moving-coil instrument. For a full-scale deflection at the voltage $V$, the series resistor $R_{1}$ is given by

$$
\begin{equation*}
R_{1}=\frac{V}{I_{\mathrm{M}}}-R_{\mathrm{M}} \tag{4.3}
\end{equation*}
$$

where $I_{\mathrm{M}}$ is the current through the instrument at full-scale deflection, and $R_{\mathrm{M}}$ is the internal resistance of the instrument. The internal resistance of the voltmeter (instrument and series resistance) is often related to the voltage at full-scale deflection.

- The voltage-related internal resistance is the reciprocal of the instrument current at full-scale deflection (expressed in $\Omega / \mathrm{V}$ ).

Example: A voltmeter is to be realised for the measurement range $10 \mathrm{~V}, 30 \mathrm{~V}$ and 100 V using a moving-coil instrument with $I_{\mathrm{M}}=50 \propto \mathrm{~A}$ and $R_{\mathrm{M}}=1 \mathrm{k} \Omega$. The magnitude of the instrument's voltage-related internal resistance is $20 \mathrm{k} \Omega / \mathrm{V}$. Thus the total resistance in the measurement range of 10 V is $200 \mathrm{k} \Omega$, of 30 V is $600 \mathrm{k} \Omega$ and of 100 V is $2 \mathrm{M} \Omega$. The actual values of the measurement resistors are given in Fig. 4.9.


Fig. 4.9. Voltmeter with series resistors

### 4.2.4 Overload Protection

In order to avoid an overload in the moving-coil instrument, it is bridged by two parallel opposite-sense diodes (Fig. 4.10). If the voltage on the instrument exceeds about 0.7 V , the diodes shunt the excess current away. A fast-blowing microfuse in the current arm handles longer-lasting overloads.


Fig. 4.10. Overload protection in a moving-coil instrument

### 4.2.5 Systematic Measurement Errors in Current and Voltage Measurement

## Current Measurement



Fig. 4.11. Systematic measurement error in current measurement

Without the measurement instrument, the current flowing is $I=V / R$. By inserting the ammeter with the internal resistance $R_{\mathrm{M}}$ the current reduces to $I=V /\left(R+R_{\mathrm{M}}\right)$, see Fig. 4.11.

- In current measurement the current is usually measured too low. The absolute measurement error decreases with decreasing ammeter internal resistance.

The magnitude of the systematic relative measurement error is

$$
\begin{equation*}
\frac{\Delta I}{I}=-\frac{R_{\mathrm{M}}}{R_{\mathrm{M}}+R} \approx-\frac{R_{\mathrm{M}}}{R}, \quad R_{\mathrm{M}} \ll R \tag{4.4}
\end{equation*}
$$

Example: A systematic measurement error smaller than $1 \%$ is achieved if the ammeter internal resistance is at least 100 times smaller than the resistance in the current loop.

## Voltage Measurement



Fig. 4.12. Systematic measurement error in voltage measurement
By measuring a voltage $V_{\mathrm{o} / \mathrm{c}}$ and $R_{\mathrm{int}}$ the voltmeter resistance $R_{\mathrm{M}}$ loads the voltage source, and therefore the terminal voltage decreases a little. The measured voltage is $V$ (Fig. 4.12).

- In voltage measurement the voltage is generally measured too low. The measurement error decreases with increasing voltmeter internal resistance $R_{\mathrm{M}}$.

The magnitude of the systematic relative measurement error is

$$
\begin{equation*}
\frac{V-V_{\mathrm{o} / \mathrm{c}}}{V_{\mathrm{o} / \mathrm{c}}}=\frac{R_{\mathrm{M}}}{R_{\mathrm{int}}+R_{\mathrm{M}}}-1=\frac{-R_{\mathrm{int}}}{R_{\mathrm{int}}+R_{\mathrm{M}}} \approx-\frac{R_{\mathrm{int}}}{R_{\mathrm{M}}}, \quad R_{\mathrm{M}} \gg R_{\mathrm{int}} \tag{4.5}
\end{equation*}
$$

Example: A systematic measurement error smaller than $1 \%$ is achieved if the voltmeter internal resistance is at least 100 times higher than the internal resistance of the voltage source.

### 4.3 Measurement of AC Voltage and AC Current

### 4.3.1 Moving-Coil Instrument with Rectifier

The configuration most frequently employed in measuring AC voltages is a moving-coil instrument equipped with a rectifier (Fig. 4.13).
The diodes rectify the measured current. For small measured voltages the threshold voltages of the diodes are noticeable. This effect is less apparent in the circuit on the right in Fig. 4.13.


Fig. 4.13. Moving-coil instrument with rectifier; left with bridge, right with one-way rectifier
Here a single diode lies in series with the instrument. The replication of the measurement arm through the resistor $R_{\mathrm{M}}$ and the diode $D_{2}$ ensures that AC current flows through the configuration.

- Moving-coil instruments with an average-value rectifier display the rectified value.

Note: The scale on instruments are usually calibrated to display the RMS values for sinusoidal voltages. Measurements of nonsinusoidal waveforms must be corrected by a form factor (see Sect. 3.2.2).

Example: A rectangular voltage with a peak value $\pm 1 \mathrm{~V}$ is measured with a moving-coil instrument. The RMS and the rectified values are 1 V for this waveform. The instrument deflection is proportional to the rectified value.

On the other hand, a sinusoidal voltage with a rectified value of 1 V has an RMS value of $k_{f} \cdot \overline{|v|} \approx 1.11 \mathrm{~V}$. For the rectangular voltage a moving-coil instrument displays thus an RMS voltage of 1.11 V . Consequently, there is a systematic measurement error of $11 \%$.

- For small AC voltages the scale is clearly nonlinear.

Note: The AC voltage to be measured can be increased by transformers. The influence of the diode's characteristic curve then decreases. The transformer, however, limits the frequency range, where the lower limit is approx. 30 Hz and the upper limit is approx. 10 kHz .


Fig. 4.14. Voltage-current transformation to measure small AC voltages
The circuit in Fig. 4.14 converts the input AC voltage into a proportional AC current using the resistance $R$. The output current of the operational amplifier changes in a manner such that the voltages on the inverting and the noninverting inputs are always equal. This conversion to current means that the display is independent of the nonlinearities of the
diodes. A suitable choice of $R$ allows very small AC voltages $(1 \mathrm{mV})$ to be measured.

$$
\begin{equation*}
i_{\mathrm{M}}=\frac{\left|V_{\mathrm{AC}}\right|}{R} \Rightarrow \text { Selection: } \quad R=\frac{V_{\mathrm{AC}}}{I_{\mathrm{M}}} \tag{4.6}
\end{equation*}
$$

where $V_{\mathrm{AC}}$ is the AC voltage for full-scale deflection, and $I_{\mathrm{M}}$ is the the instrument current for full-scale deflection. Measurement range extension can be achieved by inserting a voltage divider before the converter circuit.
AC currents flowing into the instrument are to be avoided when measuring high-frequency AC voltages. A peak-value rectifier is set up away from the instrument in a RF probe and passes only DC voltage to the instrument (Fig. 4.15). The display is suitably calibrated to be proportional to the peak-to-peak value.


Fig. 4.15. Peak-value rectifier for measuring high-frequency voltages

### 4.3.2 Moving-Iron Instruments

The simplest instrument for measuring AC voltages and currents is the moving-iron instrument. This is an RMS meter, which therefore also displays the correct values for nonsinusoidal currents. Care must be taken when using it as a voltmeter as its large inductance attenuates harmonics. Therefore, the instrument must be frequency-compensated.
Moving-iron instruments were frequently used for monitoring machinery, usually in conjunction with current or voltage transformers.

### 4.3.3 Measurement Range Extension Using an Instrument Transformer

Apart from measurement range extension through series and shunt resistors, as outlined previously, current and voltage transformers also offer the possibility to measure extensive AC quantities. Instrument transformers have high-tolerance conversion ratios. They also offer the advantage that the measurement is electrically isolated from the mains.
Voltage transformers step down/up the measured voltage according to the winding ratio. Common secondary-side voltages are 100 V or $100 / \sqrt{3} \mathrm{~V}$ for three-phase applications. The specification is given on the identification plate, e.g. $380 \mathrm{~V} / 100 \mathrm{~V}$. The terminals of the voltage transformer on the primary side are denoted by $U$ and $V$, and on the secondary side by $u$ and $v$. Unused voltage transformers that are connected on the primary side are left open-circuit on the secondary side. The primary winding usually consists of many windings of thin copper wire (high voltage, small current).
Current transformers step down the measurement current in inverse proportion to the winding ratio. Common secondary side currents are 5 A , and occasionally 1 A . The specification is given on the identification plate, e.g. $25 \mathrm{~A} / 5 \mathrm{~A}$. The terminals of the current transformer are denoted on the primary side by $K$ and $L$, and on the secondary side by $k$
and $l$. Unused current transformers that are connected on the primary side have to be shortcircuited on the secondary side. The primary winding usually consists of few windings of thick copper wire, which surrounds one or more times the core linking the secondary coil. A special construction is a hinged version of the current transformer, which can be looped around the conductor. When used with an ammeter this is known as a clip-on ammeter.

Note: When using instrument transformers, it is possible to sum up the currents (voltages) of several sections on the display. The secondary side of the instrument transformer must be connected with the correct poles in parallel for current transformation, and in series for voltage transformation.

For an instrument transformer a current or voltage error is specified. This is the guaranteed upper limit of the error of the secondary side current (voltage) from the correct value. Because of the (tiny) losses in the transformer, there is a small phase shift of some angular minutes between the input sinusoidal quantity and the output quantities. This is specified as the phase error. The phase error is important when two measurement quantities are related, for example, in power measurement. Instrument transformers must be loaded with their nominal load to stay within their specified error limit. Current transformers act at their secondary side like a current source. Therefore the nominal load has a very low resistance (nearly short-circuit). Voltage transformers act at their secondary side like a voltage source. Therefore the nominal load has a very high resistance (nearly infinity).

An instrument transformer's load is often also given as the maximum deliverable apparent power in units of VA. For current transformers values are in the range 1-60 VA, and for voltage transformers $10-300 \mathrm{VA}$.

### 4.3.4 RMS Measurement

The scales of most measurement instruments for AC quantities are calibrated for RMS. But if the measurement device is not a true RMS meter, then the displayed value is correct only for the waveform the instrument has been calibrated for (normally sinusoidal).

For the measurement of RMS values (so-called true RMS measurement) there are different options.

RMS meters are measurement instruments that measure the RMS value because of their operating principle. These include:

- moving-iron instruments,
- thermal instruments,
- electrodynamic instruments with both coils in series,
- electrostatic instruments (for voltages).

Moving-coil instrument with thermal transformer: The current to be measured heats up a resistor, whose temperature is measured by a thermal element. A moving-coil instrument that is calibrated to give RMS values of the current is connected to this thermal element (Fig. 4.16).

Instrument with analogue RMS calculator: This circuit is the electronic (analogue) realisation of the defining equation for the RMS value (Fig. 4.17).


Fig. 4.16. Symbol for a moving-coil instrument with thermal transformer for RMS measurement. In the configuration on the right the thermal element is isolated from the measurement loop


Fig. 4.17. Principle of the circuit for RMS generation of the measurement quantity. Actual application circuits are realised in a sightly different manner

Digital measurement devices: The quantity to be measured is sampled, and the sampled values inserted into the RMS defining equation and calculated by a microprocessor, before being displayed.

Note: The RMS voltage measurement is often problematic. Voltmeters are used in parallel and represent a frequency-dependent load. Different frequencies are weighted in different ways. For this reason the instrument should be frequencycompensated.

### 4.4 Power Measurement

### 4.4.1 Power Measurement in a DC Circuit

The power dissipated in a load can be determined through the measurement of the current through and the voltage drop across the load.


Fig. 4.18. Determination of the power in a DC circuit: circuit for a) correct current measurement; b) correct voltage measurement

The voltage error circuit or correct current measurement is shown in Fig. 4.18a. The voltage actually measured as being across the load is higher by the voltage drop on the ammeter.

The current error circuit or correct voltage measurement is shown in Fig. 4.18b. The current actually measured as flowing through the load is higher by the amount flowing through the voltmeter.

Note: If the delivered source power is to be precisely measured, rather than the power dissipated in the load, the circuits in Figs. 4.18a and 4.18b swap roles as summarised in Table 4.2.

Table 4.2. Measurement of DC quantities

| Measurement quantity | Load | Suitable circuit |
| :--- | :---: | :---: |
| Load power | High ohmic <br> Low ohmic | Correct current (a) <br> Correct voltage (b) |
| Source power | High ohmic <br> Low ohmic | Correct current (b) <br> Correct voltage (a) |

To directly display the measurement, electrodynamic measurement instruments are used as power meters. One of the coils is used as a current path, and the other as a voltage path. The basic circuit and its systematic error are analogous to the measurement with two instruments.


Fig. 4.19. Power determination in a DC circuit with a wattmeter: a) configuration for correct current; b) configuration for correct voltage

Figure 4.19a shows the configuration for correct current, while that in Fig. 4.19b shows the configuration for correct voltage. The comments on measurement with two instruments apply here as well.

Note: The display on wattmeters shows the product of the currents in the current and voltage paths. An overload of an individual path is possibly not visible on the display. For this reason, it must be made sure that neither the current nor the voltage exceed the permitted values.

Note: In applications where the current flow can reverse (e.g. in rechargeble batteries with charging circuitry), wattmeters with centred null positions or those with toggle switches are placed in the path.

### 4.4.2 Power Measurement in an AC Circuit

In an AC circuit with sinusoidal currents and voltages, the power measurement (Fig. 4.20) must differentiate between:

- apparent power $S=V \cdot I$ given in VA,
- real power $P=V \cdot I \cdot \cos \varphi$ given in W ,
- reactive power $Q=V \cdot I \cdot \sin \varphi$ given in var,

Here, $I$ and $V$ are the RMS values of current or voltage (sinusoidal quantities!). The apparent power, like DC power, is determined with a voltmeter and an ammeter, as shown in Fig. 4.18 and the related comments.
Real power is measured with electrodynamic or induction instruments, that takes into account the phase shift of current and voltage. As for the DC measurement there is a correct current and correct voltage measurement configuration (Fig. 4.19).
Reactive power is measured with a wattmeter, in whose voltage path the current is shifted by $90^{\circ}$ by a phase-shifting circuit.


Fig. 4.20. Measurement configuration to determine a) the apparent power; b) the real power; and $\mathbf{c}$ ) the reactive power

Note: In current loops with a high proportion of reactive power, a wattmeter can be overloaded without giving any indication on the display. In these cases the current in the current path must be controlled.

Note: Care must be taken with nonsinusoidal voltages and/or currents! The power measurement can be in error because:

- any phase-shifting circuit present may only be designed for one frequency,
- in the voltage path the harmonics are very strongly attenuated

This is regularly the case for loads that use SCRs*, current rectifiers or similar components. Any power factor measurement is then usually error-prone or even pointless.

### 4.4.2.1 Three-Voltmeter Method

A known resistance is inserted before a complex load.
The real power can be calculated from the three measured voltages (Fig. 4.21):

$$
\begin{equation*}
P=\frac{V_{\text {total }}^{2}-V_{\mathrm{R}}^{2}-V_{\mathrm{Z}}^{2}}{2 R} \tag{4.7}
\end{equation*}
$$

The three-ammeter method works in a similar fashion. A known resistance is inserted parallel to the complex load.
The real power can be calculated from the three measured currents (Fig. 4.22):

$$
\begin{equation*}
P=\frac{R}{2} \cdot\left(I_{\text {total }}^{2}-I_{\mathrm{R}}^{2}-I_{\mathrm{Z}}^{2}\right) \tag{4.8}
\end{equation*}
$$

[^4]

Fig. 4.21. Three-voltmeter method for power determination and the related vector diagram


Fig. 4.22. Three-ammeter method for power determination and the related vector diagram
The reactive power $Q$ can also be calculated from the readings in the three-voltmeter method, by applying the following relationship

$$
\cos \varphi=\frac{V_{\text {total }}^{2}-V_{\mathrm{R}}^{2}-V_{\mathrm{Z}}^{2}}{2 \cdot V_{\mathrm{R}} \cdot V_{\mathrm{Z}}}, \quad \sin \varphi=\sqrt{1-\cos ^{2} \varphi}, \quad S=V_{\mathrm{Z}} \cdot \frac{V_{\mathrm{R}}}{R}
$$

which yields

$$
Q=\sqrt{1-\cos ^{2} \varphi} \cdot V_{\mathrm{Z}} \cdot \frac{V_{\mathrm{R}}}{R}
$$

### 4.4.2.2 Power Factor Measurement

The power factor (PF) can be calculated from the apparent power (measured with a voltmeter and an ammeter) and the real power (measured with a wattmeter).
A directly displayed measurement is carried out by the electrodynamic quotient instrument, as shown in Fig. 4.23.


Fig. 4.23. Power factor measurement with electrodynamic quotient instrument
The application is limited to a narrow frequency range due to the requirement of a phaseshifting inductance (typically $49.5-50.5 \mathrm{~Hz}$ ).
The display is approximately proportional to $\tan \varphi$, where $\varphi$ is the phase angle. The scale is mostly calibrated, however, in values of $\cos \varphi$, e.g. ( +0.4 capacitive to +0.4 inductive). The instrument does not have reset/return-to-zero capability, so the display is not defined for currentless situationa. Some special constructions have a $360^{\circ}$-scale.

### 4.4.3 Power Measurement in a Multiphase System

This section describes the measurement of the

- apparent power with three voltmeters and three ammeters,
- real power with one, two or three wattmeters,
- reactive power with a suitable phase shift of the voltage. No phase shift is required in a multiphase network, because the $90^{\circ}$-shifted voltage is available.


### 4.4.3.1 Measurement of the Real Power in a Multiphase System

Three wattmeters are required for asymmetrical loading in a four-conductor system (Fig. 4.24). The total real power is the sum of the powers measured on each of the outer conductors.

$$
P=P_{1}+P_{2}+P_{3}=V_{1 \mathrm{~N}} \cdot I_{1} \cdot \cos \varphi_{1}+V_{2 \mathrm{~N}} \cdot I_{2} \cdot \cos \varphi_{2}+V_{3 \mathrm{~N}} \cdot I_{3} \cdot \cos \varphi_{3}
$$



Fig. 4.24. Real power measurement in a four-conductor system with asymmetrical loading
Note: $\quad$ The powers $P_{1}$ to $P_{3}$ could also be measured step by step with a single wattmeter.
For symmetrical loading $V_{1 \mathrm{~N}}=V_{2 \mathrm{~N}}=V_{3 \mathrm{~N}}, I_{1}=I_{2}=I_{3}$ and $\cos \varphi_{1}=\cos \varphi_{2}=\cos \varphi_{3}$. For symmetrical loading in a four-conductor system, one wattmeter, whose scale is suitably calibrated, is sufficient (Fig. 4.25). The power measured by the instrument is $P_{\mathrm{M}}$. The total power is therefore

$$
P=3 \cdot P_{\mathrm{M}}
$$



Fig. 4.25. Real power measurement in a symmetrically loaded four-conductor system
In a three-conductor system the neutral conductor is missing. An artificial zero-point can be created for power measurement. The resistance $R_{\mathrm{V}}+R_{\mathrm{M}}$ is the total resistance of the wattmeter's voltage path (Fig. 4.26).


Fig. 4.26. Real power measurement in a symmetrically loaded three-conductor system with an artificial zero-point

For asymmetrical loading in a three-conductor system the circuit in Fig. 4.24 is extended by adding an artificial zero-point. The two-wattmeter method is used for the same purpose with less handling required (Fig. 4.27, an Aron-circuit).


Fig. 4.27. Real power measurement in an asymmetrically loaded three-conductor system using the twowattmeter method

The voltage in the instrument's voltage path is higher by a factor of $\sqrt{3}$ with respect to the measurement with the neutral conductor. The real power in the load is equal to the sum of the displayed values on both wattmeters.

$$
P=P_{\mathrm{M} 1}+P_{\mathrm{M} 3}
$$

Note: A display can be negative for large phase shifts and the signs must therefore be taken into account. Therefore the correct polarity must be carefully considered. Wattmeters with central zero-points or toggle switches are used.

### 4.4.3.2 Measurement of the Reactive Power in a Multiphase System

The measurement of reactive power in a multiphase system is possible without using a phase-shifting circuit, since the $90^{\circ}$-shifted voltage is available on other outer conductors.


Fig. 4.28. Reactive power measurement in a symmetrically loaded four-conductor system
The measurement of the reactive power for symmetrical loading is shown in Fig. 4.28 as an example. The voltage $V_{23}$ between the outer conductors $L_{2}$ and $L_{3}$ is shifted by $90^{\circ}$ with
respect to the voltage $V_{1 N}$. However, it is greater by a factor of $\sqrt{3}$. The total (symmetrical) reactive power is thus

$$
Q_{\text {total }}=3 \cdot \frac{Q}{\sqrt{3}}=\sqrt{3} \cdot Q
$$

The correct reading can be obtained by suitable choice of the series resistors or by using an instrument transformer with a suitable conversion ratio.

A three-wattmeter circuit permits the measurement of the reactive power for asymmetrical loading in which the voltage paths are fed respectively with voltages shifted by $90^{\circ}$ with respect to the real power measurement (Fig. 4.29). This only produces correct results provided that the voltage vectors are not shifted by the load.


Fig. 4.29. Reactive power measurement in an asymmetrically loaded three-conductor system (series resistors are not shown)

The magnitudes of the voltages must be corrected by a factor of $\sqrt{3}$ :

$$
Q=\frac{1}{\sqrt{3}} \cdot\left(Q_{1}+Q_{2}+Q_{3}\right)
$$

### 4.5 Measurement Errors

### 4.5.1 Systematic and Random Errors

Every measurement process is subject to error. Error sources can be in the measurement device or in the measurement method, in external quantities such as temperature or stray fields, as well as in the reading of the device. Errors are classified as systematic or random errors.

Systematic errors are caused by inadequacies of the measurement devices or an inappropriate measurement technique. Such errors are reproducible and can be compensated.

Random errors do not have definite causes. They are normally not the same if the measurement is repeated and therefore cannot be corrected.

- The display error (expressed in \%) usually is expressed with respect to the full-scale value. For scales whose zero-point does not lie at the scales' boundaries, the sum of both scales' end values is taken together as the reference value.

Note: Instruments with highly nonlinear scales, without a zero-point or reed frequency meters are not covered by this definition. The reference value then is the true value or is shown on the instrument.

### 4.5.2 Guaranteed Error Limits

Manufacturers of measurement devices guarantee that their instrument's display error will not exceed certain limits, under defined environmental and operating conditions. For measurement instruments classes of precision have been defined (Table 4.3).

Table 4.3. Classes of precision for measurement instruments

| Classes of Precision (VDE 0410) <br> Specification (\%) |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.1 | 0.2 | 0.5 | 1 | 1.5 | 2.5 | 5 |

Example: An instrument of precision class 1.5 with a maximum value of 300 V displays a measured value of 100 V . How large can the relative error of the display be? The absolute measurement error can be up to 4.5 V . For a display value of 100 V this yields $\frac{4.5 \mathrm{~V}}{100 \mathrm{~V}}=4.5 \%$

- The measurement range of an instrument should always be chosen so that the meaured value is in the upper third of the scale.


### 4.6 Overview: Symbols on Measurement Instruments

A summary of the symbols found on measurement instruments is given in Table 4.4. See also instrument symbols in Sect. 4.1.6.

Table 4.4. Symbols on measurement instruments

| - | DC instrument |
| :---: | :---: |
| $\sim$ | AC instrument |
| $\sim$ | DC and AC |
| $\approx$ | Multiphase instrument with one movement |
| $\approx$ | Multiphase instrument with two movements |
| $\approx$ | Multiphase instrument with three movements |
| $\hat{H}$ | Isolation-testing voltage 500 V |
| $\hat{23}$ | Isolation-testing voltage higher than 500 V , here 2 kV |
| $\hat{0}$ | No voltage testing |

Table 4.4. (cont.)

| 1 | Perpendicular operation position |
| :--- | :--- |
| 1.5 | Horizontal operation position <br> inclination |
| range end value |  |

### 4.7 Overview: Measurement Methods

Check Table 4.5 where to find information about the measurement of the electrical quantity given in the first column.

Table 4.5. Cross-reference for measuring electrical quantities

| Measurement quantity | Section |
| :--- | :---: |
| DC current | 4.2 .2 |
| DC voltage | 4.2 .3 |
| AC current | 4.3 .2 |
| AC voltage | 4.3 .1 |
| RMS | 4.3 .4 |
| Power in a DC circuit | 4.4 .1 |
| Real power | 4.4 .2 |
| Reactive power | 4.4 .2 |
| Power factor | 4.4 .2 .2 |
| Power in a multiphase circuit | 4.4 .3 .1 |
| Reactive power | 4.4 .3 .1 |
| Impedance | 3.7 .6 .2 |

### 4.8 Notation Index

| $c$ | device constant |
| :--- | :--- |
| $\cos \varphi$ | power factor |
| $\bar{I}$ | arithmetic average value of current |
| $\Delta I$ | systematic current-measurement error |
| $I_{1}, I_{2}, I_{3}$ | outer conductor currents |
| $I_{\mathrm{M}}$ | current through instrument for full-scale deflection |
| $I_{\mathrm{R}}$ | current through resistance |
| $I_{\mathrm{Z}}$ | current through unknown impedance $\underline{Z}$ |
| $k_{\mathrm{f}}$ | form factor |
| $P$ | real power |
| $P_{\mathrm{M} 1}, P_{\mathrm{M} 2}$ | displayed power |
| $Q$ | reactive power |
| $R_{\mathrm{A}}$ | internal resistance of ammeter |
| $R_{\mathrm{i}}$ | internal resistance of voltage source |
| $R_{\mathrm{M}}$ | instrument's internal resistance |
| $R_{\mathrm{Sh}}$ | shunt resistor |
| $R_{\mathrm{Sum}}$ | total resistance |
| $R_{\mathrm{V}}$ | series resistance |
| $S$ | apparent power |
| $\|v\|$ | rectified value |
| $V_{1 \mathrm{~N}}, V_{2 \mathrm{~N}}, V_{3 \mathrm{~N}}$ | star voltages |
| $V_{\mathrm{o} / \mathrm{c}}$ | open circuit voltage, terminal voltage |
| $V_{\mathrm{M}}$ | voltage across instrument for full-scale deflection |


| $V_{\mathrm{R}}$ | voltage across resistor |
| :--- | :--- |
| $V_{\mathrm{Z}}$ | voltage across unknown impedance $\underline{Z}$ |
| $\varphi_{13}$ | phase angle between $I_{1}$ and $I_{3}$ |
| $\sigma$ | scale function |

### 4.9 Further Reading

Bently, J. P.: Principles of Measurement, 3rd Edition
Longman (1997)
Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)

## 5 Networks at Variable Frequency

Often in communications the internal structure of a system is of no particular interest. It is more interesting to consider the behaviour of the input and output signals, which in most cases are voltages (Fig. 5.1). The system is described by a function that represents the transformation of an input signal to an output signal. Such systems are often called black-box systems.


Fig. 5.1. A system with input and output signals

### 5.1 Linear Systems

Many systems can be considered linear to a good approximation. It then holds that

$$
\begin{equation*}
T\left(\alpha \cdot v_{\text {in }}\right)=\alpha \cdot T\left(v_{\text {in }}\right) \tag{5.1}
\end{equation*}
$$

- The output signal is proportional to the input signal.

$$
\begin{equation*}
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right) \tag{5.2}
\end{equation*}
$$

- Either input signal is treated independently of any other input signal (Fig. 5.2).


Fig. 5.2. Principle of superposition in linear systems
The approach shown in Eq. (5.2) and Fig. 5.2 is called the principle of superposition.

- When linear systems are fed with a harmonic input signal they produce a harmonic output signal of the same frequency, while amplitude and phase usually change.

Note: Systems that react to harmonic input signals with nonharmonic output signals are called nonlinear systems. The output signal of such systems contains components of frequencies different from the input signal.

### 5.1.1 Transfer Function, Amplitude and Phase Response

The behaviour of linear systems in response to harmonic input signals of different frequencies is described by the transfer function $G(\omega)$.

$$
\text { transfer function }=\frac{\text { output value }}{\text { input value }}
$$

An independent variable of the transfer function is the (angular) frequency of the harmonic input signals.

$$
\begin{equation*}
G(\omega)=\frac{v_{\text {out }}}{v_{\text {in }}}, \quad \text { only for harmonic signals } \tag{5.3}
\end{equation*}
$$

This equation causes trouble for signals at zero-crossings. The following equation is therefore more suitable:

$$
\begin{equation*}
v_{\mathrm{out}}(\omega)=G(\omega) \cdot v_{\mathrm{in}}(\omega) \tag{5.4}
\end{equation*}
$$

In general, the transfer function is complex valued. This implies that the amplitude as well as the phase of the input signal is affected.

Example: Figure 5.3 shows a low-pass filter.


Fig. 5.3. Low-pass filter as voltage divider
The transfer function is

$$
G(\omega)=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1 / \mathrm{j} \omega C}{1 / \mathrm{j} \omega C+R}=\frac{1}{1+\mathrm{j} \omega R C}
$$

The transfer function is also known as the (complex) frequency response. It can be split up into the magnitude and the phase components.

$$
\begin{equation*}
G(\omega)=|G(\omega)| \cdot \mathrm{e}^{\mathrm{j} \varphi(\omega)} \tag{5.5}
\end{equation*}
$$

$|G(\omega)|$ or $|G(f)|$ are called the magnitude or gain frequency characteristic, or just the magnitude or gain response of a system. $\varphi(\omega)$ is called the phase frequency characteristic or the phase response. Often $G(\omega)$ is represented in a logarithmic form. The magnitude response can be written as

$$
\begin{equation*}
A(\omega)=20 \log _{10}|G(\omega)| \quad(\mathrm{dB}) \tag{5.6}
\end{equation*}
$$

This is a ratio of two values expressed in decibels (dB).
Table 5.1. Typical values of amplification and magnitude response

| Typical values |  |
| :---: | :---: |
| Amplification | Magnitude response |
| $v=\|G(\omega)\|$ | $A(\omega)$ |
| 1 | 0 dB |
| $\sqrt{2}$ | $\approx 3 \mathrm{~dB}$ |
| $1 / \sqrt{2}$ | $\approx-3 \mathrm{~dB}$ |
| 2 | $\approx 6 \mathrm{~dB}$ |
| 4 | $\approx 12 \mathrm{~dB}$ |
| 10 | 20 dB |
| 0.1 | -20 dB |

Example: What is the gain of a system with an amplification of 14 dB ?
$A(\omega)=20 \log _{10}|G(\omega)|$. The table yields

$$
14 \mathrm{~dB}=20 \mathrm{~dB}-6 \mathrm{~dB} \Rightarrow v=\frac{10}{2}=5, \quad G(\omega)=10^{\frac{A(\omega)}{20}}=10^{\frac{14}{20}}=5
$$

Note: The following representation is also used in communications:

$$
\begin{equation*}
G(\omega)=\mathrm{e}^{-(\tilde{A}(\omega)+\mathrm{j} B(\omega))}=\mathrm{e}^{-\tilde{A}(\omega)} \cdot \mathrm{e}^{-\mathrm{j} B(\omega)} \tag{5.7}
\end{equation*}
$$

In this case $\tilde{A}(\omega)$ is the attenuation factor, and $B(\omega)$ is the phase factor of a system. Table 5.1 gives some typical values for amplification and magnitude response.

The transfer function is often represented in a Bode plot, where the gain response is drawn against the logarithm of the frequency (Fig. 5.4). The phase is represented separately.



Fig. 5.4. Bode plot of the transfer function of the low-pass filter in the previous example

### 5.2 Filters

Filter circuits are circuits with transfer functions that enable the magnitude and the phase of the individual frequency components of the input signal to be modified by different amounts, for example,

- low-pass filters (LPF),
- high-pass filters (HPF),
- bandpass filters (BPF),
- band-stop or notch filters,
- all-pass filters (APF).

Ideally, signals in the pass-band should pass through the filter without being changed. Signals in the stop-band should be attenuated as much as possible.

### 5.2.1 Low-Pass Filter

Figures 5.5 and 5.6 show the schematic symbols and characteristic plots of a low-pass filter, respectively.


Fig. 5.5. Schematic symbols for low-pass filters


Fig. 5.6. Characteristic plot of the attenuation and the magnitude response of the low-pass filter. The stop-band is shaded in grey

- At the cutoff frequency $f_{\mathrm{c}}$, the amplitude of the signal is $1 / \sqrt{2}=0.707$ times smaller than for a DC signal. This means that the gain response has decreased to -3 dB , or the attenuation has a value of 3 dB .
- The pass-band reaches from DC up to the cutoff frequency.
- The stop-band commences for frequencies above the cutoff frequency.


### 5.2.2 High-Pass Filter

Figures 5.7 and 5.8 show the schematic symbols and characteristic plots of a high-pass filter, respectively.


Fig. 5.7. Schematic symbols for high-pass filters


Fig. 5.8. Characteristic plot of the attenuation and the magnitude response of the high-pass filter. The stopband is shaded in grey

- At the cutoff frequency $f_{\mathrm{c}}$, the amplitude of the signal is $1 / \sqrt{2}=0.707$ times smaller than for very high frequencies. This means that the gain response has decreased to -3 dB , or the attenuation has a value of 3 dB .
- The pass-band commences for frequencies above the cutoff frequency.
- The stop-band reaches from DC up to the cutoff frequency.


### 5.2.3 Bandpass Filter

Figures 5.9 and 5.10 show the schematic symbols and characteristic plots of a bandpass filter, respectively.


Fig. 5.9. Schematic symbols for bandpass filters

- The bandpass filter has a lower cutoff frequency $f_{\mathrm{cl}}$ and an upper cutoff frequency $f_{\text {cu }}$.
- The centre frequency $f_{0}$ is the arithmetic mean of both cutoff frequencies.

$$
f_{0}=\frac{f_{\mathrm{cl}}+f_{\mathrm{cu}}}{2}
$$

- The bandwidth $B$ is the difference between the two cutoff frequencies.
- The relative bandwidth is the ratio of the bandwidth to the centre frequency expressed in percent.

$$
B_{\mathrm{rel}}=\frac{B}{f_{0}} \cdot 100 \%
$$

- The quality factor $Q$, or $\mathbf{Q}$-factor is the ratio of the centre frequency to the bandwidth.

$$
Q=\frac{f_{0}}{B}
$$

- The shape factor $F$ is a measure of the steepness of the bandpass filter slopes. It is the ratio of the 3 dB and the 20 dB bandwidths.

$$
F=\frac{B_{3 \mathrm{~dB}}}{B_{20 \mathrm{~dB}}}
$$

The closer this value is to 1 the steeper is the roll-off of the filter.
Note: The harmonic mean of both cutoff frequencies is also referred to as the centre frequency.

$$
f_{0}=\sqrt{f_{\mathrm{cl}} \cdot f_{\mathrm{cu}}}
$$




Fig. 5.10. Characteristic plot of the attenuation and the magnitude response of the bandpass filter

### 5.2.4 Stop-Band Filter

Stop-band filters are the complement to bandpass filters (Fig. 5.11). Stop-band filters are used to suppress a specific frequency range. A notch filter is used to suppress a specific single frequency.


Fig. 5.11. Schematic symbols for stop-band filters

### 5.2.5 All-Pass Filter

All-pass filters have a constant magnitude response over the frequency, that is, the attenuation is identical for all frequencies. However, the phase is changed depending on the frequency.

### 5.3 Simple Filters

### 5.3.1 Low-Pass Filter

Figure 5.12 shows a first-order low-pass filter. Its (complex) transfer function is given by

$$
\begin{equation*}
G(\omega)=\frac{1 / \mathrm{j} \omega C}{1 / \mathrm{j} \omega C+R}=\frac{1}{1+\mathrm{j} \omega R C} \tag{5.8}
\end{equation*}
$$

Note: The circuit is regarded as a voltage divider to determine the transfer function.


Fig. 5.12. First-order low-pass filter
The magnitude response is the magnitude of the transfer function:

$$
\begin{equation*}
|G(\omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \tag{5.9}
\end{equation*}
$$

The phase response is the phase difference between the output voltage and tha input voltage $\varphi(\omega)=\varphi_{\mathrm{v} \text { out }}-\varphi_{\mathrm{vin}}$ :

$$
\begin{equation*}
\varphi(\omega)=\arctan \left[\frac{\operatorname{Im}(G(\omega))}{\operatorname{Re}(G(\omega))}\right]=-\arctan (\omega R C) \tag{5.10}
\end{equation*}
$$

The gain response and the phase response are represented in Fig. 5.13 in a Bode plot.


Fig. 5.13. Bode plot of a low-pass filter
For the special angular frequency $\omega_{\mathrm{c}}=1 / R C$, it holds that

$$
\left|G\left(\omega_{\mathrm{c}}\right)\right|=\frac{1}{\sqrt{2}} \widehat{=}-3 \mathrm{~dB}
$$

$f_{\mathrm{c}}=\omega_{\mathrm{c}} / 2 \propto$ is the cutoff frequency or corner frequency of the low-pass filter. The phase at the cutoff frequency is given by

$$
\varphi\left(\omega_{\mathrm{c}}\right)=\arctan (-1)=-\frac{\infty}{4}, \quad \text { or } \quad\left(-45^{\circ}\right)
$$

- At the cutoff frequency $\omega_{\mathrm{c}}$ the gain of the low-pass filter is 3 dB lower than the DC gain.

The phase shift between the input signal and the output signal is then $\frac{\propto}{4}$, or $45^{\circ}$.

### 5.3.1.1 Rise Time

The step response of a low-pass filter can be estimated in the time domain from its cutoff frequency $f_{\mathrm{c}}$.


Fig. 5.14. Definition of rise time

The rise time is the time interval required by the signal to rise from $10 \%$ to $90 \%$ of the steady-state value Fig. 5.14. Between the rise time $t_{\mathrm{r}}$ and the critical frequency $f_{\mathrm{c}}$ the following relationship holds:

$$
\begin{equation*}
t_{\mathrm{r}} \approx \frac{1}{3 f_{\mathrm{c}}} \approx \frac{2}{\omega_{\mathrm{c}}} \tag{5.11}
\end{equation*}
$$

Example: An oscilloscope with a critical frequency of 30 MHz has a rise time $t_{\mathrm{r}}$ of approximately $1 /\left(3 \cdot 30 \cdot 10^{6}\right) \mathrm{s} \approx 10 \mathrm{~ns}$.

### 5.3.2 Frequency Normalisation

All low-pass filters with a structure as in Fig. 5.12 have similar transfer functions except for the parameter $\omega_{\mathrm{c}}$. In order to describe all low-pass filters with this structure uniformly, a frequency normalisation relative to the cutoff frequency is done:

$$
\begin{equation*}
\text { Normalisation: } \Omega:=\frac{\omega}{\omega_{\mathrm{c}}}=\frac{f}{f_{\mathrm{c}}} \tag{5.12}
\end{equation*}
$$

$$
\begin{equation*}
\text { De-normalisation: } \omega=\Omega \cdot \omega_{\mathrm{c}}, \quad f=\Omega \cdot f_{\mathrm{c}} \tag{5.13}
\end{equation*}
$$

$\Omega$ is called the normalised frequency and has no unit. Therefore the normalised critical frequency of any low-pass filter is $\Omega=1$.

It follows that the normalised transfer function of a low-pass filter is

$$
G(\Omega)=\frac{1}{1+\mathrm{j} \Omega}
$$




Fig. 5.15. Bode plot of a low-pass filter in frequency-normalised representation

The normalised magnitude response is

$$
|G(\Omega)|=\frac{1}{\sqrt{1+\Omega^{2}}}
$$

Figure 5.15 shows the normalised frequency response of a low-pass filter.

### 5.3.2.1 Approximation of the Magnitude Response

The magnitude response of a low-pass filter is represented in normalised form by

$$
A(\Omega)=20 \log _{10} \frac{1}{\sqrt{1+\Omega^{2}}}=20 \log _{10} \frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{\mathrm{c}}}\right)^{2}}}
$$

For angular frequencies that are much larger than the cutoff frequency, $\Omega$ is much greater than 1 . The following approximation can then be made

$$
A(\Omega) \approx 20 \log _{10} \frac{1}{\Omega}=-20 \log _{10} \Omega, \quad \text { for } \Omega \gg 1
$$

- Below the cutoff frequency the magnitude response is approximately constant.
- The magnitude response drops by 20 dB for a tenfold increase (decade) in frequency. This is described as a roll-off of $-20 \mathrm{~dB} /$ decade or $-6 \mathrm{~dB} /$ octave (Fig. 5.16).
- At the cutoff frequency $\Omega_{\mathrm{c}}=1$, the magnitude response is -3 dB .


Fig. 5.16. Approximate magnitude response for a low-pass filter

### 5.3.3 High-Pass Filter

Figure 5.17 shows a first-order high-pass filter. Its (complex) transfer function is given by

$$
\begin{equation*}
G(\omega)=\frac{R}{1 / \mathrm{j} \omega C+R}=\frac{\mathrm{j} \omega R C}{1+\mathrm{j} \omega R C} \tag{5.14}
\end{equation*}
$$

Note: The circuit is regarded as a voltage divider to determine the transfer function.


Fig. 5.17. First-order high-pass filter
The magnitude response is the magnitude of the transfer function

$$
\begin{equation*}
|G(\omega)|=\frac{(\omega R C)}{\sqrt{1+(\omega R C)^{2}}} \tag{5.15}
\end{equation*}
$$

In normalised representation the transfer function and the magnitude response are

$$
\begin{equation*}
G(\Omega)=\frac{\mathrm{j} \Omega}{1+\mathrm{j} \Omega}, \quad|G(\Omega)|=\left|\frac{\Omega}{\sqrt{1+\Omega^{2}}}\right| \tag{5.16}
\end{equation*}
$$

The phase response of the high-pass filter is

$$
\begin{equation*}
\varphi(\omega)=\arctan \left[\frac{\operatorname{Im}(G(\omega))}{\operatorname{Re}(G(\omega))}\right]=\arctan \left(\frac{1}{\omega R C}\right)=\arctan \left(\frac{\omega_{\mathrm{c}}}{\omega}\right) \tag{5.17}
\end{equation*}
$$

In normalised representation

$$
\begin{equation*}
\varphi(\Omega)=\arctan \left(\frac{1}{\Omega}\right) \tag{5.18}
\end{equation*}
$$




Fig. 5.18. Bode plot for a high-pass filter in frequency-normalised representation

The magnitude and phase characteristics are represented as Bode plot in Fig. 5.18.
For the special angular frequency $\omega_{\mathrm{c}}=1 / R C$, it holds that

$$
\left|G\left(\omega_{\mathrm{c}}\right)\right|=\frac{1}{\sqrt{2}} \widehat{=}-3 \mathrm{~dB}
$$

Here $f_{\mathrm{c}}=\omega_{\mathrm{c}} / 2 \propto$ is the cutoff frequency or corner frequency of the high-pass filter. The phase at the cutoff frequency is given by

$$
\varphi\left(\omega_{\mathrm{c}}\right)=\arctan (1)=\frac{\propto}{4} \text { or } 45^{\circ}
$$

- At the cutoff frequency $\omega_{\mathrm{c}}$ the gain of the low-pass filter is 3 dB lower than the gain at very high frequencies ( $\omega \gg \omega_{\mathrm{c}}$ ). The phase shift between the input signal and the output signal is then $\frac{\infty}{4}$, or $45^{\circ}$.


### 5.3.3.1 Approximation of the Magnitude Response

- The normalised critical frequency of the high-pass filter is $\Omega_{\mathrm{c}}=1$.
- The magnitude response increases by 20 dB for a tenfold increase (decade) in frequency (Fig. 5.19). Above the cutoff frequency, the magnitude is approximately constant.


Fig. 5.19. Approximate magnitude response of a high-pass filter

### 5.3.4 Higher-Order Filters

Filters of higher-order are obtained when two filters are combined such that the output signal of the first filter is the input signal of the following filter (cascade circuit, Fig. 5.20). The filter order is dependent on the number of independent energy-storing elements (that is, capacitors or inductors). With higher-order filters sharper roll-offs can be obtained.


Fig. 5.20. Cascaded second-order low-pass filter


Fig. 5.21. Second-order RLC low-pass filter
The RLC filter in Fig. 5.21 is a second-order low-pass filter. Its transfer function is

$$
\begin{equation*}
G(\omega)=\frac{\frac{1}{\mathrm{j} \omega C}}{\frac{1}{\mathrm{j} \omega C}+R+\mathrm{j} \omega L}=\frac{1}{1+\mathrm{j} \omega R C-\omega^{2} L C} \tag{5.19}
\end{equation*}
$$

Similar to the series resonant circuit, a resonant frequency $\omega_{r}$ can be defined. The transfer function can be frequency normalised as follows:

$$
\omega_{r}=\frac{1}{\sqrt{L \cdot C}}, \quad \Omega=\frac{\omega}{\omega_{r}}
$$

In normalised form the transfer function is

$$
\begin{equation*}
G(\Omega)=\frac{1}{1+\mathrm{j} R \sqrt{\frac{C}{L}} \Omega-\Omega^{2}} \tag{5.20}
\end{equation*}
$$

The quantity

$$
D=\frac{R}{2} \sqrt{\frac{C}{L}}
$$



Fig. 5.22. Bode plot of the RLC filter shown in Fig. 5.21 with different damping ratios
is called the damping ratio (see also Sect. 1.2.6). Using this quantity the normalised transfer function is

$$
\begin{equation*}
G(\Omega)=\frac{1}{1+2 \mathrm{j} D \Omega-\Omega^{2}} \tag{5.21}
\end{equation*}
$$

The shape of the amplitude/frequency characteristic and the phase response is essentially determined by the damping ratio $D$. Figure 5.22 shows the Bode plot of an RLC filter with the damping ratio as a parameter.
With low damping ratios the low-pass filter shows a pronounced resonant characteristic and behaves similarly to a bandpass filter. The characteristic plot of the phase becomes steeper as the damping ratio decreases.

### 5.3.5 Bandpass Filter

Figure 5.23 shows a series resonant circuit acting as a bandpass filter.


Fig. 5.23. Example of an RLC bandpass filter
Regarding this as a complex voltage divider, it follows that the transfer function is

$$
G(\omega)=\frac{R}{R+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}}=\frac{\mathrm{j} \omega R C}{\mathrm{j} \omega R C-\omega^{2} L C+1}
$$

The frequency is normalised to the resonant frequency $\omega_{0}=1 / \sqrt{L C}$ of the resonant circuit

$$
G(\Omega)=\frac{\mathrm{j} \Omega R C \frac{1}{\sqrt{L C}}}{\mathrm{j} \Omega R C \frac{1}{\sqrt{L C}}-\Omega^{2}+1}, \quad \text { with } \Omega=\frac{\omega}{\omega_{0}}
$$

Using $D=\frac{R}{2} \sqrt{\frac{C}{L}}$, the normalised transfer function becomes

$$
\begin{equation*}
G(\Omega)=\frac{2 \mathrm{j} D \Omega}{2 \mathrm{j} D \Omega-\Omega^{2}+1} \tag{5.22}
\end{equation*}
$$

where $D$ is the damping ratio. The normalised magnitude response is

$$
\begin{equation*}
|G(\Omega)|=\frac{2 D \Omega}{\sqrt{4 D^{2} \Omega^{2}+\left(1-\Omega^{2}\right)^{2}}} \tag{5.23}
\end{equation*}
$$

At the resonant frequency $\omega_{0}$, which is also the centre frequency of the bandpass filter, the transfer function is

$$
G(\Omega=1)=1 \quad \Rightarrow \quad\left|G\left(\omega=\omega_{0}\right)\right|=1
$$

The output signal at the lower and upper cutoff frequencies of the bandpass filter is 3 dB lower than at the centre frequency.

$$
\frac{\left|G\left(\Omega_{3 \mathrm{~dB}}\right)\right|}{|G(\Omega=1)|}=\frac{1}{\sqrt{2}} \Rightarrow\left|G\left(\Omega_{3 \mathrm{~dB}}\right)\right|=\frac{1}{\sqrt{2}}
$$

The indices for the cutoff frequencies are omitted in the following analysis:

$$
|G(\Omega)|=\frac{2 D \Omega}{\sqrt{4 D^{2} \Omega^{2}+\left(1-\Omega^{2}\right)^{2}}}=\frac{1}{\sqrt{2}}
$$

This leads to the equation

$$
4 D^{2} \Omega^{2}=\left(1-\Omega^{2}\right)^{2}
$$

This equation has four solutions, but only two of them yield positive frequencies

$$
\omega_{\mathrm{lwr}}=\sqrt{D^{2}+1}-D, \quad \omega_{\mathrm{upr}}=\sqrt{D^{2}+1}+D
$$

where $\omega_{\mathrm{lwr}}$ and $\omega_{\mathrm{upr}}$ are the lower and upper cutoff frequencies, respectively. The normalised bandwidth of the filter is $2 D$.

$$
\begin{equation*}
D=\frac{R}{2} \sqrt{\frac{C}{L}}, \quad B=\frac{R}{2 \propto L}, \quad Q=\frac{1}{R} \sqrt{\frac{L}{C}} \tag{5.24}
\end{equation*}
$$

The bandwidth of the filter decreases with decreasing the resistance $R$. The normalised phase response is

$$
\begin{equation*}
\varphi(\Omega)=\arctan \left[\frac{\operatorname{lm}(G(\Omega))}{\operatorname{Re}(G(\Omega))}\right]=\arctan \left(\frac{1-\Omega^{2}}{2 D \Omega}\right) \tag{5.25}
\end{equation*}
$$

Figure 5.24 shows the Bode plot of the bandpass filter for different damping ratios.


Fig. 5.24. Bode plot of the bandpass filter for different damping ratios $D$

Note: For this filter the centre frequency $\omega_{0}$ is the harmonic mean of the lower and the upper cutoff frequencies $\omega_{\mathrm{lwr}}$ and $\omega_{\mathrm{upr}}$. In normalised notation:

$$
\sqrt{\Omega_{\mathrm{lwr}} \cdot \Omega_{\mathrm{upr}}}=\sqrt{\left(\sqrt{D^{2}+1}-D\right) \cdot\left(\sqrt{D^{2}+1}+D\right)}=1
$$

### 5.3.6 Filter Realisation

Electrical filters can be realised in a variety of ways. Some options are listed below.
RC filters consist only of resistors and capacitors. A disadvantage is the high attenuation.
LRC filters employ additional inductors to obtain a resonant network. These have sharper roll-offs than pure RC filters.
Reactance filters consist only of inductances and capacitances. Except for losses in inductors and capacitors no resistive components appear. As a consequence, they have high quality factors and steep slopes. They are mainly used in RF technology.
Active filters compensate for the losses of filters using operational amplifiers. With suitable circuits inductors can be completely avoided. Their use for high frequencies is limited by the critical frequency of the amplifiers (see Sect. 7.7 for details).
Switched capacitor filters (SC filters) are a type of active filters. Resistors are simulated by charging and discharging a capacitor at high frequency. The advantage is the possibility of varying the filter parameters with the frequency of the switching signal.
Quartz and ceramic filters are mechanical resonators with low losses. Both quality factor and stability are very high for quartz filters.
Mechanical filters were once the only possibility to obtain filters with steep slopes and were widely used in telephony.
Surface acoustic wave filters (SAW filters) convert electric signals into acoustic surface waves on a substrate. By suitable tapping of the crystal surface, the filter properties can be adjusted as required. These filters are suitable for high frequencies.
Digital filters work numerically on sampled signals. They have no inaccuracies caused by ageing, production tolerances or ambient temperature. Thanks to the progress in semiconductor manufacturing the usable frequency range is increasing while prices are decreasing.

### 5.4 Notation Index

| $A$ | voltage gain |
| :--- | :--- |
| $A(\omega)$ | gain response $(\mathrm{dB})$ |
| $\tilde{A}(\omega)$ | attenuation $(\mathrm{dB})$ |
| $B$ | bandwidth $(\mathrm{Hz})$ |
| $B_{3 \mathrm{~dB}}$ | 3 dB bandwidth $(\mathrm{Hz})$ |
| $B_{\mathrm{rel}}$ | relative bandwidth |
| $B(\omega)$ | logarithmic phase response |
| $D$ | damping ratio <br> $F$ |
| shape factor (filter) |  |
| $f_{0}$ | centre frequency, resonant frequency $(\mathrm{Hz})$ |
| $f_{\mathrm{c}}$ | cutoff or corner frequency |


| $f_{\mathrm{cl}}$ | lower cutoff frequency |
| :---: | :---: |
| $f_{\text {cu }}$ | upper cutoff frequency |
| $G(\omega)$ | transfer function |
| $\|G(\omega)\|$ | magnitude response |
| $G(\Omega)$ | frequency-normalised transfer function |
| Im() | imaginary part |
| $Q$ | quality factor, Q-factor |
| $\operatorname{Re}()$ | real part |
| $T$ | transformation through a system |
| $t_{\mathrm{r}}$ | rise time |
| $v_{\text {in }}$ | input voltage |
| $v_{\text {out }}$ | output voltage |
| $\varphi(\omega)$ | phase response |
| $\omega_{0}$ | resonant angular frequency ( $\mathrm{s}^{-1}$ ) |
| $\omega_{\text {c }}$ | angular cutoff frequency |
| $\omega_{\text {lwr }}$ | lower cutoff frequency |
| $\omega_{\text {upr }}$ | upper cutoff frequency |
| $\Omega$ | normalised frequency |
| $\Omega_{3 \mathrm{~dB}}$ | normalised frequency, where the magnitude of the transfer function has decreased by 3 dB |
| $\Omega_{\text {lwr }}$ | lower normalised cutoff frequency |
| $\Omega_{\text {upr }}$ | upper normalised cutoff frequency |

### 5.5 Further Reading

Chen, C. T.: Linear System Theory and Design, 3rd Edition Oxford University Press (1998)

Dorf, R. C.: The Electrical Engineering Handbook
CRC Press (1999)
Kennedy, G.; Davis, B.: Electric Communication Systems McGraw-Hill (1992)

Zverev, A. I.: Handbook of Filter Synthesis
John Wiley \& Sons (1967)

## 6 Signals and Systems

### 6.1 Signals

### 6.1.1 Definitions

In communications and electrical engineering signals are characterised in different classes.
Periodic signals are signals that repeat themselves after a definite time interval $T$ (Fig. 6.1).
Definition: a value $T$ exists, such that for all times $t$

$$
f(t)=f(t+T)
$$

$T$ is the period of the signal $f(t)$.


Fig. 6.1. Examples of periodic signals (top) and nonperiodic signals (bottom)
Nonperiodic signals are all signals that are not periodic according to the definition given above.
Causal signals are signals that have nonzero values only after time $t=0$. The name is related to the definition of causal systems.

The normalised power of a signal is defined as

$$
\begin{equation*}
P=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(t)|^{2} \mathrm{~d} t \tag{6.1}
\end{equation*}
$$

Analogously, the normalised energy of a signal is defined as

$$
\begin{equation*}
E=\lim _{T \rightarrow \infty} \int_{-T}^{T}|f(t)|^{2} \mathrm{~d} t=\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t \tag{6.2}
\end{equation*}
$$

Power signals have a finite normalised power $P$ according to Eq. (6.1). For nonzero power signals $E=\infty$.
Energy signals have a finite normalised energy $E$. For energy signals $P=0$.

- All periodic signals are power signals, but not all power signals are periodic.
R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003


Fig. 6.2. A power signal and two energy signals
Example: The following signal is an energy signal (see Fig. 6.2, centre).

$$
\begin{aligned}
f(t) & =\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
\mathrm{e}^{-t / \tau} & \text { for } t \geq 0
\end{array}\right. \\
E & =\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t=\int_{0}^{\infty} \mathrm{e}^{-2 t / \tau} \mathrm{d} t=\left[-\frac{\tau}{2} \mathrm{e}^{-2 t / \tau}\right]_{0}^{\infty}=\frac{\tau}{2}<\infty
\end{aligned}
$$

### 6.1.2 Symmetry Properties of Signals

A function is an even function if it holds for all $t$ that

$$
f(t)=f(-t)
$$

These functions have an axial symmetry with respect to the ordinate ( $y$-axis). They are also known as symmetric functions (Fig. 6.3).
A function is an odd function if it holds for all $t$ that

$$
f(t)=-f(-t)
$$

Such functions have point symmetry with respect to the origin. They are also known as antisymmetric functions (Fig. 6.3).


Fig. 6.3. Examples of even (left) and odd functions (right)
Example: The cosine is an even function, while the sine is an odd function.
Note: These properties are mutually exclusive. A function can either be even or odd, but not both (except the null function). However, there are functions that are neither even nor odd.

A signal has full-wave symmetry if it holds for all $t$

$$
f\left(t+\frac{T}{2}\right)=f(t)
$$

which means the signal effectively has a shorter period of $T / 2$.

A signal has half-wave symmetry if it holds for all $t$

$$
f\left(t+\frac{T}{2}\right)=-f(t)
$$

This means that the half-waves would be axially symmetric about the time axis if they were shifted over each other (Fig. 6.4).


Fig. 6.4. Example of a signal with half-wave symmetry
Example: A DC-free triangular signal has a half-wave symmetry.

### 6.2 Fourier Series

- Any periodic signal with a period $T$ can be represented as a sum of harmonic signals. The lowest frequency is $1 / T$. All other frequencies are integer multiples of this fundamental frequency. These signal components are called harmonics.


### 6.2.1 Trigonometric Form

If the signal $f(t)$ is periodic with a period $T$ it can be represented by a Fourier series:

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cdot \cos (n \omega t)+b_{n} \cdot \sin (n \omega t)\right] \tag{6.3}
\end{equation*}
$$

where $\omega$ is the fundamental (angular) frequency of the signal.

$$
\omega=\frac{2 \propto}{T}=2 \propto f
$$

The Fourier coefficients $a_{n}$ and $b_{n}$ are

$$
\begin{array}{ll}
a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cdot \cos (n \omega t) \mathrm{d} t &  \tag{6.4}\\
b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cdot \sin (n \omega t) \mathrm{d} t & \\
\end{array}
$$

- $\frac{a_{0}}{2}=\frac{1}{T} \int_{0}^{T} f(t) \mathrm{d} t$ is the average value of the signal over one period, i.e. the DC part of the signal. Note that $b_{0}$ is always zero.
- The trigonometric representation of the Fourier series depends on the choice of the starting time $t=0$ of the signal.

Note: $\quad$ Since the signal $f(t)$ is periodic, it is irrelevant whether the integration limits are 0 to $T$, or $-T / 2$ to $+T / 2$.

Note: The equivalent Fourier representation is also found in the literature.

$$
f(t)=\sum_{n=0}^{\infty}\left[a_{n} \cdot \cos (n \omega t)+b_{n} \cdot \sin (n \omega t)\right]
$$

In that case $a_{0}$ has to be defined separately:

$$
a_{0}=\frac{1}{T} \int_{0}^{T} f(t) \mathrm{d} t
$$

Note: The mathematical conditions for convergence of the Fourier series in Eq. (6.3) are:

- The signal has a finite number of noncontinuous points;
- The average value over one period is finite;
- The signal has a finite number of maxima and minima.

These conditions always hold for signals that can be physically realised.

### 6.2.1.1 Symmetry Properties

- For pure alternating signals $a_{0}=0$.
- Even functions do not contain sine components. This means all $b_{n}=0$.
- Odd functions do not contain cosine components. This means all $a_{n}=0$.
- Waveforms with full-wave symmetry have only even harmonics with frequencies $0,2 \omega, 4 \omega \ldots$
- Waveforms with half-wave symmetry have only odd harmonics with frequencies $\omega, 3 \omega, 5 \omega \ldots$


### 6.2.2 Amplitude-Phase Form

The addition of sine and cosine functions with the same frequency results in a harmonic function of this frequency.

$$
a_{n} \cdot \cos (n \omega t)+b_{n} \cdot \sin (n \omega t)=A_{n} \cdot \cos \left(n \omega t+\varphi_{n}\right)
$$

This leads to the amplitude-phase form of the Fourier series (Fig. 6.5).

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cdot \cos \left(n \omega t+\varphi_{n}\right) \tag{6.5}
\end{equation*}
$$



Fig. 6.5. Combination of the Fourier coefficients $a_{n}$ and $b_{n}$ for the amplitude-phase form
with

$$
\begin{equation*}
A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}, \quad \varphi_{n}=-\arctan \left(\frac{b_{n}}{a_{n}}\right) \quad \text { for } n=1,2,3 \ldots \tag{6.6}
\end{equation*}
$$

where $a_{n}$ and $b_{n}$ are the Fourier coefficients according to Eq. (6.4). The set of all $A_{n}$ is known as the amplitude spectrum, and the set of $\varphi_{n}$ is the phase spectrum.

- The amplitude spectrum is independent of the choice of the starting point $t=0$. This does not hold for the phase spectrum.


### 6.2.3 Exponential Form

Applying

$$
\begin{equation*}
\cos (n \omega t)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{j} n \omega t}+\mathrm{e}^{-\mathrm{j} n \omega t}\right), \quad \sin (n \omega t)=\frac{1}{2 \mathrm{j}}\left(\mathrm{e}^{\mathrm{j} n \omega t}-\mathrm{e}^{-\mathrm{j} n \omega t}\right) \tag{6.7}
\end{equation*}
$$

the trigonometric form of the Fourier series can be converted into the complex normal form, or the exponential form.

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} c_{n} \cdot \mathrm{e}^{\mathrm{j} n \omega t} \tag{6.8}
\end{equation*}
$$

The complex Fourier coefficients $c_{n}$ are calculated as

$$
\begin{equation*}
c_{n}=\frac{1}{T} \int_{0}^{T} f(t) \cdot \mathrm{e}^{-\mathrm{j} n \omega t} \mathrm{~d} t \tag{6.9}
\end{equation*}
$$

The set of all $c_{n}$ is called the complex spectrum. Positive and negative frequency parameters $n \omega$ and $-n \omega$ appear in this representation of the Fourier series. This leads to the concept of a positive and negative frequency spectrum.

- The coefficient $c_{0}$ represents the DC component. It therefore is equivalent to $a_{0} / 2$.
- The spectral component of a harmonic with an angular frequency of $n \omega$ is

$$
c_{n} \cdot \mathrm{e}^{\mathrm{j} n \omega t}+c_{-n} \cdot \mathrm{e}^{-\mathrm{j} n \omega t}
$$

- The spectral coefficients $c_{n}$ and $c_{-n}$ are complex conjugates (for real-valued signals), i.e. $c_{n}^{*}=c_{-n}$.
- The complex Fourier coefficients have a magnitude that is half the value of the corresponding amplitude elements in the amplitude-phase form: $2\left|c_{n}\right|=A_{n}$.
Example: Figure 6.6 shows the two-sided spectra of the cosine and the sine functions. Using Eq. (6.7), both functions can be expressed as

$$
\begin{aligned}
& \cos \omega_{0} t=\underbrace{+\frac{1}{2}}_{c_{1}} \mathrm{e}^{\mathrm{j} \omega_{0} t}+\underbrace{\frac{1}{2}}_{c_{-1}} \mathrm{e}^{-\mathrm{j} \omega_{0} t}, \\
& \sin \omega_{0} t=\underbrace{-\frac{\mathrm{j}}{2}}_{c_{1}} \mathrm{e}^{\mathrm{j} \omega_{0} t}+\underbrace{\frac{\mathrm{j}}{2}}_{c_{-1}} \mathrm{e}^{-\mathrm{j} \omega_{0} t}
\end{aligned}
$$




Fig. 6.6. Frequency spectrum of the cosine and sine functions with components of positive and negative frequencies

### 6.2.3.1 Symmetry Properties

- Even functions have purely real spectral coefficients $c_{n}$.
- Odd functions have purely imaginary spectral coefficients $c_{n}$.


### 6.2.4 Overview: Fourier Series Representations

Tables 6.1 and 6.2 present a summary of the Fourier series representations and coefficients as well as conversion between these representations.

Table 6.1. Summary of the Fourier series representations

| Series representations | Coefficients |
| :--- | :--- |
| Real normal form | $a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cdot \cos (n \omega t) \mathrm{d} t$ |
|  | $b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cdot \sin (n \omega t) \mathrm{d} t$ |
|  | for $n=0,1,2 \ldots$ |
| Amplitude-phase form  <br> $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cdot \cos \left(n \omega t+\varphi_{n}\right)$ $A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$ <br>  $\varphi_{n}=-\arctan \left(\frac{b_{n}}{a_{n}}\right)$ <br> for $n=1,2,3 \ldots$  |  |
| Complex normal form  <br> $f(t)=\sum_{n=-\infty}^{\infty} c_{n} \cdot \mathrm{e}^{\mathrm{j} n \omega t}$ $c_{n}=\frac{1}{T} \int_{0}^{T} f(t) \cdot \mathrm{e}^{-\mathrm{j} n \omega t} \mathrm{~d} t$ |  |

Table 6.2. Summary of conversion between the Fourier series represenations

| Conversion of representations |  |  |  |
| :--- | :---: | :---: | :---: |
|  | Fourier <br> coefficients | Spectral <br> coefficients | Complex Fourier <br> coefficients |
| $a_{n}=$ | $a_{n}$ | $A_{n} \cdot \cos \varphi_{n}$ | $c_{n}+c_{n}^{*}=2 \cdot \operatorname{Re}\left(c_{n}\right)$ <br> $b_{n}=$ |
| $A_{n}=$ | $\sqrt{a_{n}^{2}+b_{n}^{2}}$ |  |  |
| $\varphi_{n}=$ | $-\arctan \left(\frac{b_{n}}{a_{n}}\right)$ | $\left.A_{n} \cdot c_{n}^{*}\right)=2 \cdot \operatorname{Im}\left(c_{n}\right)$ |  |
| $c_{n}=$ | $\left\{\begin{array}{l}2 \cdot\left\|c_{n}\right\| \\ \frac{\varphi_{n}}{2} \\ \frac{a_{n}}{2}-\mathrm{j} \frac{b_{n}}{2} n>0 \\ \frac{a_{n}}{2}+\mathrm{j} \frac{b_{n}}{2} n<0\end{array}\right.$ | $\frac{A_{n}}{2} \cdot \mathrm{e}^{-\mathrm{j} \varphi_{n}}$ | $-\arg \left(c_{n}\right)$ |

### 6.2.5 Useful Integrals for the Calculation of Fourier Coefficients

The average value of the sine and cosine functions over one period is zero.

$$
\begin{align*}
& \int_{0}^{T} \cos n \omega t \mathrm{~d} t=0  \tag{6.10}\\
& \int_{0}^{T} \sin n \omega t \mathrm{~d} t=0 \tag{6.11}
\end{align*}
$$

The sine and the cosine function are orthogonal:

$$
\begin{align*}
& \int_{0}^{T} \sin n \omega t \cdot \sin k \omega t \mathrm{~d} t=0, \quad \text { for } n \neq k  \tag{6.12}\\
& \int_{0}^{T} \sin n \omega t \cdot \cos k \omega t \mathrm{~d} t=0  \tag{6.13}\\
& \int_{0}^{T} \cos n \omega t \cdot \cos k \omega t \mathrm{~d} t=0, \text { for } n \neq k \tag{6.14}
\end{align*}
$$

For integrals over the product of sine and cosine functions of the same frequency $n \omega$, it holds respectively that

$$
\begin{align*}
& \int_{0}^{T} \sin ^{2} n \omega t \mathrm{~d} t=\frac{T}{2}  \tag{6.15}\\
& \int_{0}^{T} \cos ^{2} n \omega t \mathrm{~d} t=\frac{T}{2} \tag{6.16}
\end{align*}
$$

The orthogonality conditions can be summarised by

$$
\int_{0}^{T} \cos n \omega t \cdot \cos k \omega t \mathrm{~d} t=\delta_{n k} \cdot \frac{T}{2}
$$

The same holds for sine functions. Here $\delta_{n k}$ is the Kronecker symbol. Its value is unity for $n=k$, otherwise zero.

### 6.2.6 Useful Fourier Series

The Fourier series of several functions are given in Table 6.3. Table 6.4 gives the amplitude spectra of the signals.

Table 6.3. Useful Fourier series


Table 6.3. (cont.)

|  |  <br> Antisymmetric triangular waveform (half-wave symmetry), DC-free $f(t)=A \cdot \frac{8}{\mathbf{a}^{2}}\left(\sin \omega t-\frac{1}{3^{2}} \sin 3 \omega t+\frac{1}{5^{2}} \sin 5 \omega t-\ldots\right)$ |
| :---: | :---: |
|  |  <br> Symmetric triangular waveform (half-wave symmetry), DC-free $f(t)=A \cdot \frac{8}{\mathbf{口}^{2}}\left(\cos \omega t+\frac{1}{3^{2}} \cos 3 \omega t+\frac{1}{5^{2}} \cos 5 \omega t+\ldots\right)$ |
| (8) |  <br> Sawtooth waveform, DC-free, antisymmetric $f(t)=A \cdot \frac{2}{\square}\left(\sin \omega t+\frac{1}{2} \sin 2 \omega t+\frac{1}{3} \sin 3 \omega t+\ldots\right)$ |
| (9) |  <br> Sawtooth waveform, DC-free, antisymmetric $f(t)=A \cdot \frac{2}{\square}\left(\sin \omega t-\frac{1}{2} \sin 2 \omega t+\frac{1}{3} \sin 3 \omega t-\ldots\right)$ |
| (10) |  <br> Sine wave after full-wave rectification (full-wave symmetry), $T$ : period of the mains frequency $f(t)=A \cdot \frac{2}{\mathbf{\square}}-A \cdot \frac{4}{\mathbf{\square}} \cdot\left(\frac{1}{1 \cdot 3} \cos 2 \omega t+\frac{1}{3 \cdot 5} \cos 4 \omega t+\frac{1}{5 \cdot 7} \cos 6 \omega t+\ldots\right)$ |
| (11) |  <br> Cosine wave after full-wave rectification (full-wave symmetry), $T$ : period of the mains frequency $f(t)=A \cdot \frac{2}{\mathbf{\square}}+A \cdot \frac{4}{\mathbf{\square}} \cdot\left(\frac{1}{1 \cdot 3} \cos 2 \omega t-\frac{1}{3 \cdot 5} \cos 4 \omega t+\frac{1}{5 \cdot 7} \cos 6 \omega t-\ldots\right)$ |
| (12) |  <br> Cosine wave after half-wave rectification $f(t)=A \cdot \frac{1}{\mathbf{\square}}+A \cdot \frac{2}{\mathbf{\square}} \cdot\left(\mathbf{\square} \cos \omega t+\frac{1}{1 \cdot 3} \cos 2 \omega t+\frac{1}{3 \cdot 5} \cos 4 \omega t \ldots+\right)$ |
| (13) |  <br> Rectified three-phase current, $T$ : period of the mains frequency $f(t)=A \cdot \frac{3 \sqrt{3}}{\square} \cdot\left(\frac{1}{2}-\frac{1}{2 \cdot 4} \cos 3 \omega t-\frac{1}{5 \cdot 7} \cos 6 \omega t-\frac{1}{8 \cdot 10} \cos 9 \omega t-\ldots\right)$ |
| (14) |  <br> Rectangular waveform passing through RC circuit, time constant $\tau$, let $\gamma=T / 2 \mathbf{\square} \tau$ $f(t)=A \cdot \frac{2}{\mathbf{a}} \cdot \sum_{n=0}^{\infty} \frac{\gamma \cos [(2 n+1) \omega t]+(2 n+1) \sin [(2 n+1) \omega t]}{\gamma^{2}+(2 n+1)^{2}}$ |

Table 6.4. Amplitude spectra $A_{n}$ of the signals

| Signal | Factor | Harmonic |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| number | $A$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1 and 2 | $4 / \mathbf{\square}$ | 1 | 0 | $1 / 3$ | 0 | $1 / 5$ | 0 | $1 / 7$ | 0 | $1 / 9$ |
| $3(\tau / T=1 / 3)$ | $2 / \mathbf{\square}$ | .87 | .43 | 0 | .22 | .17 | 0 | .12 | .11 | 0 |
| $3(\tau / T=1 / 5)$ | $2 / \mathrm{a}$ | .59 | .48 | .32 | .15 | 0 | .098 | .14 | .12 | .065 |
| 6 and 7 | $8 / \mathbf{a}^{2}$ | 1 | 0 | $1 / 9$ | 0 | $1 / 25$ | 0 | $1 / 49$ | 0 | $1 / 81$ |
| 8 and 9 | $2 / \mathbf{\square}$ | 1 | $1 / 2$ | $1 / 3$ | $1 / 4$ | $1 / 5$ | $1 / 6$ | $1 / 7$ | $1 / 8$ | $1 / 9$ |
| 10 and 11 | $4 / \mathbf{\square}$ | 0 | $1 / 3$ | 0 | $1 / 15$ | 0 | $1 / 35$ | 0 | $1 / 63$ | 0 |
| 12 | $2 / \mathbf{\square}$ | $\mathbf{\square}$ | $1 / 3$ | 0 | $1 / 15$ | 0 | $1 / 35$ | 0 | $1 / 63$ | 0 |
| 13 | $3 \sqrt{3} / \mathbf{\square}$ | 0 | 0 | $1 / 8$ | 0 | 0 | $1 / 35$ | 0 | 0 | $1 / 80$ |

### 6.2.7 Application of the Fourier Series

### 6.2.7.1 Spectrum of a Rectangular Signal

A TTL (transistot-transistor logic) gate delivers the signal shown in Fig. 6.7. The duty cycle of this signal is 0.5 . The amplitude spectrum is to be determined.


Fig. 6.7. Idealised rectangular pulses from a TTL circuit
Signals (1) or (2) from Table 6.3 are closest to the signal in Fig. 6.7. Defining the time origin $t=0$ is a matter of choice in this example. The peak-to-peak amplitude of the digital signal is 2.4 V . This means that $A=1.2 \mathrm{~V}$, and the DC component is 1.6 V .
The period is $T=20 \propto$, so $\omega=2 \propto \cdot 50 \mathrm{kHz}$. The Fourier series of the signal above is, according to signal (2) from Table 6.3

$$
g(t)=1.6 \mathrm{~V}+1.2 \mathrm{~V} \cdot \frac{4}{\propto} \cdot\left(\cos \omega t-\frac{1}{3} \cos 3 \omega t+\ldots\right)
$$

The amplitudes of the individual spectral components are

| $f(\mathrm{kHz})$ | 0 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{n}$ | 1.6 V | 1.53 V | 0 | 0.51 V | 0 | 0.31 V | 0 | 0.22 V | 0 | 0.17 V |

Figure 6.8 gives a graphical representation of the amplitude spectrum. The small circles indicate that the respective spectral components vanish, even though they are harmonics. The term line spectrum is derived from this kind of representation.


Fig. 6.8. Amplitude spectrum of the rectangular signal from Fig. 6.7 (DC-free)
Figure 6.9 shows the superposition of the harmonics with $\omega, 3 \omega$ and $5 \omega$ to a rectangular signal. As already shown in Table 6.4, the amplitude of the fundamental frequency is higher than the resulting rectangular signal.


Fig. 6.9. Superposition of spectral components up to the fifth harmonic to compose a rectangular signal

### 6.2.7.2 Spectrum of a Sawtooth Signal

Figure 6.10 shows a sawtooth signal with falling slopes. The signal is composed of the inverted signal (8) from the table and a DC component of 1.5 V . The amplitude is $A=1.5 \mathrm{~V}$, and the fundamental frequency of the signal is $f=1 / T=4 \mathrm{kHz}$.


Fig. 6.10. Sawtooth signal with falling slopes and a DC component
The Fourier series of this sawtooth signal is

$$
g(t)=1.5 \mathrm{~V}-1.5 \mathrm{~V} \cdot \frac{2}{\propto} \cdot\left(\sin \omega t+\frac{1}{2} \sin 2 \omega t+\frac{1}{3} \sin 3 \omega t+\ldots\right)
$$

| $f(\mathrm{kHz})$ | 0 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{n}$ | 1.5 V | 0.95 V | 0.48 V | 0.32 V | 0.24 V | 0.19 V | 0.16 V | 0.14 V | 0.12 V | 0.11 V |

The amplitude spectrum of this signal is shown in Fig. 6.11. Unlike the rectangular signal, this spectrum also contains even harmonics.


Fig. 6.11. Amplitude spectrum of the sawtooth signal shown in Fig. 6.10

### 6.2.7.3 Spectrum of a Composite Signal

The complicated signal shown in Fig. 6.12 is composed of the superposition of a rectangular signal with an amplitude of 2 V and a triangular signal with an amplitude of 1 V . Both signals correspond either to signals (1) and (6) or (2) and (7) in Table 6.3.

$$
\begin{aligned}
& g(t)=2 \mathrm{~V} \cdot \frac{4}{\propto}\left[\begin{array}{llll}
\cos \omega t+ & \frac{1}{3} & \cos 3 \omega t+ & \frac{1}{5} \\
h(t) & =1 \mathrm{~V} \cdot \frac{8}{\alpha^{2}}\left[\begin{array}{c}
\cos 5 \omega t+\ldots
\end{array}\right] \\
f(t)= & \frac{8}{\propto} \mathrm{~V}\left[\left(1+\frac{1}{\propto}\right) \cos \omega t+\quad \frac{1}{3^{2}} \quad \cos 3 \omega t+\quad \frac{1}{5^{2}} \quad \cos 5 \omega t+\ldots\right]
\end{array}\right]
\end{aligned}
$$



Fig. 6.12. Superposition of a rectangular signal and a triangular signal
The Fourier coefficients for each frequency are added (taking into account the proper signs). The fundamental frequency of the signal is 1 kHz . The amplitude spectrum is then:

| $f(\mathrm{kHz})$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{n}$ | 2.55 V | 0 | 0.92 V | 0 | 0.54 V | 0 | 0.38 V | 0 | 0.29 V |

### 6.3 Systems

### 6.3.1 System Properties

Often in communications engineering the internal structure of a system is of no particular interest. It is more interesting to consider the behaviour of the input and output signals, which in most cases are voltages. Such systems are often called black-box systems (Fig. 6.13). The function of a system is described symbolically by a transformation of the input signal into the output signal.

$$
v_{\mathrm{out}}=T\left(v_{\mathrm{in}}\right)
$$



Fig. 6.13. A black-box system with input and output signals

### 6.3.1.1 Linear Systems

Many systems can be modelled to a good approximation as linear systems. It then holds that

$$
\begin{equation*}
T\left(\alpha \cdot v_{\text {in }}\right)=\alpha \cdot T\left(v_{\text {in }}\right) \tag{6.17}
\end{equation*}
$$

- The output signal is proportional to the input signal.

$$
\begin{equation*}
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right) \tag{6.18}
\end{equation*}
$$

- Either of the two input signals can be considered individually while passing through the system as if the other were not present (Fig. 6.14).


Fig. 6.14. Principle of superposition in linear systems
The approach shown in Eq. (6.18) and Fig. 6.14 is called principle of superposition.

### 6.3.1.2 Causal Systems

Causal systems show no system response before the excitation.


Fig. 6.15. A causal (top) and a noncausal system (bottom)
Mathematically this can be expressed by

$$
\begin{equation*}
x(t)=0, \text { for } t<t_{0} . \quad \text { It follows that } T[x(t)]=0, \text { for } t<t_{0} \tag{6.19}
\end{equation*}
$$

Note: According to the definition of causal systems, causal signals are defined. Their values are always zero before the time $t=0$ and can be nonzero after $t=0$ (Fig. 6.15).

### 6.3.1.3 Time-Invariant Systems

Time-invariant systems do not change their inner properties. Their response to a specific input signal is always identical and does not depend on the time of its arrival.

Mathematically this can be expressed by

$$
\begin{equation*}
y(t)=T[x(t)] . \text { It follows that } T\left[x\left(t-t_{0}\right)\right]=y\left(t-t_{0}\right) \tag{6.20}
\end{equation*}
$$



Fig. 6.16. System response of a time-invariant system
If the input signal is shifted in time, the corresponding output signal experiences the same shift (Fig. 6.16).

### 6.3.1.4 Stable Systems

Systems are considered stable if the system response to signals with a finite amplitude are signals with finite amplitudes. Mathematically this can be expressed by

$$
\begin{equation*}
|x(t)|<M<\infty \Rightarrow|T[x(t)]|<N<\infty, \quad \text { for all } t \tag{6.21}
\end{equation*}
$$

### 6.3.1.5 LTI Systems

Linear time-invariant systems or LTI systems are of special interest.
It is normally assumed that the systems are causal, since noncausal systems cannot be realised in the time domain.

- Systems that are composed of resistors, inductors, capacitors, transformers and linearly controlled sources (transistors in small-signal operation) can be described to a good approximation as LTI systems. However, caution is required in the case of positive feedback.


### 6.3.2 Elementary Signals

In order to describe systems their response to typical test signals is evaluated. The most important test signals are described below. The use of the symbols varies in the literature.

### 6.3.2.1 The Step Function

The step function $s(t)$ is zero until $t=0$ and is 1 for all $t>0$ (Fig. 6.17).

$$
s(t)= \begin{cases}0 & \text { for } t<0  \tag{6.22}\\ 1 & \text { else }\end{cases}
$$



Fig. 6.17. The step function

- The step function is a power signal.


### 6.3.2.2 The Rectangular Pulse

The rectangular pulse rect $(t)$ is a rectangular signal that is symmetrical about the time $t=0$ and that has unity area (Fig. 6.18).

$$
\operatorname{rect}(t)= \begin{cases}1, & \text { for }|t|<1 / 2  \tag{6.23}\\ 0, & \text { else }\end{cases}
$$



Fig. 6.18. The rectangular pulse

- The rectangular pulse is an energy signal.


### 6.3.2.3 The Triangular Pulse

The triangular pulse $\Lambda(t)$ is a triangular signal that is symmetrical about the time $t=0$ and that has unity area (Fig. 6.19).

$$
\Lambda(t)=\left\{\begin{array}{cl}
1-|t|, & \text { for }|t|<1  \tag{6.24}\\
0, & \text { else }
\end{array}\right.
$$



Fig. 6.19. The triangular pulse

- The triangular pulse is an energy signal.


### 6.3.2 4 The Gaussian Pulse

The Gaussian pulse $\Gamma(t)$ is a pulse that is symmetrical about the time $t=0$ and that has unity area (Fig. 6.20).

$$
\begin{equation*}
\Gamma(t)=\mathrm{e}^{-\Delta t^{2}} \tag{6.25}
\end{equation*}
$$

- The Gaussian pulse is an energy signal.


Fig. 6.20. The Gaussian pulse

### 6.3.2.5 The Impulse Function (Delta Function)

The impulse function is the limit of a family of realisable signals. The family being considered is the rectangular impulses

$$
\operatorname{rect}_{n}=n \cdot \operatorname{rect}(n \cdot t)
$$



Fig. 6.21. The impulse function as the limit of a family of rectangular pulses
All impulses have unity area. The sequence of these impulses converges to the limit $\delta(t)$ as $n \rightarrow \infty$, with the following properties

$$
\delta(t)=0 \quad \text { for } t \neq 0, \quad \int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1
$$

Because the value for $t=0$ is not defined, $\delta(t)$ is not a function in the usual sense. It is called the delta function, the impulse function or the Dirac impulse (Fig. 6.21). It is characterised by the following properties:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1, \quad \int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) \mathrm{d} t=f\left(t_{0}\right), \quad \delta(t)=\delta(-t) \tag{6.26}
\end{equation*}
$$

These properties mean:

- The delta function has unity area.
- The delta function filters out the function value under the integral of the function, where the argument of the delta function is zero.
- The delta function is an even function.

Note: The delta function can also be represented as the limit of a sequence of Gaussian functions. The functions become narrower and higher, while the area under the function is always unity.

The derivative (in a generalised sense) of the step function is the delta function:

$$
\begin{equation*}
[s(t)]^{\prime}=\delta(t), \quad \int_{-\infty}^{t} \delta(\tau) \mathrm{d} \tau=s(t) \tag{6.27}
\end{equation*}
$$

Example: Figure 6.22 (upper left) shows the function

$$
f(t)=s(t-1)+s(t-2)-2 \cdot s(t-3)
$$

Its generalised derivative is

$$
f^{\prime}(t)=\delta(t-1)+\delta(t-2)-2 \cdot \delta(t-3)
$$

The signal is shown directly beneath.


Fig. 6.22. Two signals (top) and their generalised derivatives (bottom)
The function $f(t)=s(t-2) \cdot \frac{t}{2}$ is shown on the right of Fig. 6.22. Its derivative is calculated by the product rule as

$$
f^{\prime}(t)=\left[s(t-2) \cdot \frac{t}{2}\right]^{\prime}=\delta(t-2) \cdot \frac{t}{2}+s(t-2) \cdot \frac{1}{2}=\delta(t-2)+\frac{1}{2} \cdot s(t-2)
$$

### 6.3.3 Shifting and Scaling of Time Signals

The function

$$
f(t)=s\left(t-t_{0}\right)
$$

represents a time-shifted step function in which the step is shifted or delayed by the time $t_{0}$ (Fig. 6.23).




Fig. 6.23. Time-shifted step function

The signal

$$
f(t)=\operatorname{rect}\left(\frac{t}{a}\right) \quad a>0
$$

represents a time-scaled rectangular pulse, where $a$ is the time-scaling factor (Fig. 6.24). For $a>1$ the pulse widens, and for $a<1$ it narrows.


Fig. 6.24. Time-scaled rectangular impulse
Example: The signal

$$
f(t)=\frac{3}{2} \cdot \Lambda\left(\frac{t}{2}-1\right)=\frac{3}{2} \cdot \Lambda\left(\frac{t-2}{2}\right)
$$

represents a time-scaled and time-shifted triangular pulse (Fig. 6.25).



Fig. 6.25. Time-scaled and time-shifted triangular impulse

### 6.3.4 System Responses

- LTI systems respond to a harmonic input signal with a harmonic output signal of the same frequency, while its amplitude and phase are usually changed.

Note: Systems responding to harmonic input signals with nonharmonic output signals are called nonlinear systems. The output signal contains components with frequencies different from the input signal.

Systems can be characterised by their output signals for defined input signals.

### 6.3.4.1 Impulse Response

The impulse response is the output signal of a system excited by a delta function (Fig. 6.26).

$$
g(t)=T\{\delta(t)\}
$$

Function $g(t)$ is also known as the weighting function of the system.


Fig. 6.26. Impulse response of an LTI system

Example: The impulse response of the RC circuit shown in Fig. 6.27 is a declining exponential function.


Fig. 6.27. Impulse response of an $R C$ low-pass filter
The capacitor is charged instantaneously by the impulse and then discharges via the resistor with a time constant $\tau=R C$. Multiplication by the step function $s(t)$ enforces a nonzero response only after the time $t=0$.

Note: In order to evaluate the impulse response of a real system the system is excited with narrow rectangular pulses. Delta pulses cannot be generated in reality. However, the narrower the pulses the lower is their energy content. The impulse amplitude cannot be increased arbitrarily for real systems since the systems' outputs are amplitude limited. Therefore the step response is often preferred.

### 6.3.4.2 Step Response

The step response is the output signal of a system that is fed with the step function (Fig. 6.28).


Fig. 6.28. Step response of an LTI system

- The step response is the integral of the impulse response.

$$
h(t)=\int_{-\infty}^{t} g(\tau) \mathrm{d} \tau
$$

Note: In order to determine the impulse response of a system, the step response is often determined first and the impulse response is calculated as its derivative.

Example: The RC circuit in Fig. 6.29 reacts to the step function with

$$
h(t)=s(t) \cdot\left(1-\mathrm{e}^{-t / \tau}\right)
$$

Derivation of the step response yields the impulse response:

$$
\begin{aligned}
g(t)=h^{\prime}(t) & =s^{\prime}(t) \cdot\left(1-\mathrm{e}^{-t / \tau}\right)+s(t) \cdot\left(1-\mathrm{e}^{-t / \tau}\right)^{\prime} \quad \text { (Product rule) } \\
& =\underbrace{\delta(t) \cdot\left(1-\mathrm{e}^{-t / \tau}\right)}_{(1-1)}+s(t) \cdot \frac{1}{\tau} \mathrm{e}^{-t / \tau}=s(t) \cdot \frac{1}{\tau} \mathrm{e}^{-t / \tau}=g(t)
\end{aligned}
$$

The delta function effectively filters out all elements of the summation except the element at $t=0$.


Fig. 6.29. Step response of an RC low-pass filter

### 6.3.4.3 System Response to Arbitrary Input Signals

The system shown in Fig. 6.30 with the impulse response $g(t)$ responds to an input signal $x(t)$ with an output signal given by

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) \cdot g(t-\tau) \mathrm{d} \tau \tag{6.28}
\end{equation*}
$$

The operation on $x(t)$ and $g(t)$ defined in Eq. (6.28) is known as convolution. This is often written symbolically

$$
y(t)=x(t) * g(t)
$$

Spoken as: $x$ convolved with $g$.


Fig. 6.30. Input and output signals of a system with the impulse response $g(t)$
Note: For the special input signal $x(t)=\delta(t)$ the system response is

$$
y(t)=\int_{-\infty}^{\infty} \delta(\tau) \cdot g(t-\tau) \mathrm{d} \tau=g(t)
$$

which is the impulse response.
Note: In practice, the system response is rarely calculated using convolution. It is more efficient to calculate in the frequency domain. However, in time discretesystems, such as digital filters, the convolution integral becomes a summation, which is calculated explicitly in signal processors.

### 6.3.4.4 Rules of Convolution

Let $f(t), g(t)$ and $h(t)$ be arbitrary time functions.
It holds that

$$
\begin{equation*}
0 * f(t)=0, \quad \delta(t) * f(t)=f(t) \tag{6.29}
\end{equation*}
$$

The delta function acts in convolution of functions as unity in the multiplication of numbers. This is also known as the convolution product, because of this property and the commutative, associative and distributive laws.

## Commutative Law

$$
\begin{equation*}
f(t) * g(t)=g(t) * f(t) \tag{6.30}
\end{equation*}
$$

- Input signal and impulse response can be exchanged (Fig. 6.31).


Fig. 6.31. Commutative law of convolution

## Associative Law

$$
\begin{equation*}
f(t) * g(t) * h(t)=f(t) *[g(t) * h(t)] \tag{6.31}
\end{equation*}
$$

- Two cascaded systems can be combined into a single system. The impulse response of the total system then is the convolution of the individual impulse responses (Fig. 6.32).


Fig. 6.32. Associative law of convolution


Fig. 6.33. Distributive law of convolution

## Distributive Law

$$
\begin{equation*}
(f(t)+g(t)) * h(t)=f(t) * h(t)+g(t) * h(t) \tag{6.32}
\end{equation*}
$$

- Each signal can be treated as if it passes through the system independently of other signals. The systems' outputs are finally added (Fig. 6.33) through the principle of superposition.


### 6.3.4.5 Transfer Function

An LTI system with an impulse response $g(t)$ reacts according to Eq. (6.28) to the special input signal $x(t)=\mathrm{e}^{\mathrm{j} \omega t}$ as follows:

$$
y(t)=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{j} \omega(t-\tau)} \cdot g(\tau) \mathrm{d} \tau=\mathrm{e}^{\mathrm{j} \omega t} \cdot \underbrace{\int_{-\infty}^{\infty} g(\tau) \cdot \mathrm{e}^{-\mathrm{j} \omega \tau} \mathrm{~d} \tau}_{G(\omega)}
$$

The input signal $\mathrm{e}^{\mathrm{j} \omega t}$ appears at the output weighted by the complex factor $G(\omega)$.

$$
y(t)=G(\omega) \cdot x(t), \quad \text { for } x(t)=\mathrm{e}^{\mathrm{j} \omega t}
$$

The factor $G(\omega)$ is called the transfer function of the system (Fig. 6.34).

$$
\begin{equation*}
G(\omega)=\int_{-\infty}^{\infty} g(t) \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \tag{6.33}
\end{equation*}
$$

- The transfer function is the Fourier transform of the impulse response. Either is equivalent in the representation of a system.


Fig. 6.34. System response to a complex harmonic input signal
Note: The transfer function for LTI systems with a known internal structure can be determined using complex calculus.

### 6.3.4.6 System Response Calculation in the Frequency Domain

It is often more efficient to calculate the system response to an arbitrary excitation in the frequency domain rather than using convolution according to Eq. (6.28).
Convolution in the time domain is equivalent to multiplication in the frequency domain.

$$
\begin{equation*}
y(t)=x(t) * g(t), \quad Y(\omega)=X(\omega) \cdot G(\omega) \tag{6.34}
\end{equation*}
$$

$X(\omega)$ and $Y(\omega)$ are the spectra of the input and output signals, respectively, and $G(\omega)$ is the transfer function of the system. The calculation of the system response is performed according to the following procedure (Fig. 6.35):
$\underset{\mathrm{x}(\mathrm{t})}{\text { Input Signal }} \longrightarrow \underset{\mathrm{g}(\mathrm{t})}{\text { Impulse Response }} \longrightarrow \underset{y(\mathrm{t})}{\text { Output Signal }}$

| $\Downarrow$ | Fourier <br> Transform | $\Downarrow$ | Inverse <br> Fourier <br> Transform |
| :---: | :---: | :---: | :---: | | $\Uparrow$ |
| :--- |
| $X(\omega)$ |

Input Frequency Spectrum
Transfer Function

Fig. 6.35. Calculation of the system response in the time domain and in the frequency domain

- calculate the input spectrum $X(\omega)$ by applying the Fourier transform to the input signal $x(t)$;
- calculate the transfer function $G(\omega)$ using complex calculus;
- calculate the output spectrum $Y(\omega)$ by multiplying the input spectrum with the transfer function;
- calculate the output signal $y(t)$ by applying the inverse Fourier transform to the output spectrum $Y(\omega)$.

Note: Despite the fact that this calculation method appears much more complicated than convolution, it is often the most suitable for problems in Communications.

### 6.3.5 Impulse and Step Response Calculation

### 6.3.5.1 Normalisation of Circuits

For easier manipulation all signals in systems theory are considered without their units. Problems occur when impulse and step responses for a particular physical system are investigated. In this case normalisation helps.

Impedance normalisation: All resistances are referred to the reference resistance $R_{\mathrm{r}}$. The normalised resistance values $R_{\mathrm{n}}$ are calculated as $R_{\mathrm{n}}=R / R_{\mathrm{r}}$. The reference resistance is chosen such that most resistances in the circuit are close to unity. The source resistance of the signal source or the load resistance are often suitable choices.
Frequency normalisation: All frequencies are referred to a reference frequency. Often a 'natural' frequency of the circuit is chosen, e.g. a corner or resonant frequency. The same applies to angular frequencies.

These two independent normalisations determine the normalisation of all other quantities. The complex impedances for inductances and capacitances are $\mathrm{j} \omega L_{\mathrm{n}}$ and $1 / \mathrm{j} \omega C_{\mathrm{n}}$ respectively.

Example: Normalise the circuit in Fig. 6.36.
The reference resistance is chosen as $R_{\mathrm{r}}=200 \Omega$. The reference angular frequency is $\omega_{\mathrm{r}}=1 / \sqrt{L C}=10^{5} \mathrm{~s}^{-1}$. It follows that $R_{\mathrm{n}}=1, C_{\mathrm{n}}=2$ and $L_{\mathrm{n}}=0.5$.

Table 6.5 summarises the normalisation relations for various circuit quantities.

Table 6.5. Summary of normalisation relations

| Quantity | Normalised quantity | Denormalisation |
| :---: | :--- | :--- |
| $R$ | $R_{\mathrm{n}}=\frac{R}{R_{\mathrm{r}}}$ | $R=R_{\mathrm{n}} \cdot R_{\mathrm{r}}$ |
| $\omega$ | $\omega_{\mathrm{n}}=\frac{\omega}{\omega_{\mathrm{r}}}$ | $\omega=\omega_{\mathrm{n}} \cdot \omega_{\mathrm{r}}$ |
| $t$ | $t_{\mathrm{n}}=t \cdot \omega_{\mathrm{r}}$ | $t=\frac{t_{\mathrm{n}}}{\omega_{\mathrm{r}}}$ |
| $C$ | $C_{\mathrm{n}}=C \cdot \omega_{\mathrm{r}} \cdot R_{\mathrm{r}}$ | $C=\frac{C_{\mathrm{n}}}{\omega_{\mathrm{r}} \cdot R_{\mathrm{r}}}$ |
| $L$ | $L_{\mathrm{n}}=L \cdot \frac{\omega_{\mathrm{r}}}{R_{\mathrm{r}}}$ | $L=L_{\mathrm{n}} \cdot \frac{R_{\mathrm{r}}}{\omega_{\mathrm{r}}}$ |
|  |  |  |
| $:$ reference resistance $\omega_{\mathrm{r}}:$ reference angular frequency |  |  |



Fig. 6.36. A circuit and its corresponding normalised circuit

### 6.3.5.2 Impulse and Step Response of First-Order Systems

Linear first-order systems are RC or RL circuits with one independent energy-storing component (capacitor or inductor). The general form of the transfer function of such systems is

$$
\begin{equation*}
G(\omega)=\frac{a_{0}+a_{1} \mathrm{j} \omega}{b_{0}+\mathrm{j} \omega}, \quad a_{i}, b_{0} \text { real } \tag{6.35}
\end{equation*}
$$

All coefficients $a_{i}, b_{0}$ are real. For stable systems $b_{0}>0$ must also hold. Function $G(\omega)$ is a rational, fractional function of $\omega$. It can be expanded to

$$
G(\omega)=a_{1}+\left(a_{0}-a_{1} b_{0}\right) \cdot \frac{1}{b_{0}+\mathrm{j} \omega}
$$

Each term can be transformed individually (see Table 6.7)

$$
a_{1} \multimap a_{1} \cdot \delta(t), \quad \text { and } \quad \frac{1}{b_{0}+\mathrm{j} \omega} \multimap s(t) \cdot \mathrm{e}^{-b_{0} t}
$$

The impulse response of a first-order system is then

$$
\begin{equation*}
g(t)=a_{1} \cdot \delta(t)+s(t) \cdot\left(a_{0}-a_{1} b_{0}\right) \cdot \mathrm{e}^{-b_{0} t} \tag{6.36}
\end{equation*}
$$

with coefficients $a_{0}, a_{1}, b_{0}$ according to Eq. (6.35).
The step response is the integral of the impulse response and is

$$
\begin{equation*}
h(t)=s(t) \cdot\left(\frac{a_{0}}{b_{0}}-\frac{a_{0}-a_{1} b_{0}}{b_{0}} \cdot \mathrm{e}^{-b_{0} t}\right) \tag{6.37}
\end{equation*}
$$

Example: The transfer function of the circuit in Fig. 6.37 is

$$
G(\omega)=\frac{R}{R+\mathrm{j} \omega L}=\frac{R / L}{R / L+\mathrm{j} \omega}
$$

Comparing the coefficients, it follows that $a_{0}=R / L, a_{1}=0$ and $b_{0}=R / L$.


Fig. 6.37. A system and its impulse and step response
Substituting in Eq. (6.36) yields the impulse response

$$
g(t)=s(t) \cdot \frac{R}{L} \cdot \mathrm{e}^{-\frac{R}{L} t}
$$

Using Eq. (6.37) yields the step response

$$
h(t)=s(t) \cdot\left(1-\mathrm{e}^{-\frac{R}{L} t}\right)
$$

Example: Determine the impulse and step response of the circuit in Fig. 6.38.


Fig. 6.38. A circuit and its normalised representation
The reference quantities are chosen as $R_{\mathrm{r}}=1.8 \mathrm{k} \Omega$ and $\omega_{\mathrm{r}}=1 / R_{\mathrm{r}} C=$ $(1.8 \mathrm{k} \Omega \cdot 22 \mathrm{nF})^{-1}=25252 \mathrm{~s}^{-1}$. The normalised quantities are shown on the right side of Fig. 6.38. The denormalised transfer function is

$$
G_{\mathrm{n}}(\omega)=\frac{1}{1+2 \| \frac{1}{\mathrm{j} \omega}}=\frac{1 / 2+\mathrm{j} \omega}{3 / 2+\mathrm{j} \omega}
$$

The coefficients $a_{0}=1 / 2, a_{1}=1, b_{0}=3 / 2$ can be derived from the transfer function. According to Eq. (6.36), it follows for the impulse response

$$
g_{\mathrm{n}}\left(t_{\mathrm{n}}\right)=\delta\left(t_{\mathrm{n}}\right)-s\left(t_{\mathrm{n}}\right) \cdot \mathrm{e}^{-\frac{3}{2} t_{\mathrm{n}}}
$$

According to Eq. (6.37) the step response is (Fig. 6.39)

$$
h\left(t_{\mathrm{n}}\right)=s\left(t_{\mathrm{n}}\right) \cdot\left(\frac{1}{3}+\frac{2}{3} \cdot \mathrm{e}^{-\frac{3}{2} t_{\mathrm{n}}}\right)
$$

The time axis of the impulse response is given in units of the normalised time $t_{\mathrm{n}}$. Denormalisation yields $t=t_{\mathrm{n}} / \omega_{\mathrm{r}}=t_{\mathrm{n}} R_{\mathrm{r}} C=39.6 \propto \mathrm{cs}$. The time constant of the exponential signal is then given by $\frac{2}{3} R_{\mathrm{r}} C=26.4 \alpha \mathrm{~s}$.



Fig. 6.39. Normalised impulse and step response of the circuit above

### 6.3.5.3 Impulse and Step Response of Second-Order Systems

Second-order systems are RLC circuits with two independent energy-storing components (capacitors and/or inductors). The transfer function has the form

$$
\begin{equation*}
G(\omega)=\frac{a_{0}+a_{1} \mathrm{j} \omega-a_{2} \omega^{2}}{b_{0}+b_{1} \mathrm{j} \omega-\omega^{2}}, \quad a_{i}, b_{i} \text { real } \tag{6.38}
\end{equation*}
$$

All coefficients $a_{i}, b_{i}$ are real, and $b_{0}>0$ and $b_{1}>0$ are the conditions for stable systems. The transfer function can be expanded to

$$
G(\omega)=a_{2}+\frac{c_{0}+c_{1} j \omega}{b_{0}+b_{1} j \omega-\omega^{2}}, \quad \text { with } \quad c_{0}=a_{0}-a_{2} b_{0}, \quad \text { and } \quad c_{1}=a_{1}-a_{2} b_{1}
$$

It is useful to represent the denominator polynomial in a form where the roots are given explicitly:

$$
\begin{gathered}
b_{0}+b_{1} \mathrm{j} \omega-\omega^{2}=\left(\mathrm{j} \omega-p_{1}\right) \cdot\left(\mathrm{j} \omega-p_{2}\right) \\
p_{1 / 2}=-\frac{b_{1}}{2} \pm \sqrt{\frac{b_{1}^{2}}{4}-b_{0}}
\end{gathered}
$$

Note: The roots $p_{1}, p_{2}$ are either both real valued or are complex conjugates.
At the zeros of the denominator polynomial the transfer function exhibits poles; therefore the roots (zeros) are designated $p_{1}, p_{2}$.

Note: $\quad$ The special case where both roots are equal, i.e. $p_{1}=p_{2}$ (double-pole position), is excluded in further consideration.

The transfer function can be expressed as the sum of two partial fractions, which can be transformed individually. The impulse resonse is then

$$
\begin{array}{|cccc|}
\hline G(\omega)= & a_{2}+\frac{Z_{1}}{\left(\mathrm{j} \omega-p_{1}\right)}+\frac{Z_{2}}{\left(\mathrm{j} \omega-p_{2}\right)}  \tag{6.39}\\
\vdots & \vdots & \vdots & \vdots \\
g(t)= & a_{2} \delta(t)+Z_{1} \cdot s(t) \cdot \mathrm{e}^{p_{1} t}+Z_{2} \cdot s(t) \cdot \mathrm{e}^{p_{2} t} \\
\hline
\end{array}
$$

where

$$
\begin{gathered}
Z_{1}=\frac{c_{0}+c_{1} p_{1}}{p_{1}-p_{2}}, \quad Z_{2}=\frac{c_{0}+c_{1} p_{2}}{p_{2}-p_{1}}, \quad p_{1} \neq p_{2}, \\
\text { with } c_{0}=a_{0}-a_{2} b_{0}, \text { and } c_{1}=a_{1}-a_{2} b_{1} \\
p_{1}=-\frac{b_{1}}{2}+\sqrt{\frac{b_{1}^{2}}{4}-b_{0}}, \quad p_{2}=-\frac{b_{1}}{2}-\sqrt{\frac{b_{1}^{2}}{4}-b_{0}}
\end{gathered}
$$

The step response is

$$
\begin{equation*}
h\left(t_{\mathrm{n}}\right)=a_{2} \cdot s\left(t_{\mathrm{n}}\right)+\frac{Z_{1}}{p_{1}} \cdot s\left(t_{\mathrm{n}}\right) \cdot\left[\left(\mathrm{e}^{p_{1} t_{\mathrm{n}}}-1\right)+\frac{Z_{2}}{p_{2}} \cdot\left(\mathrm{e}^{p_{2} t_{\mathrm{n}}}-1\right)\right] \tag{6.40}
\end{equation*}
$$

with the coefficients $a_{i}, b_{i}$ given by Eq. (6.38).
Example: Determine the impulse response of the circuit in Fig. 6.40. The reference quantities are chosen to be $R_{\mathrm{r}}=680 \Omega$, and $\omega_{\mathrm{r}}=1 / \sqrt{L C} \approx 45000 \mathrm{~s}^{-1}$. The normalised quantities (with small rounding errors) can be derived from these and are given on the right side of the diagram.


Fig. 6.40. Circuit and its normalised form
The normalised transfer function is given by

$$
G_{\mathrm{n}}(\omega)=\frac{\frac{1}{\mathrm{j} \omega}}{\frac{1}{\mathrm{j} \omega}+1+\mathrm{j} \omega}=\frac{1}{1+\mathrm{j} \omega-\omega^{2}}
$$

Therefore $a_{0}=1, a_{1}=0, a_{2}=0, b_{0}=1, b_{1}=1$. It follows that $c_{0}=1$, $c_{1}=0$ and $p_{1 / 2}=-\frac{1}{2} \pm \mathrm{j} \frac{\sqrt{3}}{2}$, and $Z_{1}=\frac{1}{\mathrm{j} \sqrt{3}}, Z_{2}=-Z_{1}$.
Substituting Eq. (6.39) gives the step response

$$
g_{\mathrm{n}}(t)=s(t) \cdot\left(\frac{1}{\mathrm{j} \sqrt{3}} \cdot \mathrm{e}^{p_{1} t}-\frac{1}{\mathrm{j} \sqrt{3}} \cdot \mathrm{e}^{p_{2} t}\right)
$$

The real part of the exponents can be factored out

$$
g_{\mathrm{n}}(t)=s(t) \cdot \mathrm{e}^{-1 / 2 t} \cdot \frac{1}{\sqrt{3}} \underbrace{\frac{1}{\mathrm{j}}\left(\mathrm{e}^{\mathrm{j} \sqrt{3} / 2 t}-\mathrm{e}^{-\mathrm{j} \sqrt{3} / 2 t}\right)}_{2 \cdot \sin (\sqrt{3} / 2 t)}
$$

The variable $t$ represents the normalised time. The impulse response of the circuit can be represented by oscillations exhibiting an exponential decay.

$$
g_{\mathrm{n}}\left(t_{\mathrm{n}}\right)=s\left(t_{\mathrm{n}}\right) \cdot \frac{2}{\sqrt{3}} \cdot \mathrm{e}^{-1 / 2 t_{\mathrm{n}}} \cdot \sin \left(\frac{\sqrt{3}}{2} t_{\mathrm{n}}\right)
$$

For large enough damping, there are no oscillations (Fig. 6.41). For the normalised quantities $R_{\mathrm{n}}=4, L_{\mathrm{n}}=1$ and $C_{\mathrm{n}}=1 / 3$, the normalised transfer function is given by

$$
G_{\mathrm{n}}(\omega)=\frac{3}{3+4 \mathrm{j} \omega-\omega^{2}}
$$



Fig. 6.41. Normalised impulse response of the circuit in Fig. 6.40e and the normalised impulse response of a circuit with greater damping

The roots of the denominator polynomial are purely real: $p_{1 / 2}=-2 \pm 1$. The calculation of the impulse response shows no imaginary part in the exponential terms that could be factored out, i.e. there is no periodic component in the signal. The impulse response is the difference between two decaying exponential functions (see the right side of Fig. 6.41).

$$
g_{\mathrm{n}}\left(t_{\mathrm{n}}\right)=s\left(t_{\mathrm{n}}\right) \cdot Z_{1} \cdot\left(\mathrm{e}^{p_{1} t_{\mathrm{n}}}-\mathrm{e}^{p_{2} t_{\mathrm{n}}}\right)=s\left(t_{\mathrm{n}}\right) \cdot \frac{3}{2} \cdot\left(\mathrm{e}^{-t_{\mathrm{n}}}-\mathrm{e}^{-3 t_{\mathrm{n}}}\right)
$$

### 6.3.6 Ideal Systems

Ideal systems are systems with idealised properties, which real systems can only approximate. Ideal systems are used as models to discuss the basic properties of real systems.

### 6.3.6.1 Distortion-Free Systems

A distortion-free system transmits a signal without changing its form. Changes in the amplitude and time shifts are permitted (Fig. 6.42). For an arbitrary input signal $x(t)$ it holds that

$$
y(t)=k \cdot x\left(t-t_{0}\right), \quad \text { for causal systems } t_{0} \geq 0
$$

where $k$ is an arbitrary real amplitude factor, and $t_{0}$ is an arbitrary real delay time.


Fig. 6.42. Examples of output signals of distortion-free systems excited with a triangular pulse. The signals in the last row originate from nondistortion-free systems

The transfer function of the distortion-free system is

$$
G(\omega)=k \cdot \mathrm{e}^{-\mathrm{j} \omega t_{0}}
$$

It follows for the magnitude and the phase of the transfer function that

$$
\begin{equation*}
|G(\omega)|=k, \quad \varphi(\omega)=-\omega \cdot t_{0} \tag{6.41}
\end{equation*}
$$

- A distortion-free system has a constant attenuation (or gain).
- A distortion-free system has a linear phase response.

Note: A system with constant gain over all frequencies is known as an all-pass filter.



Fig. 6.43. Magnitude and phase responses of the transfer function of a distortion-free system
For the description of systems other quantities derived from the transfer function are used.

## Attenuation constant

$$
\begin{equation*}
a(\omega)=-20 \log _{10}|G(\omega)|(\mathrm{dB}) \tag{6.42}
\end{equation*}
$$

## Phase constant

$$
\begin{equation*}
b(\omega)=-\varphi(\omega) \tag{6.43}
\end{equation*}
$$

## Phase delay

$$
\begin{equation*}
\tau_{\mathrm{p}}=\frac{b(\omega)}{\omega} \tag{6.44}
\end{equation*}
$$

## Group delay

$$
\begin{equation*}
\tau_{\mathrm{g}}=\frac{\mathrm{d} b(\omega)}{\mathrm{d} \omega} \tag{6.45}
\end{equation*}
$$

A distortion-free system thus exhibits constant attenuation and constant group delay for all frequencies. This means that all frequency components of a signal are delayed by the same amount of time and therefore appear with the correct phase at the output of the system.
If this is not the case, it is known as linear delay distortion (phase distortion). If the attenuation is not constant this is known as linear attenuation distortion.

Note: Nonlinear distortions are different from linear distortions. The former can create frequency components that were not contained in the original input signal.

### 6.3.6.2 Ideal Low-Pass Filter

The ideal low-pass filter passes signals in the passband up to the critical frequency $f_{\mathrm{c}}$ $\left(\omega_{\mathrm{c}}\right)$ without any distortion. Signal components above the critical frequency are suppressed completely. Its transfer function is

$$
G(\omega)=\left\{\begin{array}{cl}
k \cdot \mathrm{e}^{-\mathrm{j} \omega t_{0}}, & \text { for }|\omega| \leq \omega_{\mathrm{c}}  \tag{6.46}\\
0, & \text { else }
\end{array}\right.
$$

where $k$ is a real amplitude factor, and $t_{0}$ is the group delay time (signal delay time) of the low-pass filter system (Fig. 6.44).


Fig. 6.44. Transfer function of the ideal low-pass filter
The impulse response of the ideal low-pass filter is

$$
\begin{equation*}
g(t)=k \cdot \frac{\omega_{\mathrm{c}}}{\propto} \cdot \operatorname{sinc}\left[\omega_{\mathrm{c}}\left(t-t_{0}\right)\right]=2 k f_{\mathrm{c}} \cdot \operatorname{sinc}\left[2 \propto f_{\mathrm{c}}\left(t-t_{0}\right)\right] \tag{6.47}
\end{equation*}
$$



Fig. 6.45. Impulse response of the ideal low-pass filter
Note: The sinc function is defined as

$$
\operatorname{sinc}(x)=\left\{\begin{array}{cl}
1, & \text { for } x=0  \tag{6.48}\\
\frac{\sin x}{x}, & \text { else }
\end{array}\right.
$$

- The ideal low-pass filter is a noncausal system. The impulse response appears before the input signal arrives.

The impulse response assumes its maximum value at $t=t_{0}$, and $g\left(t_{0}\right)=k \omega_{\mathrm{c}} / \propto=2 k f_{\mathrm{c}}$. Therefore $t_{0}$ represents the propagation delay time (Fig. 6.45).
The step response of the ideal low-pass filter is (Fig. 6.46)

$$
\begin{equation*}
h(t)=\frac{k}{2}+\frac{k}{\propto} \cdot \operatorname{Si}\left(\omega_{\mathrm{c}}\left(t-t_{0}\right)\right) \tag{6.49}
\end{equation*}
$$



Fig. 6.46. Step response of the ideal low-pass filter
Note: The step response assumes nonzero values before the time $t=0$.
Note: The Si function is defined as (Integral-Sine)

$$
\begin{equation*}
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin \tau}{\tau} \mathrm{~d} \tau \tag{6.50}
\end{equation*}
$$

The Si function cannot be represented analytically. An approximation can be made by a power series:

$$
\begin{aligned}
\operatorname{Si}(x) & =x-\frac{x^{3}}{18}+\frac{x^{5}}{600}-\frac{x^{7}}{35280} \ldots \\
& =x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\frac{x^{7}}{7 \cdot 7!} \ldots+\frac{(-1)^{i} x^{2 i+1}}{(2 i+1) \cdot(2 i+1)!} \cdots
\end{aligned}
$$

The overshoot is characteristic and amounts to $8.6 \%$ of the steady-state value, independent of the bandwidth of the system. Overshoot in band-limited systems is known as Gibb's phenomenon.
The impulse response approaches a steady state value of $h_{\infty}=k$. At the time $t=t_{0}$ it passes through $k / 2$, half the final value, at which point the slope (rate of change) of the response is maximum.
The settling time is defined by the time taken to the intersection of the tangent of the turning point of the step response with the input signal start value, and the intersection of the tangent with the input signal steady-state value. The settling time $t_{\mathrm{s}}$ of the ideal low-pass filter is

$$
\begin{equation*}
t_{\mathrm{s}}=\frac{\infty}{\omega_{\mathrm{c}}}=\frac{1}{2 f_{\mathrm{c}}} \tag{6.51}
\end{equation*}
$$

- The step response of the ideal low-pass filter reaches the steady-state value faster with increasing critical frequency.


## Time-Bandwidth Product

The impulse response $g(t)$ of the ideal low-pass filter is infinitely long. However, it can be characterised by a pulse width. In order to do so, a rectangular impulse with an area
equal to $g(t)$ is constructed, where the amplitude is equal to the maximum amplitude of the impulse response. Its width is defined as the pulse width $\Delta t_{\mathrm{p}}$.

$$
\Delta t_{\mathrm{p}}=\frac{1}{g_{\max }} \cdot \int_{-\infty}^{\infty} g(t) \mathrm{d} t
$$

For the ideal low-pass filter this definition yields the pulse width of the impulse response

$$
\begin{equation*}
\Delta t_{\mathrm{p}}=\frac{1}{2 f_{\mathrm{c}}} \tag{6.52}
\end{equation*}
$$

The settling time and the width of the impulse response are equal for the ideal low-pass filter.

- The width of the impulse response is inversely proportional to the bandwidth of the low-pass filter.

The time-bandwidth product

$$
f_{\mathrm{c}} \cdot \Delta t_{\mathrm{p}}=\frac{1}{2}
$$

is constant. This concept can be generalised. With the definition for the bandwidth

$$
B=\sqrt{\int_{-\infty}^{\infty} \omega^{2}|G(\omega)|^{2} \mathrm{~d} \omega}
$$

and for the pulse width

$$
\Delta T=\sqrt{\int_{-\infty}^{\infty} t^{2}|g(t)|^{2} \mathrm{~d} t}
$$

using the normalisation condition

$$
\int_{-\infty}^{\infty}|g(t)|^{2} \mathrm{~d} t=1
$$

the so-called uncertainty principle follows:

$$
\begin{equation*}
B \cdot \Delta T \geq \sqrt{\frac{\propto}{2}} \tag{6.53}
\end{equation*}
$$

This relation holds for all kinds of low-pass filters. The smallest time-bandwidth product achieve filters with a Gaussian impulse response.

- The bandwidth and pulse width of the impulse response are inversely proportional for a given type of filter.


### 6.3.6.3 Ideal Bandpass Filter

The ideal bandpass filter passes signals within a frequency range $\Delta f(\Delta \omega)$ without any distortion. In the stop-bands all signal components are completely suppressed. The transfer function is

$$
G(\omega)=\left\{\begin{array}{cl}
k \cdot \mathrm{e}^{-\mathrm{j} \omega t_{0}}, & \text { for }\left|\omega-\omega_{0}\right|<\frac{\Delta \omega}{2}  \tag{6.54}\\
0, & \text { else }
\end{array}\right.
$$

where $\omega_{0}$ is the centre (angular) frequency of the bandpass filter, and $\Delta \omega$ is its bandwidth. This equation only makes sense if the centre frequency is at least twice the bandwidth $\left(\omega_{0}>\Delta \omega / 2\right)$.


Fig. 6.47. Transfer function and impulse response of the ideal bandpass filter
The impulse response of the ideal bandpass filter is

$$
\begin{align*}
g(t) & =k \cdot \Delta f \cdot \operatorname{sinc}\left[\propto \Delta f\left(t-t_{0}\right)\right] \cdot 2 \cos \left[2 \propto f_{0}\left(t-t_{0}\right)\right]  \tag{6.55}\\
& =k \cdot \frac{\Delta \omega}{2 \propto} \cdot \operatorname{sinc}\left[\Delta \omega\left(t-t_{0}\right)\right] \cdot 2 \cos \left[2 \omega_{0}\left(t-t_{0}\right)\right]
\end{align*}
$$

The impulse response resembles a signal with a centre frequency $f_{0}$ and with an envelope that corresponds to the impulse response of a low-pass filter with a cutoff frequency of $\Delta f / 2$ (Fig. 6.47).

- The ideal bandpass filter is a noncausal system. The impulse response appears before the input signal arrives.


### 6.4 Fourier Transforms

### 6.4.1 Principle

The principle of the Fourier transform is to transform a signal $f(t)$ from the time domain into a signal $F(\omega)$ in the frequency domain such that this transform is reversible and unambiguous (Fig. 6.48).
The Fourier transform represents a time function as a superposition of an infinite number of harmonic exponential functions. Similar to the Fourier series, which describes a periodic function as a summation of infinitely discrete oscillations, the Fourier transform is the integral over an infinitely large number of oscillations. By expanding this concept to continuous spectra, nonperiodic functions can also be represented in the frequency domain.


Fig. 6.48. Principle of the Fourier transform
It is often easier to calculate the effect of filters and transmission systems in the frequency domain. Problems requiring the solution of a linear differential equation in the time domain can be treated by solving an algebraic equation in the frequency domain.
Application of the inverse Fourier transform yields the corresponding signal in the time domain.

### 6.4.2 Definition

The Fourier transform of a function of time $f(t)$ is defined as

$$
\begin{equation*}
F(f)=\int_{-\infty}^{\infty} f(t) \cdot \mathrm{e}^{-\mathrm{j} 2 x f t} \mathrm{~d} t \tag{6.56}
\end{equation*}
$$

The inverse Fourier transform is

$$
\begin{equation*}
f(t)=\int_{-\infty}^{\infty} F(f) \cdot \mathrm{e}^{\mathrm{j} 2 \alpha f t} \mathrm{~d} f \tag{6.57}
\end{equation*}
$$

This is also written as

$$
F(f)=\mathcal{F}\{f(t)\}, \quad f(t)=\mathcal{F}^{-1}\{F(f)\}
$$

or by using the correspondence symbol $\circ \longrightarrow$

$$
f(t) \circ F(f), \quad \text { or } \quad f(t) \backsim F(\omega)
$$

This symbol can be read in both directions and thus illustrates the reversibility of the transformation. The filled circle corresponds to the frequency domain.

Note: Occasionally the representation of the transform with the angular frequency $\omega$ as the parameter in $F(\omega)$ is used. In Eq. (6.56) $2 \propto f$ is replaced by $\omega$. The Fourier transform is then

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{\infty} f(t) \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \tag{6.58}
\end{equation*}
$$

Note: When using this representation of the Fourier transform watch out for a factor $2 \propto$, since the inverse Fourier transform is then expressed by

$$
\begin{equation*}
f(t)=\frac{1}{2 \propto} \cdot \int_{-\infty}^{\infty} F(\omega) \cdot \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega \tag{6.59}
\end{equation*}
$$

In this chapter both representations of the Fourier transform are used, if they differ from each other.

Note: In the literature a representation with $F(\mathrm{j} \omega)$ is often found. It fully corresponds to the representation given by $F(\omega)$. It is found especially where the relationship with the Laplace transform is emphasised.

### 6.4.3 Representation of the Fourier Transform

The Fourier transform $S(f)$ of a real-valued time signal is a complex function and can therefore be represented as the sum of the real and imaginary parts.

$$
S(f)=R(f)+\mathrm{j} \cdot X(f)
$$

For real-valued functions of time it holds that

$$
\begin{align*}
& R(f)=\operatorname{Re}\{S(f)\}=\int_{-\infty}^{\infty} f(t) \cdot \cos (2 \propto f t) \mathrm{d} t  \tag{6.60}\\
& X(f)=\operatorname{Im}\{S(f)\}=-\int_{-\infty}^{\infty} f(t) \cdot \sin (2 \propto f t) \mathrm{d} t \tag{6.61}
\end{align*}
$$

Furthermore

$$
R(f)=R(-f), \quad X(f)=-X(-f)
$$

For the Fourier transform of real-valued functions of time it holds that

- The real part is an even function.
- The imaginary part is an odd function.

Like any complex function, the Fourier transform can also be represented in polar form:

$$
S(f)=|S(f)| \cdot \mathrm{e}^{\mathrm{j} \varphi(f)}
$$

with

$$
|S(f)|=\sqrt{R^{2}(f)+X^{2}(f)}, \quad \text { and } \quad \varphi(f)=\arctan \left[\frac{X(f)}{R(f)}\right]
$$

For real-valued functions of time it holds that

- The magnitude of the Fourier transform is an even function.
- The phase of the Fourier transform is an odd function.

Note: When dealing with the Fourier transform it may be useful to also work with complex functions of time, e.g. $f(t)=\mathrm{e}^{\mathrm{j} \omega t}$. The statements above about symmetries hold only for real-valued functions.

### 6.4.3.1 Symmetry Properties

For real-valued functions of time it holds that

- The Fourier transform of even functions of time is purely real.
- The Fourier transform of odd functions of time is purely imaginary.

Example: The cosine function is an even function. Its Fourier transform is
$\frac{1}{2} \delta\left(f+f_{0}\right)+\frac{1}{2} \delta\left(f-f_{0}\right)$. It is purely real (Fig. 6.49).


Fig. 6.49. Cosine and sine functions in the frequency domain
The sine-function is an odd function. Its Fourier transform is
$-\frac{\mathrm{j}}{2} \delta\left(f-f_{0}\right)+\frac{\mathrm{j}}{2} \delta\left(f+f_{0}\right)$. It is purely imaginary (Fig. 6.49).

### 6.4.4 Overview: Properties of the Fourier Transform

Let $s(t)$ and $r(t)$ be abitrary functions of time, then $S(f)$ and $R(f)(S(\omega)$ and $R(\omega)$, respectively) are their corresponding Fourier transforms. Whenever the two notations differ the spectrum with $\omega$ is also given. Table 6.6 summarises the properties of the Fourier transform.

Table 6.6. Properties of the Fourier transform


Table 6.6. (cont.)

| Duality |  |
| :---: | :---: |
| $S(t)$ | $\square s(-f)$ |
|  | 0 - $2 \propto \cdot s(-\omega)$ |
| Multiplication |  |
|  | $\cdots \quad R(f) * S(f)$ |
|  | $\leadsto \frac{1}{2 \propto} R(\omega) * S(\omega)$ |
| Convolution |  |
| $a \cdot r(t)+b \cdot s(t) \quad \longrightarrow \quad a \cdot R(f)+b \cdot S(f)$ |  |
| $\begin{aligned} & \text { Time shift } \\ & s\left(t-t_{0}\right) \end{aligned}$ | $\begin{array}{ll} \because & S(f) \cdot \mathrm{e}^{-\mathrm{j} 2 \alpha f t_{0}} \\ \hdashline & S(\omega) \cdot \mathrm{e}^{-\mathrm{j} \omega t_{0}} \end{array}$ |
| Frequency shift $s(t) \cdot \mathrm{e}^{\mathrm{j} 2 \times f_{0} t}$ | $\cdots \quad S\left(f-f_{0}\right)$ |
| $s(t) \cdot \mathrm{e}^{\mathrm{j} \omega_{0} t}$ | $\cdots \quad S\left(\omega-\omega_{0}\right)$ |
| Time scaling $s\left(\frac{t}{a}\right)$ | $\cdots \quad\|a\| \cdot S(a \cdot f)$ |
| $\begin{aligned} & \text { Differentiation } \\ & \frac{\mathrm{d}}{\mathrm{~d} t} s(t) \end{aligned}$ | $\begin{aligned} & \because \mathrm{j} 2 \propto f \cdot S(f) \\ & \because \mathrm{j} \omega \cdot S(\omega) \end{aligned}$ |
| Integration $\int^{t} s(\tau) \mathrm{d} \tau$ | $\circ \frac{1}{\mathrm{j} 2 \propto f} \cdot S(f)+\frac{1}{2} \cdot S(0) \cdot \delta(f)$ |
|  | $\circ \frac{1}{\mathrm{j} \omega} \cdot S(\omega)+\propto \cdot S(0) \cdot \delta(\omega)$ |

### 6.4.5 Fourier Transforms of Elementary Signals

### 6.4.5.1 Spectrum of the Delta Function

The Fourier transform of the delta function is

$$
\begin{gather*}
S(f)=\int_{-\infty}^{\infty} f(t) \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{-\infty}^{\infty} \delta(t) \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\mathrm{e}^{0}=1 \\
\delta(t) \longrightarrow 1 \tag{6.62}
\end{gather*}
$$

- A delta impulse contains all frequencies with equal amplitudes (Fig. 6.50).

Because of the duality of time and frequency it also holds that a signal that is constant in time ( DC signal) corresponds to a delta impulse in the spectrum.

$$
\begin{equation*}
1 \circ \delta(f), \quad \text { or } \quad 1 \circ \bullet 2 \propto \delta(\omega) \tag{6.63}
\end{equation*}
$$




Fig. 6.50. Delta impulse and real part of its Fourier transform

### 6.4.5.2 Spectrum of the Signum and the Step Functions

The signum function is similar to the step function.

$$
\operatorname{sign}(t)=\left\{\begin{array}{r}
1 t>0 \\
0 t=0 \\
-1 t<0
\end{array}\right.
$$

The Fourier transform is

$$
\begin{equation*}
\operatorname{sign}(t) \odot-\mathrm{j} \frac{1}{\propto f}, \quad \text { or } \quad \operatorname{sign}(t) \odot \cdot \frac{2}{\mathrm{j} \omega} \tag{6.64}
\end{equation*}
$$

The signum function is an odd function; therefore its spectrum is purely imaginary (Fig. 6.51).



Fig. 6.51. Signum function and the imaginary part of its Fourier transform
Unlike the signum function the step function has a DC component. This can also be seen in its spectrum. The step function can be expressed using the signum function as

$$
\begin{aligned}
s(t)=\frac{1}{2} \cdot \operatorname{sign}(t) & + \\
\vdots & \frac{1}{2} \\
\bullet & ! \\
\frac{-\mathrm{j}}{2 \propto f} & +\frac{1}{2} \delta(f), \\
& \text { or } \quad \frac{1}{\mathrm{j} \omega}
\end{aligned}+\propto \delta(\omega) .
$$

Note: The representation of the step function through the signum function is not exact for $t=0$ (Fig. 6.52). Generally, the inverse Fourier transform of the spectra of discontinuous functions at the discontinuity points is given by the average of the right- and left-side limits (in this case 0 ).


Fig. 6.52. Step function (left) and the imaginary (centre) and real parts (right) of its Fourier transform

### 6.4.5.3 Spectrum of the Rectangular Pulse

The spectrum of the rectangular pulse is (Fig. 6.53)

$$
\begin{equation*}
S(f)=\int_{-\infty}^{\infty} \operatorname{rect}(t) \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{-1 / 2}^{1 / 2} \mathrm{e}^{-\mathrm{j} 2 \propto f t} \mathrm{~d} t=\frac{-1}{\mathrm{j} 2 \propto f}\left(\mathrm{e}^{-\mathrm{j} \propto f}-\mathrm{e}^{\mathrm{j} \propto f}\right) \tag{6.65}
\end{equation*}
$$

Applying the following representation of the sine function:

$$
\sin x=\frac{1}{2 \mathrm{j}}\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}\right),
$$

Equation (6.65) holds that

$$
\begin{equation*}
S(f)=\frac{\sin \propto f}{\propto f}=\operatorname{sinc}(\propto f) \tag{6.66}
\end{equation*}
$$




Fig. 6.53. Rectangular pulse and its amplitude spectrum
For pulses of arbitrary width, applying the similarity theorem, the following holds:

$$
\begin{gather*}
\operatorname{rect}(t) \\
 \tag{6.67}\\
\\
\operatorname{rect}\left(\frac{t}{T}\right) \\
\text { or } \quad \operatorname{rect}\left(\frac{t}{T}\right) \\
\hline
\end{gather*}
$$

### 6.4.5.4 Spectrum of the Triangular Pulse

The triangular pulse $\Lambda(t)$ can be represented as the convolution of the rectangular pulse with itself.

$$
\Lambda(t)=\operatorname{rect}(t) * \operatorname{rect}(t)
$$

A convolution in the time domain corresponds to a multiplication in the frequency domain


It therefore holds that (Fig. 6.54)

$$
\begin{equation*}
\Lambda(t) \propto \operatorname{sinc}^{2}(\propto f) \tag{6.69}
\end{equation*}
$$




Fig. 6.54. Triangular pulse and its amplitude spectrum

### 6.4.5.5 Spectrum of the Gaussian Pulse

The Gaussian pulse

$$
\Gamma(t)=\mathrm{e}^{-\Delta t^{2}}
$$

again has a Gaussian amplitude spectrum.

$$
S(f)=\int_{-\infty}^{\infty} \mathrm{e}^{-\infty t^{2}} \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t
$$

Applying the Euler formula to $\mathrm{e}^{\mathrm{j} \omega t}$ yields

$$
\int_{-\infty}^{\infty} \mathrm{e}^{-\alpha t^{2}} \cdot \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{-\infty}^{\infty} \mathrm{e}^{-\alpha t^{2}} \cdot \cos \omega t \mathrm{~d} t-\underbrace{\int_{-\infty}^{\infty} \mathrm{e}^{-\alpha t^{2}} \cdot \sin \omega t \mathrm{~d} t}_{=0}
$$

The second integrand is the product of an even (Gaussian) with an odd (sinusoidal) function and is therefore itself an odd function. Its integral is zero. The first integrand is an even function. Therefore the integral over $[-\infty \ldots 0]$ is equal to the integral over $[0 \ldots \infty]$.

$$
S(f)=2 \cdot \int_{0}^{\infty} \mathrm{e}^{-\Delta t^{2}} \cdot \cos (2 \propto f t) \mathrm{d} t
$$

The definite integral can be looked up in a table of integrals

$$
\int_{0}^{\infty} \mathrm{e}^{-a^{2} t^{2}} \cdot \cos b t \mathrm{~d} t=\frac{\sqrt{\infty}}{2 a} \cdot \mathrm{e}^{-b^{2} / 4 a^{2}}
$$

Therefore $a^{2}=\propto$ and $b=2 \propto f$ yields the spectrum of the Gaussian pulse

$$
\begin{equation*}
\Gamma(t)=\mathrm{e}^{-\alpha t^{2}} \circ \mathrm{e}^{-\alpha f^{2}}=\Gamma(f) \tag{6.70}
\end{equation*}
$$

Obviously, this function is converted to its spectrum by swapping the time and frequency variables. Functions with this property are called self-reciprocal.

### 6.4.5.6 Spectrum of Harmonic Functions

The Fourier transform of the complex harmonic function $\mathrm{e}^{\mathrm{i} 2 \times x_{0} t}$ is

$$
\mathrm{e}^{\mathrm{j} 2 \alpha f_{0} t} \circ \cdot \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{j} 2 \propto f_{0} t} \cdot \mathrm{e}^{-\mathrm{j} 2 \alpha f t} \mathrm{~d} t=\delta\left(f-f_{0}\right), \quad \text { or } \quad 2 \propto \delta\left(\omega-\omega_{0}\right)
$$

The real-valued harmonic cosine (Fig. 6.55) and sine (Fig. 6.56) functions of time can be composed of two periodic exponential functions.

$$
\begin{array}{r}
\cos 2 \propto f_{0} t= \\
\frac{1}{2} \cdot \mathrm{e}^{\mathrm{j} 2 \times f_{0} t}+\frac{1}{2} \cdot \mathrm{e}^{-\mathrm{j} 2 \times f_{0} t} \\
! \\
\frac{1}{2} \cdot \delta\left(f-f_{0}\right)+\frac{1}{2} \cdot \delta\left(f+f_{0}\right) \\
\text { or } \propto \cdot \delta\left(\omega-\omega_{0}\right)+\propto \cdot \delta\left(\omega+\omega_{0}\right)
\end{array}
$$




Fig. 6.55. Fourier transform of the cosine function

$$
\begin{aligned}
\sin 2 \propto f_{0} t= & \frac{1}{2 \mathrm{j}} \cdot \mathrm{e}^{\mathrm{j} 2 \propto f_{0} t}-\frac{1}{2 \mathrm{j}} \cdot \mathrm{e}^{-\mathrm{j} 2 \propto f_{0} t} \\
& ! \\
& \frac{-\mathrm{j}}{2} \cdot \delta\left(f-f_{0}\right)+\frac{\mathrm{j}}{2} \cdot \delta\left(f+f_{0}\right) \\
& \text { or }-\mathrm{j} \propto \delta\left(\omega-\omega_{0}\right)+\mathrm{j} \alpha \delta\left(\omega+\omega_{0}\right)
\end{aligned}
$$

The appearance of a pair of delta pulses in the spectrum indicates a periodic component in the signal. As is generally known, all periodic functions can be represented in a Fourier series as a sum of sine and cosine functions. Their spectrum is therefore always a discrete line spectrum, i.e. it consists of delta pulses in the frequency domain.


Fig. 6.56. Fourier transform of the sine function

### 6.4.6 Summary of Fourier Transforms

The graphs in Table 6.7 represent the functions of time $s(t)$ and the magnitude of their corresponding Fourier transform $|S(f)|$.

Table 6.7. Fourier transforms of elementary signals


Table 6.7. (cont.)

| Signal  Spectrum <br> $s(t)$ $\curvearrowleft$ $S(f), S(\omega)$ |
| :---: |
| Gaussian pulse $\begin{aligned} \mathrm{e}^{-\alpha t^{2}} \hookleftarrow \cdot & \mathrm{e}^{-\alpha f^{2}} \\ & \mathrm{e}^{-\omega^{2} / 4 \alpha} \end{aligned}$   |
| Delta impulse sequence |
| Step function |
| Signum function |
| Cosine waveform $\begin{array}{rll} \cos \left(2 \propto f_{0} t\right) & \bullet & \frac{1}{2} \delta\left(f+f_{0}\right)+\frac{1}{2} \delta\left(f-f_{0}\right) \\ \cos \omega_{0} t & \multimap \cdot & \propto \delta\left(\omega+\omega_{0}\right)+\propto \delta\left(\omega-\omega_{0}\right) \end{array}$ |
| Sine waveform $\begin{array}{rll} \sin \left(2 \propto f_{0} t\right) & \propto & \frac{\mathrm{j}}{2} \delta\left(f+f_{0}\right)-\frac{\mathrm{j}}{2} \delta\left(f-f_{0}\right) \\ \sin \omega_{0} t & \backsim & \begin{array}{l} \mathrm{j} \propto \delta\left(\omega+\omega_{0}\right)-\mathrm{j} \propto \delta\left(\omega-\omega_{0}\right) \\ (1 / 2) \uparrow \end{array} \end{array}$ |

Table 6.7. (cont.)


### 6.5 Nonlinear Systems

### 6.5.1 Definition

Systems with a nonlinear relationship between the input and output signal are called nonlinear systems.

Note: In practice, there is no such thing as a linear system since any real system has output swing limits. Linear systems are in many cases a good approximation of real systems.

The following definition is more suitable for a practical characterisation of nonlinear systems:

- A system that responds to a harmonic input signal with a nonharmonic output signal is called nonlinear system.


### 6.5.2 Characterisation of Nonlinear Systems

Examples of components with a distinctive nonlinear $I(V)$-characteristic are rectifier diodes, Zener diodes, tunnel diodes and varistors (voltage-dependent resistors). Considering the thermal behaviour over time, this also holds for conductors with negative or positive temperature coefficients (NTC/PTC), and also for filament light bulbs.

Often (not always) the interest focuses on the realisation of systems with a broad-ranged linear response. Certain nonlinearities are then accepted within limits. The deviation from the desired linearity is characterised by quantities.

### 6.5.2.1 Characteristic Equation

One way to describe nonlinear characteristics is a polynomial equation

$$
\begin{equation*}
v_{2}=a \cdot v_{1}+b \cdot v_{1}^{2}+c \cdot v_{1}^{3}+\ldots \tag{6.71}
\end{equation*}
$$

The order of the polynomial of the characteristic equation is called the order of the nonlinear system.

Example: For a nonlinear second-order system the output voltage for the harmonic input voltage $v_{1}=\hat{v}_{1} \cdot \cos \omega t$ is

$$
v_{2}=a \cdot \hat{v}_{1} \cdot \cos \omega t+b \cdot \hat{v}_{1}^{2} \cdot \cos ^{2} \omega t
$$

The square of the cosine function can be resolved using the following relationship

$$
\begin{equation*}
\cos ^{2} \omega t=\frac{1}{2} \cdot(1+\cos 2 \omega t) \tag{6.72}
\end{equation*}
$$

Therefore the output voltage is

$$
v_{2}=\frac{b}{2} \cdot \hat{v}_{1}^{2}+a \cdot \hat{v}_{1} \cdot \cos \omega t+\frac{b}{2} \cdot \hat{v}_{1}^{2} \cdot \cos 2 \omega t
$$

The output signal contains components having twice the frequency of the input signal. These components are called harmonics.

In general it holds that

- An $n$ th-order nonlinear system produces harmonics up to $n$ times the frequency of the input signal. The amplitude of each individual harmonic depends on the coefficients of the characteristic equation.

Note: The first harmonic is the angular frequency $\omega$, which is the fundamental frequency. The second harmonic has a frequency of $2 \omega$.

The description of nonlinear systems with the coefficients of their characteristic curves is not very suitable. Of greater interest is the effect on the distortion products. The total harmonic distortion is used for this analysis.

### 6.5.2 2 Total Harmonic Distortion

The total harmonic distortion of a signal is defined as

$$
\begin{equation*}
T H D=\frac{\text { RMS value of the harmonics }}{\text { RMS value of the complete signal }}=\frac{\sqrt{\sum_{n=2}^{\infty} A_{n}^{2}}}{\sqrt{\sum_{n=1}^{\infty} A_{n}^{2}}} \tag{6.73}
\end{equation*}
$$

The $A_{n}$ are the Fourier coefficients of the amplitude spectrum of the related signal. The factor $\sqrt{2}$ relating the amplitude and RMS value of each component cancels out.

Example: The signal $v(t)=2 \mathrm{~V} \cdot \cos \omega t+0.2 \mathrm{~V} \cdot \sin 3 \omega t-0.4 \mathrm{~V} \cdot \sin 4 \omega t$ has the total harmonic distortion

$$
T H D^{2}=\frac{0.2^{2}+0.4^{2}}{2^{2}+0.2^{2}+0.4^{2}}=0.0476 \Rightarrow T H D=0.218 \approx 22 \%
$$

Note: It is usually easier to calculate $k^{2}$ and then take the square root instead of applying the definition directly.

- The total harmonic distortion of a purely harmonic (sinusoidal) signal is zero.


Fig. 6.57. Representation of the total harmonic distortion factor of a transmission system
If a system produces a total harmonic distortion $k$ in the output signal for a purely harmonic input signal, the system distortion is quantified and denoted by THD (Fig. 6.57).

Note: It is not possible to determine the total harmonic distortion if the input signal already contains harmonics.

- The total harmonic distortion of the output signal depends on the output voltage swing. Providing the total harmonic distortion of a transmission system only makes sense if the measurement conditions are given.

Table 6.8. Typical total harmonic distortions

| THD | Example |
| ---: | :--- |
| $33 \%$ | Total harmonic distortion of a square-wave oscillation |
| $10 \%$ | Voice signal still intelligable |
| $1 \%$ | Maximum total harmonic distortion of HiFi amplifier, |
|  | distortions just perceptible |
| $0.1 \%$ | Total harmonic distortion of a good HiFi amplifier |
|  | distortions imperceptible |

Occasionally, only the amplitude of an individual harmonic is of interest. The total harmonic distortion of $n$th order is used for this.

$$
\begin{equation*}
T H D_{n}=\frac{\text { RMS value of the } n \text {-th harmonic }}{\text { RMS-value of the complete signal }} \tag{6.74}
\end{equation*}
$$

The total harmonic distortion attenuation is defined as

$$
\begin{equation*}
a_{\mathrm{k}}=-20 \log T H D \tag{6.75}
\end{equation*}
$$

or the total harmonic distortion attenuation of $n$th order as (Table 6.9)

$$
\begin{equation*}
a_{\mathrm{k} n}=-20 \log T H D_{n} \tag{6.76}
\end{equation*}
$$

Table 6.9. Total harmonic distortion attenuation values

| Total harmonic <br> distortion | Total harmonic <br> distortion attenuation |
| :---: | :---: |
| $10 \%$ | 20 dB |
| $1 \%$ | 40 dB |
| $0.1 \%$ | 60 dB |

Sine wave generators, spectrum analysers and selective level meters must have values of total harmonic distortion attenuation that are as high as possible (i.e. distort very little).

### 6.5.2.3 Signal-to-Intermodulation Ratio

Other effects resulting from nonlinearities are intermodulation distortions.
Example: A nonlinear second-order system with a characteristic $v_{2}=a \cdot v_{1}+b \cdot v_{1}^{2}$ is excited with the two-tone signal $v_{1}(t)=\cos \omega_{1} t+\cos \omega_{2} t$. The output signal is

$$
\begin{aligned}
v_{2}= & \frac{b}{2} & & \text { (DC component) } \\
& +a\left(\cos \omega_{1} t+\cos \omega_{2} t\right) & & \text { (intended signal) } \\
& +\frac{b}{2}\left(\cos 2 \omega_{1} t+\cos 2 \omega_{2} t\right) & & \text { (components at double the frequency) } \\
& +b \cdot \cos \left(\omega_{1}+\omega_{2}\right) t & & \text { (sum) } \\
& +b \cdot \cos \left(\omega_{1}-\omega_{2}\right) t & & \text { (and difference frequencies) }
\end{aligned}
$$

Generally, for nonlinear systems of $n$th order, there will be signal components at frequencies

$$
\begin{equation*}
\left|p \cdot f_{1} \pm q \cdot f_{2}\right|, \quad \text { with } \quad p, q=0,1 \ldots n \quad \text { and } \quad p+q \leq n \tag{6.77}
\end{equation*}
$$

Example: A nonlinear third-order system is excited by a two-tone signal with the frequencies 5 kHz and 7 kHz . The output signal contains the following frequencies:

| $p$ | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 5 kHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 0 | 1 | 0 | 7 kHz |
| $p \cdot f_{1}+q \cdot f_{2}$ | 0 | 7 | 14 | 21 | 5 | 12 | 19 | 10 | 17 | 21 | $(\mathrm{kHz})$ |
| $\left\|p \cdot f_{1}-q \cdot f_{2}\right\|$ |  |  |  |  |  | 2 | 9 |  | 3 |  | $(\mathrm{kHz})$ |

For this system the distortion products are shown using logarithmic scales in Fig. 6.58.


Fig. 6.58. Distortion products of a nonlinear system under excitation by a two-tone signal of 5 kHz and 7 kHz using logarithmic scales

Intermodulation also occurs in narrowband systems, which do not transmit any harmonics because of their inherent bandwidth limitations. Particularly disturbing during the transmission of the useful signals are distortions of third-order with frequencies of $2 f_{1}-f_{2}$ and $2 f_{2}-f_{1}$ ( 3 kHz and 9 kHz , respectively, in the example), since these are closest to the useful signal and therefore most difficult to suppress. For systems with small nonlinear distortions, it approximately holds for the distortion products of second and third-order that

$$
\begin{equation*}
v_{2}^{(2)}=\text { const } \cdot v_{1}^{2}, \quad \text { and } \quad v_{2}^{(3)}=\text { const } \cdot v_{1}^{3} \tag{6.78}
\end{equation*}
$$

The different constants are given by the coefficients of the characteristic equation.

- The amplitude of the distortion products of second order increases approximately quadratically with the input signal. The dependence is cubic for intermodulation products of third-order.

Taking the logarithm of both sides of Eq. (6.78) yields

$$
\underbrace{20 \log _{10} v_{2}^{(2)}}_{L_{2}^{(2)}}=\text { const }+2 \cdot \underbrace{20 \log _{10} v_{1}}_{L_{1}}
$$

where $L_{1}$ is the input voltage level, and $L_{2}^{(n)}$ is the output voltage level of the intermodulation product of $n$th order.

$$
L_{2}^{(1)}=\text { const }+L_{1}, \quad L_{2}^{(2)}=\text { const }+2 \cdot L_{1}, \quad L_{2}^{(3)}=\text { const }+3 \cdot L_{1}
$$

In logarithmic representation the output voltage level of all signal components depends linearly on the input voltage level, and only the slope changes.


Fig. 6.59. Definition of the intermodulation margin, intercept point and 1 dB compression point (denoted by C)

The intermodulation margin is the logarithm of the ratio between the useful signal and the intermodulation product. This is denoted by $I M 2$ or $I M 3$, respectively. The intermodulation margin decreases with increasing output voltage swing. The input power, where the intermodulation margin vanishes, is called the intercept point (Fig. 6.59). Knowledge of the intercept point $(I P)$ leads to the value for the intermodulation margin $(I M)$ for a given input power $L_{1}$. The following expression may be used

$$
\begin{equation*}
\operatorname{IM} 3\left(L_{1}\right)=2 \cdot\left(I P 3-L_{1}\right) \tag{6.79}
\end{equation*}
$$

Example: A microwave amplifier has an intermodulation margin $I M$ of 34 dB for a given input voltage level of -15 dBm . To what level must the input voltage be reduced to produce an intermodulation margin of 40 dB ?
The intercept point of the system is at 2 dBm according to Eq. (6.79). A drop of the input voltage level to -18 dBm , i.e. a drop of 3 dB , yields the desired intermodulation margin.

Note: There are two ways to identify the intercept point, referring to input or output power, respectively. Either the input intercept point (IPIP) or the output intercept point $(O P I P)$ is given.

For practical systems, the intercept point cannot be achieved, because the output signal saturates. The $1 \mathbf{d B}$ compression point is used to characterise the output voltage swing limits. This is the input power for which the actual output power lies 1 dB below the theoretically expected value.

### 6.6 Notation Index

| $a \quad$ tin | time scaling factor |
| :---: | :---: |
| $\begin{aligned} & a_{0}, a_{1}, a_{2} \\ & a(\omega) \end{aligned}$ | coefficients of nominator polynomial damping ratio (dB) |
| $a_{0} / 2$ | DC component of a signal |
| $a_{k}$ | total harmonic distortion attenuation (dB) |
| $a_{\mathrm{k} n}$ | total harmonic distortion attenuation $n$ th-order (dB) |
| $a_{n}$ | Fourier coefficients |
| $A_{n}$ | Fourier coefficients of the amplitude spectrum |
| $b_{0}, b_{1}$ | coefficients of denominator polynomial |
| $b_{n}$ | Fourier coefficients |
| $b(\omega)$ | phase response |
| B | bandwidth |
| $c_{n}$ | complex Fourier coefficients |
| $C_{\text {n }}$ | normalised capacitance value |
| E | energy of a signal |
| $\Delta f$ | bandwidth of the ideal LPF |
| $f_{\text {c }}$ | critical frequency |
| $f(t)$ | function of time |
| $F(f), F(\omega)$ | Fourier transform |
| $\mathcal{F}\}$ | Fourier transform |
| $\mathcal{F}^{-1}\{ \}$ | inverse Fourier transform |
| $g(t)$ | impulse response, weighting function of a system |
| $g_{\mathrm{n}}(t)$ | normalised impulse response |
| $G(\omega)$ | transfer function |
| $G_{\mathrm{n}}$ | normalised transfer function |
| $h(t)$ | step response of a signal |
| IM | intermodulation margin (dB) |
| $k_{n}$ | total harmonic distortion of $n$th order |
| $L_{1}$ | input voltage level (dBm) |
| $L_{2}^{(n)}$ | output voltage level of the intermodulation product $n$th order |
| $L_{\text {n }}$ | normalised inductance value |
| $M, N$ | upper limits for the magnitude of a signal |
| $p_{1}, p_{2}$ | zeros of the denominator polynomial, poles |
| $P$ | power of a signal |
| $\operatorname{rect}(t)$ | rectangular waveform, rectangular pulse |
| $R(f)$ | real part of the Fourier transform |
| $R_{\text {n }}$ | normalised resistance value |
| $R_{\mathrm{r}}$ | reference resistance for the impedance normalisation ( $\Omega$ ) |
| $\mathrm{s}(t)$ | step function |
| $\operatorname{sign}(t)$ | signum function |
| sinc | sinc function |
| $\|S(f)\|$ | magnitude of the Fourier transform |


| Si | integral sine function |
| :---: | :---: |
| $t_{0}$ | delay time |
| $t_{\mathrm{n}}$ | normalised time |
| $\Delta t_{\mathrm{p}}$ | pulse width (ideal LPF) |
| $t_{\text {s }}$ | settling time |
| $T$ | period of a periodic signal |
| $T$ | transformation through a system |
| $\Delta T$ | pulse width |
| THD | total harmonic distortion |
| $\hat{v}$ | amplitude of the voltage |
| $v_{1}$ | input voltage |
| $v_{2}$ | output voltage |
| $v_{\text {in }}$ | input voltage |
| $v_{\text {out }}$ | output voltage |
| $X(f)$ | imaginary part of the Fourier transform |
| $X(\omega)$ | Fourier transform of the input signal |
| $Y(\omega)$ | Fourier transform of the output signal |
| $\delta(t)$ | impulse function, delta impulse ( $\mathrm{s}^{-1}$ ) |
| $\varphi(f)$ | phase component of the Fourier transform |
| $\varphi_{n}$ | Fourier coefficients of the phase spectrum |
| $\varphi(\omega)$ | phase response |
| $\Gamma(t)$ | Gaussian pulse |
| $\Lambda(t)$ | triangular pulse |
| $\Delta \omega$ | bandwidth of the ideal LPF |
| $\omega_{0}$ | angular centre frequency ( $\mathrm{s}^{-1}$ ) |
| $\omega_{\text {c }}$ | critical angular frequency |
| $\omega_{\mathrm{n}}$ | normalised frequency |
| $\omega_{\mathrm{r}}$ | reference frequency for frequency normalisation ( $\mathrm{s}^{-1}$ ) |
| $\tau$ | integration variable |
| $\tau_{\mathrm{g}}$ | group delay time |
| $\tau_{\mathrm{p}}$ | phase delay time |

### 6.7 Further Reading

Carlson, G. E.: Signal and Linear Systems Analysis, 2nd Edition John Wiley \& Sons (1997)

Chapra, S. C.; Canale, R. P.: Numerical Methods for Engineers, 3rd Edition McGraw-Hill (1998)

Chen, C. T.: Linear System Theory and Design, 3rd Edition
Oxford University Press (1998)

Dorf, R. C.: The Electrical Engineering Handbook, Section II CRC press (1993)

Dorf, R. C.; Bishop, R. H.: Modern Control Systems, 8th Edition
Addison-Wesley (1997)
Kennedy, G.; Davis, B.: Electric Communication Systems
McGraw-Hill (1992)
Lindner, D. K.: Introduction to Signals and Systems
McGraw-Hill (1999)
O'Neil, P. V.: Advanced Engineering Mathematics, 4th Edition
Brooks/Cole Publishing Company (1997)
Oppenheim, A. V.; Schafer, R. W.: Digital Signal Processing, 1st Edition Prentice Hall (1975)

Oppenheim, A. V.; Schafer, R. W.; Buck, J. R.: Discrete-Time Signal Processing, 2nd Edition
Prentice Hall (1999)
Oppenheim, A. V.; Willsky, A. S.: Signals \& Systems, 2nd Edition Prentice Hall (2000)

## 7 Analogue Circuit Design

This chapter on analogue circuit design describes electric circuits that are used for the processing of analogue signals. Analogue signals have a continuous progression and can have any arbitrary value within certain limits.

### 7.1 Methods of Analysis

Calculations in analogue circuit design are made to identify the circuit configuration and to derive the component values. Often calculations can only be reasonably carried out by making simplifying assumptions. Therefore the equivalent circuits are strongly simplified and only represent the characteristics of the required function. Circuit analysis methods can describe the actual circuit conditions with an accuracy of approximately $10-20 \%$. Since values of semiconductors can vary by a factor of 2 , and resistors and capacitors by $5-10 \%$, it is necessary to design circuits independent of the large tolerances of the components. To achieve this, methods from control engineering, especially negative feedback, are employed.

### 7.1.1 Linearisation at the Operating Point

The relationships between current and voltage in semiconductors are usually nonlinear.



Fig. 7.1. Linearisation at the operating point
Provided that the voltages and currents vary only marginally about the operating point $V_{0}$, $I_{0}$ the function $V=f(I)$ can be linearised at $V_{0}, I_{0}$. The small amplitude variations of the signal around the operating point is shown in Fig. 7.1 by $\Delta V, \Delta I$. This signal is called a small signal because its amplitude is small compared to the operating point values. In order to replace the real nonlinear function with a linear function, all calculations concerning the small signal around the operating point will be simplified. The smaller the signal is compared to the operating point values, the more valid the linearisation assumption is. Linearisation is especially useful in small signal amplifier analysis, where the signal to be amplified, e.g. an audio signal, is small compared to the operating point values of the semiconductor circuit.

## Calculation:

The function $V=f(I)$ is substituted with its slope in the operating point. For a small change $\Delta I$ of the current $I$ around the operating point it then holds that:
R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003

$$
\begin{equation*}
\Delta V=\left.\frac{\mathrm{d} V}{\mathrm{~d} I}\right|_{I_{0}} \cdot \Delta I \tag{7.1}
\end{equation*}
$$

For the small signal $v, i$ it holds respectively that:

$$
\begin{equation*}
v=\left.\frac{\mathrm{d} V}{\mathrm{~d} I}\right|_{I_{0}} \cdot i, \quad \text { or } \quad v=r \cdot i \tag{7.2}
\end{equation*}
$$

The resistance $r$ is called the dynamic resistance, the incremental resistance or the small signal resistance. It is dependent on the operating point. The representation $v=r \cdot i$ means that the origin of the small signal $v=0, i=0$ has been moved to the operating point $V_{0}$, $I_{0}$.

Note: The principle of the linearisation in the operating point can be also applied to other nonlinear physical relationships.

### 7.1.2 AC Equivalent Circuit

Circuits for small-signal amplification usually have a DC supply voltage, while the signal itself is an AC voltage. In order to simplify the calculation only the quantities relevant to the signal are considered.
According to the principle of superposition, the effect of a voltage in a linear circuit can be calculated by eliminating all other voltage and current sources (voltage sources were replaced by a short circuit, current sources by an open circuit). If a real circuit with semiconductors is linearised at the operating point, the assumption for the superposition is met, i.e. the relationship between cause and effect is linear. A circuit where all supply voltages are replaced with a short circuit, so that only the small-signal source remains, is called the small-signal equivalent circuit.

Example: The voltage $V_{2}$ consists of an AC and a DC part (Fig. 7.2). The following calculation determines the AC part $v_{2}$ of $V_{2}: V_{0}$ is replaced with a short circuit. It follows for $v_{2}=f\left(v_{1}\right)$ :

$$
v_{2}=\frac{R_{2} \| R_{3}}{R_{1}+\left(R_{2} \| R_{3}\right)} \cdot v_{1}
$$



Fig. 7.2. Generation of an $A C$ equivalent circuit

### 7.1.3 Input and Output Impedance

### 7.1.3.1 Determination of the Input Impedance

The input impedance $\underline{Z}_{\text {in }}$ of a small-signal circuit is the impedance between the input terminals for a small AC signal.


Fig. 7.3. Definition of the input impedance $\underline{Z}_{\text {in }}$

- For passive circuits the resulting impedance $\underline{Z}_{\text {in }}$ is obtained by combining all impedances occurring in the circuit.
- For active circuits with unregulated/uncontrolled sources $\underline{Z}_{\text {in }}$ is the resulting impedance at the input terminals, if all internal voltage sources are shorted and all current sources are opened/interrupted.
- For active circuits with controlled sources $\underline{Z}_{\text {in }}$ is determined by applying $\underline{v}_{\text {in }}$ across the input terminals and measuring $\underline{i}_{\mathrm{in}}$ or calculated by using nodal and mesh analysis. Controlled sources are sources where the output values are determined by an other electrical quantity.

In practice the last case is the most relevant for the majority of applications with semiconductor amplifiers.

Example: Calculate the input impedance of a circuit with a controlled current source (Fig. 7.4):


Fig. 7.4. Calculation of the input impedance $\underline{Z}_{\text {in }}$

### 7.1.3.2 Determination of the Output Impedance

The idea behind determining output impedance, equivalent source resistance $\underline{Z}_{\text {out }}$ is to regard the active circuit as a voltage or current source with a source impedance (Fig. 7.5).
The output impedance $\underline{Z}_{\text {out }}$ is calculated as:

$$
\begin{equation*}
\underline{Z}_{\text {out }}=\frac{\text { open circuit voltage }}{\text { short circuit current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{\underline{i}_{\mathrm{s} / \mathrm{c}}} \tag{7.3}
\end{equation*}
$$



Fig. 7.5. Calculation of the output impedance $\underline{Z}_{\text {out }}$
Technically, the output impedance can be determined by measuring two different load states:

$$
\begin{equation*}
\underline{Z}_{\text {out }}=\frac{\underline{v}_{1}-\underline{v}_{2}}{\underline{i}_{2}-\underline{i}_{1}} \tag{7.4}
\end{equation*}
$$

### 7.1.3.3 Combination of Two-Terminal Networks

When two two-terminal networks (circuits) are combined into one circuit, the current depends on the output impedance of one two-terminal network and the input impedance of the other two-terminal network (Fig. 7.6).


$$
\begin{aligned}
& \underline{i}=\frac{\underline{v}_{\mathrm{o} / \mathrm{c}}}{\underline{Z}_{\text {out }}+\underline{Z}_{\text {in }}} \\
& \underline{v}=\underline{v}_{\mathrm{o} / \mathrm{c}} \cdot \frac{\underline{Z}_{\text {in }}}{\underline{Z}_{\text {out }}+\underline{Z}_{\text {in }}}
\end{aligned}
$$

Fig. 7.6. Combination of two circuits
For such combinations three different cases are distinguished:

1. $\underline{Z}_{\text {out }}=\underline{Z}_{\text {in }}^{*} \quad\left(\underline{Z}_{\text {in }}\right.$ is the complex conjugate of $\left.\underline{Z}_{\text {out }}\right)$

This is called power matching: $\quad v=\frac{v_{\mathrm{s}}}{2}$
2. $Z_{\text {out }} \ll Z_{\text {in }}$

The impedance of the voltage source is much lower than the load impedance. The input voltage of the load impedance is approximately equal to the open-circuit voltage of the voltage source. In this case, the voltage $v$ is approximately independent of the load impedance.
3. $Z_{\text {out }} \gg Z_{\text {in }}$

The impedance of the voltage source is much larger than the load impedance. The current is mainly determined by the output impedance and is approximately independent of the load impedance.

### 7.1.4 Two-Port Networks

Two-port networks are circuits with four accessible terminals, where two terminals are the input $\left(v_{1}, i_{1}\right)$ and two terminals are the output ( $v_{2}, i_{2}$ ), see Fig. 7.7.


Fig. 7.7. Two-port network
Classification:

- Two-port networks are active if they contain sources (also controlled sources, e.g. by the input current); otherwise they are passive.
- Two-port networks are symmetrical if the input and output terminals can be swapped; otherwise they are asymmetrical.
- Two-port networks are linear if currents and voltages have linear relationships; otherwise they are nonlinear.
- Two-port networks are reciprocal, reversible, if the ratio of the input voltage to the output voltage is not affected by exchanging the input and output terminals; otherwise they are irreversible, nonreciprocal. All linear passive two-port networks are reversible.
- Two-port networks are nonreactive if they do not change the relevant output quantity of the previous and the relevant input quantity of the following two-port network. This is, for instance, the case if two-port networks are combined in a chain, where the inputs have a high impedance and the outputs have a low impedance.


### 7.1.4. $\quad$ Two-Port Network Equations

The electrical characteristics of a linear two-port network can be described unambiguously by means of their two-port network equations. The coefficients of the electrical quantities are called two-port network parameters. The two-port network equations are used to describe the small-signal behaviour of analogue circuits. They are especially useful in small-signal analysis of basic transistor circuits. Particularly significant are the hybrid and admittance forms of the two-port network equations.

### 7.1.4.2 Hybrid Parameters ( $h$-Parameters)



Fig. 7.8. The two-port network equations in hybrid form
The two-port network equations can be expressed in hybrid form using hybrid parameters ( $h$-Parameters), Fig. 7.8. The parameters have the following meaning:

input resistance with shorted input
$h_{11}=\frac{v_{1}}{i_{1}}$, for $v_{2}=0$
reverse voltage transfer ratio with open input
$h_{12}=\frac{v_{1}}{v_{2}}, \quad$ for $\quad i_{1}=0$

forward current gain with shorted output

$$
h_{21}=\frac{i_{2}}{i_{1}}, \quad \text { for } \quad v_{2}=0
$$

output admittance with open input
$h_{22}=\frac{i_{2}}{v_{2}}, \quad$ for $\quad i_{1}=0$

The parameters are measured or calculated while the output is shorted or the input is open. The formal contexts of the two-port equations can be represented in an equivalent circuit as shown in Fig. 7.9.


Fig. 7.9. Two-port network equivalent circuit diagram for the $h$-parameters

### 7.1.4.3 Admittance Parameters ( $y$-Parameters)



Fig. 7.10. The two-port equations in admittance form
The two-port network equations can be expressed in hybrid form using hybrid parameters ( $y$-Parameters), Fig. 7.10. The parameters have the following meaning:

The parameters are measured or calculated while the input and output are shorted. The formal contexts of the two-port network equations can be represented in an equivalent circuit as shown in Fig. 7.11.


Fig. 7.11. Two-port network equivalent circuit diagram for the $y$-parameters

### 7.1.5 Block Diagrams

Block diagrams are used for the representation and calculation of complex analogue circuits. Individual parts of the circuit are represented by a block, where the transfer characteristics between output $X_{\text {out }}(s)$ and input $X_{\text {in }}(s)$ can be described unambiguously by a transfer function $F(s)$, see Fig. 7.12.


Fig. 7.12. Representation of a block
Input and output quantities as well as the transfer function are represented in the Laplace frequency domain, i.e. as a function of the complex frequency $s$. The transfer function is written into the block. The values of $X_{\text {out }}(s)$ and $X_{\text {in }}(s)$ may have different physical units. The combination of circuit parts is represented with the connection of the corresponding blocks. The signal direction is marked by arrows on the connecting lines. Addition and subtraction of signals are represented by summation points.

Note: This representation becomes very clear if the individual blocks are nonreactive, i.e. the following block does not influence the previous block (no loading effect). This is achieved if the individual circuit parts have low-impedance outputs and high-impedance inputs, or are separated by an impedance converter.

### 7.1.5.1 Calculation Rules for Block Diagrams

The transfer function of a complex circuit can be calculated using the following (Fig. 7.13) calculation rules:

## Combination of two blocks connected in series



## Combination of two blocks connected in parallel



Elimination of a feed back loop


Translation of a summation point


Fig. 7.13. Block diagram algebra
Example: Calculation of a transfer function using block diagram algebra (Fig. 7.14):


Fig. 7.14. Example of block diagram algebra

### 7.1.6 Bode Plot

The Bode plot represents the transfer characteristics of two-port networks with identical physical units at the input and the output (e.g. amplifiers, attenuators, Fig. 7.15). A distinction is made between the frequency response and the phase response. The frequency response represents the gain as a function of the angular frequency in a diagram, where both axes have logarithmic scales. The phase response shows the phase difference between the output and the input as a function of the angular frequency, where the frequency axis is logarithmic.


Fig. 7.15. Bode-plot of a low-pass filter

Note: The Bode plot is very useful for nonreactive circuits, which are combined in series (see Sect. 7.1.5). In this case the transfer functions must be multiplied, i.e. the magnitudes of the gain must be multiplied while the phase shift must be added. In the Bode plot this multiplication can be done graphically through linear geometric addition.

### 7.2 Silicon and Germanium Diodes

Diodes are semiconductors with a single p-n junction, which in general allow currents to pass in one direction only (rectification). Diodes may also be used for other purposes such as signal mixing, variable capacitors and voltage biasing.

### 7.2.1 Current-Voltage Characteristic of Si and Ge Diodes



Fig. 7.16. Circuit symbol and characteristic diagram of Si and Ge diodes
The reverse current $I_{\text {Rev }}$ of silicon diodes is approximately 10 pA and that of germanium diodes is approximately 100 nA . The threshold voltage is defined as the forward voltage across the diode when the forward current reaches $10 \%$ of the maximum permanent DC current. For silicon diodes the threshold voltage is approximately 0.7 V , and for germanium diodes this value is approximately 0.3 V . Because of the sharp rise in the forward bias characteristic curve, in approximate calculations it is presumed that the voltage drop $V_{\mathrm{F}}$ is 0.7 V for silicon diodes and 0.3 V for germanium diodes (Fig. 7.16).

The analytical function of the characteristic curve is given by:

$$
\begin{equation*}
I_{\mathrm{F}}=I_{\mathrm{Rev}} \cdot\left(\mathrm{e}^{\frac{V_{\mathrm{F}}}{V_{\mathrm{T}}}}-1\right) \tag{7.5}
\end{equation*}
$$

with $\quad I_{\text {Rev }} \quad:$ reverse current
$V_{\mathrm{T}}=\frac{k T}{e}:$ thermal voltage

$$
k \quad e^{e} \quad: \text { Boltzmann's constant }=1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}
$$

$T \quad$ : absolute temperature
$e \quad:$ elementary charge
The thermal voltage $V_{\mathrm{T}}$ is approximately 25 mV at $T=300 \mathrm{~K}$ (approx. $25^{\circ} \mathrm{C}$, room temperature).

Approximations:
For forward operation: $\mathrm{e}^{\frac{V_{\mathrm{F}}}{V_{\mathrm{T}}}} \gg 1$. The diode characteristic then simplifies to

$$
\begin{equation*}
I_{\mathrm{F}} \approx I_{\mathrm{Rev}} \cdot \mathrm{e}^{\frac{V_{\mathrm{F}}}{V_{\mathrm{T}}}} \tag{7.6}
\end{equation*}
$$

For reverse operation: $\mathrm{e}^{\frac{V_{\mathrm{F}}}{V_{\mathrm{T}}}} \ll 1$. Therefore the reverse current is approximately $I_{\text {Rev }}=$ const. for the whole reverse operation range.

### 7.2.2 Temperature Dependency of the Threshold Voltage

The threshold voltage of a $\mathrm{p}-\mathrm{n}$ junction decreases with increasing temperature by 2 to $2.5 \mathrm{mV} / \mathrm{K}$.

Note: Because diodes have a negative temperature coefficient they must not be combined in parallel in order to increase the maximum rectification current. Minimum differences in the temperature would cause a lower forward voltage at the warmer diode. Therefore the warmer diode would take over a higher current than the cooler diode. This would lead to a further temperature increase in the warmer diode, which then would again take over a bigger part of the total current. This results in the hotter diode taking over the entire current.

### 7.2.3 Dynamic Resistance (Differential Resistance)



Fig. 7.17. Dynamic resistance $r_{\mathrm{D}}$ of Si and Ge diodes
The dynamic resistance $r_{\mathrm{D}}$ of the diode is the slope of the characteristic in the operating point.

$$
\begin{align*}
r_{\mathrm{D}} & =\left.\frac{\mathrm{d} V_{\mathrm{F}}}{\mathrm{~d} I_{\mathrm{F}}}\right|_{V_{\mathrm{F} 0}}  \tag{7.7}\\
\frac{1}{r_{\mathrm{D}}}=\left.\frac{\mathrm{d} I_{\mathrm{F}}}{\mathrm{~d} V_{\mathrm{F}}}\right|_{I_{\mathrm{F} 0}} & =\frac{1}{V_{\mathrm{T}}} \cdot \underbrace{I_{\mathrm{Rev}} \cdot \mathrm{e}^{\frac{V_{\mathrm{F}}}{V_{\mathrm{T}}}}}_{I_{\mathrm{F} 0}}=\frac{I_{\mathrm{F} 0}}{V_{\mathrm{T}}} \tag{7.8}
\end{align*}
$$

- The dynamic resistance of the diode is equal to the thermal voltage $V_{\mathrm{T}}$ divided by the forward current $I_{\mathrm{F} 0}$ in the operating point (Fig. 7.17). Therefore the dynamic resistance $r_{\mathrm{D}}$ is reciprocally proportional to the forward current $I_{\mathrm{F}}$.

$$
\begin{equation*}
r_{\mathrm{D}}=\frac{V_{\mathrm{T}}}{I_{\mathrm{F} 0}} \tag{7.9}
\end{equation*}
$$

### 7.3 Small-Signal Amplifier with Bipolar Transistors

Small-signal amplifiers are circuits used for the amplification of small alternating signals, where the signal amplitude is much smaller than the operating point values (i.e. the DC voltages across the components). The operating frequencies are supposed to be low, so that group and phase propagation delays from parasitic elements do not have to be considered (however, it is noted in the case where special operating conditions apply).

### 7.3.1 Transistor Characteristics

### 7.3.1.1 Symbols, Voltages and Currents for Bipolar Transistors

A distinction is made between $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors
npn
pnp



Fig. 7.18. Symbol, voltages and currents for bipolar transistors
The terminals are called the base (B), the collector (C) and the emitter (E). The baseemitter junction and the base-collector junction are p-n junctions. In normal operation the base-emitter diode is used in forward bias operation while the base-collector diode is used in reverse bias operation. The direction of the arrow in the circuit symbol gives the forward direction of the diode. The positive base current flows into the base for a $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor and comes out of the base for the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor. The base current causes a voltage drop of appr. 0.7 V across the base-emitter diode. The base current controls the collector current, provided that the applied collector-emitter voltage drives the collectorbase diode in reverse bias operation (Fig. 7.18). Then the collector current is approximately proportional to the base current.

Note: The type of an unknown transistor can be determined by checking the direction of the base-emitter and the base-collector diode with an ohmmeter.

Note: A transistor can be checked for defects by
a) checking the base-emitter and the base-collector diodes, and
b) measuring if the collector-emitter path has a high resistance (is not conducting) when the base is open.

### 7.3.1.2 Output Characteristics



Fig. 7.19. Output characteristics $I_{\mathrm{C}}=f\left(V_{\mathrm{CE}}\right), I_{\mathrm{B}}=$ Parameter

The output characteristics show the collector current as a function of the collector-emitter voltage (Fig. 7.19). The base current acts as a parameter. The output characteristics provide all essential information necessary for the design of a circuit. In the so-called active region the output characteristics are almost horizontal. Within this region the collector current is approximately proportional to the base current. In this active region the transistor may be used as a small-signal amplifier. Often in these characteristics $P_{\text {total }}$, which is a hyperbolic function, is given as well. This shows which current-voltage values are permitted given the maximum allowed temperature of the transistor.

### 7.3.1.3 Transfer Characteristic



Fig. 7.20. Transfer characteristic $I_{\mathrm{C}}=f\left(V_{\mathrm{BE}}\right)$
The transfer characteristic shows the collector current as a function of the base-emitter voltage (Fig. 7.20). Because of the diode characteristic of the base-emitter junction $I_{\mathrm{C}}=$ $f\left(V_{\mathrm{BE}}\right)$ is also an exponential function since $I_{\mathrm{C}} \propto I_{\mathrm{B}}$. It appears linearly in a diagram with a logarithmic ordinate. Often several characteristics are given with the temperature as a parameter.

### 7.3.1.4 Input Characteristic



Fig. 7.21. Input characteristic $I_{\mathrm{B}}=f\left(V_{\mathrm{BE}}\right)$
The input characteristic is the diode characteristic of the base-emitter junction (Fig. 7.21).

### 7.3.1.5 Static Current Gain $\beta_{\mathrm{DC}}$

The static current gain $\beta_{\mathrm{DC}}$ is the relationship between the collector current and the base current in the active region:

$$
\begin{equation*}
\beta_{\mathrm{DC}}=\frac{I_{\mathrm{C}}}{I_{\mathrm{B}}} \tag{7.10}
\end{equation*}
$$

Common values are between 100 and 1000 for small-signal transistors, and between 10 and 200 for power transistors.

### 7.3.1.6 Differential Current Gain $\beta$

The differential current gain $\beta$ is the current gain for small signals around the operation point. It is the derivative of the collector current with respect to the base current. A small change of the base current $\Delta I_{\mathrm{B}}$ causes a small change $\beta \cdot \Delta I_{\mathrm{B}}$ in the collector current. Therefore a small signal is amplified with this differential current gain. The differential current gain is also called the $\mathbf{A C}$ current gain or the small-signal current gain.
A distinction is made between $\beta$ and $\beta_{0}$. While $\beta$ is a common expression for the differential current gain, $\beta_{0}$ is a certain differential current gain, which is called the forward current gain with shorted output (Fig. 7.22). This is the differential current gain for low frequencies (propagation delay times and phase shifts caused by parasitic elements need not be considered), and where the collector-emitter voltage is kept constant ( $V_{\mathrm{CE}}=$ const.) Keeping the collector-emitter voltage constant means that the AC signal is shorted, therefore the term shorted output.

$$
\begin{equation*}
\beta_{0}=\left.\left.\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{~d} I_{\mathrm{B}}}\right|_{V_{\mathrm{CE}}=\text { const }} \approx \frac{\Delta I_{\mathrm{C}}}{\Delta I_{\mathrm{B}}}\right|_{V_{\mathrm{CE}}=\text { const }} \tag{7.11}
\end{equation*}
$$



Fig. 7.22. Determination of the forward current gain $\beta_{0}$ from the output characteristics
Common values for $\beta_{0}$ are between 100 and 1000 for small-signal transistors, and between 10 and 200 for power transistors.

Note: In case a data sheet is not available, it is recommended to assume $\beta_{0}=100$ for further calculations.

### 7.3.1.7 Transconductance $g_{\mathrm{m}}$

The transconductance $g_{\mathrm{m}}$ is the change in the collector current $I_{\mathrm{C}}$ depending on the change in the base-emitter voltage $V_{\mathrm{BE}}$. It is the slope of the transfer characteristic.

$$
\begin{equation*}
g_{\mathrm{m}}=\left.\left.\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{~d} V_{\mathrm{BE}}}\right|_{V_{\mathrm{CE}}=\text { const }} \approx \frac{\Delta I_{\mathrm{C}}}{\Delta V_{\mathrm{BE}}}\right|_{V_{\mathrm{CE}=\text { const }}} \tag{7.12}
\end{equation*}
$$

Note: The use of the transconductance $g_{\mathrm{m}}$ for bipolar transistor circuit design is not recommended, since bipolar transistors are current-controlled devices. The transconductance is mainly used for field-effect transistor circuit design, since field-effect transistors are voltage-controlled components. However, occasionally the very high transconductance of bipolar transistors is pointed out, because the collector current $I_{\mathrm{C}}$ changes drastically for small changes in the base-emitter voltage $V_{\mathrm{BE}}$.

### 7.3.1.8 Thermal Voltage Drift

Thermal voltage drift is the base-emitter voltage change $\Delta V_{\mathrm{BE}}$ that depends on the junction temperature. The base-emitter voltage decreases with increasing temperature. The change is $\left|\Delta V_{\mathrm{BE}}\right|=2-2.5 \mathrm{mV} / \mathrm{K}$.

### 7.3.1.9 Differential Input Resistance $r_{\mathrm{BE}}$

The small-signal differential input resistance is the slope of the input characteristic curve at the operating point. This is the differential resistance of the base-emitter diode (see Sect. 7.2.3).

$$
\begin{equation*}
r_{\mathrm{BE}}=\frac{\mathrm{d} V_{\mathrm{BE}}}{\mathrm{~d} I_{\mathrm{B}}} \approx \frac{\Delta V_{\mathrm{BE}}}{\Delta I_{\mathrm{B}}} \approx \frac{V_{\mathrm{T}}}{I_{\mathrm{B}}} \tag{7.13}
\end{equation*}
$$

where $V_{\mathrm{T}}$ is the thermal voltage (about 25 mV at $T=300 \mathrm{~K}$ )

### 7.3.1.10 Differential Output Resistance $r_{\mathrm{CE}}$

The small-signal differential output resistance defines the change in the collector current as a function of the collector-emitter voltage for a constant base current (Fig. 7.23). This can be calculated from the output characteristic curve.

$$
\begin{equation*}
r_{\mathrm{CE}}=\left.\left.\frac{\mathrm{d} V_{\mathrm{CE}}}{\mathrm{~d} I_{\mathrm{C}}}\right|_{I_{\mathrm{B}}=\text { const }} \approx \frac{\Delta V_{\mathrm{CE}}}{\Delta I_{\mathrm{C}}}\right|_{I_{\mathrm{B}}=\text { const }} \tag{7.14}
\end{equation*}
$$

- If the output characteristic is horizontal then $r_{\mathrm{CE}} \rightarrow \infty$.

$$
\xrightarrow[\mathrm{V}_{\mathrm{CE}}]{\mathrm{I}_{\mathrm{C}} \uparrow \text { operating point }}
$$

Fig. 7.23. Calculation of the small-signal differential output resistance $r_{\mathrm{CE}}$ from the output characteristic curve

### 7.3.1.11 Reverse Voltage Transfer Ratio $A_{r}$

The reverse voltage-transfer ratio defines the change in the input voltage as a function of the output voltage for a constant base current.

$$
\begin{equation*}
A_{\mathrm{r}}=\left.\left.\frac{\mathrm{d} V_{\mathrm{BE}}}{\mathrm{~d} V_{\mathrm{CE}}}\right|_{I_{\mathrm{B}}=\text { const }} \approx \frac{\Delta V_{\mathrm{BE}}}{\Delta V_{\mathrm{CE}}}\right|_{I_{\mathrm{B}}=\text { const }} \tag{7.15}
\end{equation*}
$$

The reverse voltage-transfer ratio is negligible at lower frequencies. For higher frequencies this can be taken into account either through the relevant value from a data sheet, or by the addition of a capacitor between the collector and the emitter (Miller capacitance). In this manner it need not be considered in the transistor AC equivalent circuit.

### 7.3.1.12 Unity Gain and Critical Frequencies

The unity gain frequency is the frequency at which the current gain $\beta$ has a value of 1 .
The critical frequency $f_{\beta}$ is the frequency at which $\beta$ has fallen 3 dB below $\beta_{0}$. This is also known as the cutoff or corner frequency. For transistors whose short-circuit current gain is considerably greater than $1\left(\beta_{0} \gg 1\right)$, it can be approximated that:

$$
\begin{equation*}
f_{\beta}=\frac{f_{\mathrm{T}}}{\beta_{0}} \tag{7.16}
\end{equation*}
$$

Note: In circuits without negative feedback the useful frequency range lies between $0<f<f_{\beta}$. Negative feedback increases the frequency range roughly by the feedback factor.

### 7.3.2 Equivalent Circuits

### 7.3.2.1 Static Equivalent Circuit

In order to design or understand electronic circuits, the following static equivalent circuit is useful.

The bipolar transistor consists of two back-to-back p-n junctions. In normal operation the base-collector diode is reverse biased, and the base-emitter diode is forward biased. The base-collector diode can be assumed to be a current source whose current is proportional to the base current. The voltage drop at the base-emitter junction is approximately 0.7 V from the diode characteristic.

The difference between the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor is that currents and voltages are in opposite directions (Fig. 7.24).
NPN-Transistor

PNP-Transistor




Fig. 7.24. Topology, circuit symbol and static equivalent circuit of the bipolar transistor

### 7.3.2 $2 \quad$ AC Equivalent Circuit

In the AC equivalent circuit (Fig. 7.25) only alternating quantities that are small about the operating point are considered. The operating point must lie within the active region of the output characteristic.


Fig. 7.25. AC equivalent circuit of the bipolar transistor
The base current controls the collector current. The base resistance $r_{\mathrm{BE}}$ is equal to the dynamic resistance of the base-emitter diode. The base current $i_{\mathrm{B}}$ controls the internal collector current $i_{\mathrm{B}} \cdot \beta_{0}$. A small portion of the current $i_{\mathrm{B}} \cdot \beta_{0}$ flows away through $r_{\mathrm{CE}}$ and therefore does not appear at the collector terminal. The resistance $r_{\mathrm{CE}}$ is high impedance (see the output characteristic curve where the parameter $i_{\mathrm{B}}$ is represented by constant lines, which means $\left.r_{\mathrm{CE}} \rightarrow \infty\right)$. It can be neglected in approximate calculations.

### 7.3.2.3 The Giacoletto Equivalent Circuit

The Giacoletto equivalent circuit is an AC equivalent circuit (Fig. 7.26). It describes the AC characteristics of the transistor up to approximately half of the unity gain frequency.

Physical Explanation:
The internal collector current $v_{\mathrm{B}^{\prime} \mathrm{E}} \cdot g_{\mathrm{mB}^{\prime} \mathrm{E}}$ is proportional to the internal base voltage $v_{\mathrm{B}^{\prime} \mathrm{E}}$. The output voltage $v_{\text {CE }}$ is fed back in anti-phase to the internal base voltage $v_{\mathrm{B}^{\prime} \mathrm{E}}$ through the feedback capacitor $C_{\mathrm{B}^{\prime} \mathrm{C}}$. The feedback effect through $C_{\mathrm{B}^{\prime} \mathrm{C}}$ increases with increasing frequency as the feedback impedance $1 / \omega C_{B^{\prime} C}$ decreases. Accordingly, the transistor gain $i_{\mathrm{C}} / i_{\mathrm{B}}$ decreases with increasing frequency.


Fig. 7.26. Giacoletto AC equivalent circuit

### 7.3.3 Darlington Pair

At low frequencies the Darlington pair shows the characteristics of a bipolar transistor whose current gain is approximately the product of the two individual current gains (Fig. 7.27).

The static current gain or DC current gain $\beta_{\mathrm{DC}}$ of the Darlington pair is given by:

$$
\begin{aligned}
I_{\mathrm{C}} & =I_{\mathrm{C} 1}+I_{\mathrm{C} 2}=I_{\mathrm{B} 1} \beta_{\mathrm{DC} 1}+I_{\mathrm{B} 2} \beta_{\mathrm{DC} 2}=I_{\mathrm{B} 1} \beta_{\mathrm{DC} 1}+I_{\mathrm{B} 1}\left(1+\beta_{\mathrm{DC} 1}\right) \beta_{\mathrm{DC} 2} \\
& =I_{\mathrm{B} 1}\left(\beta_{\mathrm{DC} 1}+\beta_{\mathrm{DC} 2}+\beta_{\mathrm{DC} 1} \beta_{\mathrm{DC} 2}\right)
\end{aligned}
$$

For $\beta_{\mathrm{DC} 1} \gg 1$ and $\beta_{\mathrm{DC} 2} \gg 1$ it holds that:

$$
\begin{equation*}
\beta_{\mathrm{DC}} \approx \beta_{\mathrm{DC} 1} \cdot \beta_{\mathrm{DC} 2} \tag{7.17}
\end{equation*}
$$



Fig. 7.27. Darlington pair
The dynamic current gain or small-signal current gain $\beta_{0}$ of the Darlington pair is given by:


Fig. 7.28. AC equivalent circuit of the Darlington pair
Neglecting the collector-emitter resistances, the circuit diagram in Fig. 7.28 yields:

$$
\begin{aligned}
i_{\mathrm{C}}=i_{\mathrm{B} 1} \beta_{01} & +i_{\mathrm{B} 2} \beta_{02}=i_{\mathrm{B} 1} \beta_{01}+i_{\mathrm{B} 1}\left(1+\beta_{01}\right) \beta_{02} \\
& =i_{\mathrm{B} 1}\left(\beta_{01}+\beta_{02}+\beta_{01} \beta_{02}\right)
\end{aligned}
$$

For $\beta_{01} \gg 1$ and $\beta_{02} \gg 1$ it holds that:

$$
\begin{equation*}
\beta_{0} \approx \beta_{01} \cdot \beta_{02} \tag{7.18}
\end{equation*}
$$

For the differential input resistance $r_{\mathrm{BE}}$ it holds that:

$$
r_{\mathrm{BE}}=\frac{v_{\mathrm{BE}}}{i_{\mathrm{B}}}=r_{\mathrm{BE} 1}+\beta_{01} \cdot r_{\mathrm{BE} 2} \approx r_{\mathrm{BE} 1}+\frac{\beta_{01}}{\beta_{\mathrm{DC} 1}} \cdot r_{\mathrm{BE} 1}, \quad \text { with } \quad r_{\mathrm{BE} 2}=\frac{r_{\mathrm{BE} 1}}{\beta_{\mathrm{DC} 1}}
$$

Using the approximation that $\beta_{01} \approx \beta_{\mathrm{DC} 1}$ it follows that:

$$
\begin{equation*}
r_{\mathrm{BE}} \approx 2 \cdot r_{\mathrm{BE} 1} \approx 2 \frac{V_{\mathrm{T}}}{I_{\mathrm{B} 1}} \tag{7.19}
\end{equation*}
$$

- The input impedance of the Darlington pair is approximately twice the thermal voltage $V_{\mathrm{T}}$ divided by the quiescent input current $I_{\mathrm{B}}$.

The Darlington pair is employed where a high output power has to be controlled by a small control power. The high current gain of the Darlington pair results in high input impedances in amplifiers. In power electronics three- or four-fold Darlington connections are even used for switching high currents.

### 7.3.3.1 Pseudo-Darlington Pair



Fig. 7.29. Pseudo-Darlington pair

The Current gain and the input impedance of the pseudo-Darlington pair (Fig. 7.29) is given by:

$$
\begin{equation*}
\beta_{\mathrm{DC}} \approx \beta_{\mathrm{DC} 1} \cdot \beta_{\mathrm{DC} 2}, \quad \beta_{0} \approx \beta_{01} \cdot \beta_{02}, \quad r_{\mathrm{BE}} \approx r_{\mathrm{BE} 1} \approx \frac{V_{\mathrm{T}}}{I_{\mathrm{B}}} \tag{7.20}
\end{equation*}
$$

### 7.3.4 Basic Circuits with Bipolar Transistors

Small-signal operation of bipolar transistors is divided into three operating groups, namely common-emitter, common-collector and common-base (Fig. 7.30). Their circuits each have different input and output voltage terminations. The input and output voltages are measured with respect to the common line. This common line gives the circuit its name, e.g. common-emitter circuit. Each circuit has different gain and impedance properties.

|  | Common <br> Emitter circuit | Common <br> Collector circuit | Common <br> Base circuit |
| :--- | :---: | :---: | :---: |
| Circuit | $>1$ | $\approx 1$ | $>1$ |
| voltage <br> gain $A_{\mathrm{v}}$ | $>1$ | $>1$ | $\approx 1$ |
| current <br> gain $A_{\mathrm{i}}$ | $>\mathrm{i}_{\text {int }}$ |  | very high |
| input <br> impedance $r_{\text {in }}$ | medium | very small |  |
| output <br> impedance $r_{\text {out }}$ | high | very small | high |

Fig. 7.30. Basic bipolar transistor circuits

### 7.3.5 Common-Emitter Circuit

The common-emitter circuit has a high power, current and voltage gain. The output voltage has the opposite phase to the input voltage.
The transistor operating point in the circuit in Fig. 7.31 is adjusted by the resistors $R_{1}, R_{2}$, $R_{\mathrm{C}}$ and $R_{\mathrm{E}}$ so that it lies in the active region of the output characteristic. The AC signal is coupled into the circuit through $C_{1}$ and out of the circuit through $C_{2}$. The values of $C_{1}$ and $C_{2}$ are chosen so that they appear as short circuits in the relevant frequency range (Fig. 7.31).
The capacitor $C_{\mathrm{E}}$ is also approximately a short circuit in the relevant frequency range, so that the AC emitter is approximately at ground. Occasionally, the capacitor $C_{\mathrm{E}}$ is not used so that the emitter is not grounded. In this case, the circuit does not correspond to the definition of a common-emitter circuit, but is nonetheless described as such.
The use of common-emitter circuits is limited to low- and mid-range frequencies, because at high frequencies negative feedback occurs between the antiphase input and output voltages, through the collector-base parasitic capacitor (Miller capacitance).


Fig. 7.31. Common-emitter circuit with $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor

### 7.3.5.1 Common-Emitter Circuit Two-Port Network Equations

The common-emitter two-port network parameters are usually given as $h$-parameters (Fig. 7.32).

$$
\begin{align*}
v_{\mathrm{BE}} & =h_{11 \mathrm{E}} \cdot i_{\mathrm{B}}+h_{12 \mathrm{E}} \cdot v_{\mathrm{CE}}  \tag{7.21}\\
i_{\mathrm{C}} & =h_{21 \mathrm{E}} \cdot i_{\mathrm{B}}+h_{22 \mathrm{E}} \cdot v_{\mathrm{CE}} \tag{7.22}
\end{align*}
$$



Fig. 7.32. $h$-parameters of the common-emitter circuit

## Short circuit-input resistance:

$$
\begin{equation*}
h_{11 \mathrm{E}}=r_{\mathrm{BE}}=\left.\frac{\mathrm{d} V_{\mathrm{BE}}}{\mathrm{~d} I_{\mathrm{B}}}\right|_{V_{\mathrm{CE}}=\text { const }}=\left.\frac{v_{\mathrm{BE}}}{i_{\mathrm{B}}}\right|_{v_{\mathrm{CE}}=0} \approx \frac{V_{\mathrm{T}}}{I_{\mathrm{B}}} \tag{7.23}
\end{equation*}
$$

Parameter $h_{11 E}$ is called the short-circuit input resistance. It is equal to the AC input voltage $v_{\mathrm{BE}}$ divided by the AC input current $i_{\mathrm{B}}$ (see also Sect. 7.2.3). The $V_{\mathrm{CE}}=$ const. condition is meaningless in the calculation or measurement of the input impedance at lower frequencies, as the output voltage has hardly any influence on the input voltage (see $h_{12 \mathrm{E}}$ ).

## Reverse voltage transfer ratio:

$$
\begin{equation*}
h_{12 \mathrm{E}}=\left.\frac{\mathrm{d} V_{\mathrm{CE}}}{\mathrm{~d} V_{\mathrm{BE}}}\right|_{I_{\mathrm{B}}=\text { const }} \approx 0 \tag{7.24}
\end{equation*}
$$

Parameter $h_{12 \mathrm{E}}$ is called the reverse voltage-transfer ratio with open input (actually only the AC input is open, and a DC quiescent current has to be present). For low frequencies it is approximately zero. For higher frequencies the feedback voltage can be modelled by an equivalent capacitance $C_{\mathrm{CB}}$, so that does not appear in the transistor AC equivalent circuit (see also Sect. 7.3.1).

Forward current gain:

$$
\begin{equation*}
h_{21 \mathrm{E}}=\beta_{0}=\left.\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{~d} I_{\mathrm{B}}}\right|_{V_{\mathrm{CE}}=\text { const }}=\left.\left.\frac{i_{\mathrm{C}}}{i_{\mathrm{B}}}\right|_{v_{\mathrm{CE}}=0} \approx \frac{\Delta I_{\mathrm{C}}}{\Delta I_{\mathrm{B}}}\right|_{V_{\mathrm{CE}}=\text { const }} \tag{7.25}
\end{equation*}
$$

Parameter $h_{21 \mathrm{E}}$ is called the forward current gain with shorted output (AC-shorted only). It is the AC current gain $\beta_{0}$. This gives the relationship between the AC collector and base currents for an AC-shorted collector-emitter junction. The collector-emitter path is shorted with a capacitor to measure $h_{21 \mathrm{E}}$. Graphically, $h_{21 \mathrm{E}}$ can be determined from the output characteristic curve (Fig. 7.22).

## Output admittance:

$$
\begin{equation*}
h_{22 \mathrm{E}}=\frac{1}{r_{\mathrm{CE}}}=\left.\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{~d} V_{\mathrm{CE}}}\right|_{I_{\mathrm{B}}=\text { const }}=\left.\left.\frac{i_{\mathrm{C}}}{v_{\mathrm{CE}}}\right|_{i_{\mathrm{B}}=0} \approx \frac{\Delta I_{\mathrm{C}}}{\Delta V_{\mathrm{CE}}}\right|_{I_{\mathrm{B}}=\text { const }} \tag{7.26}
\end{equation*}
$$

Parameter $h_{22 \mathrm{E}}$ is called the output admittance with open input (actually, only the AC input is open, and a DC quiescent current has to be present). This corresponds to the output impedance $r_{\mathrm{CE}}$ and can be determined from the output characteristic curve (Fig.7.23).

### 7.3.5.2 Common-Emitter AC Equivalent Circuit

Figures 7.33 and 7.34 show the common-emitter circuit with (i.e. emitter grounded) and without the emitter capacitor $C_{\mathrm{E}}$.
The capacitors are chosen to be short circuits in the relevant frequency range. Here $V_{\mathrm{CC}}$ is the DC supply voltage, $R_{\text {int }}$ is the source resistance of the AC input voltage source, and $R_{\mathrm{L}}$ is the load resistance (e.g. the input resistance of a following circuit). Note that $r_{\mathrm{CE}}$ is not shown in the equivalent circuit in Fig. 7.34, because of its high impedance. For clarity it is not considered in the following calculations.


Fig. 7.33. Common-emitter circuit with bypass capacitor and its equivalent circuit


Fig. 7.34. Common-emitter circuit without bypass capacitor and its equivalent circuit

### 7.3.5.3 Common-Emitter Circuit Input Impedance

The input impedance is different for Fig. 7.33 and Fig. 7.34 (with and without emitter resistor bypassing):

## In Fig. 7.33:

$$
\begin{equation*}
r_{\text {in }}=\frac{v_{\text {in }}}{i_{\text {in }}}=R_{1}\left\|R_{2}\right\| r_{\mathrm{BE}} \tag{7.27}
\end{equation*}
$$

If $R_{1}$ and $R_{2}$ have a high impedance compared to $r_{\mathrm{BE}}$, the input impedance simplifies as follows:

$$
\begin{equation*}
r_{\mathrm{in}} \approx r_{\mathrm{BE}} \tag{7.28}
\end{equation*}
$$

In Fig. 7.34:


The input impedance is:

$$
\begin{equation*}
r_{\text {in }} \approx R_{1}\left\|R_{2}\right\|\left(r_{\mathrm{BE}}+\beta_{0} R_{\mathrm{E}}\right) \tag{7.29}
\end{equation*}
$$

- If the circuit is realised without the bypass capacitor $C_{\mathrm{E}}$, the input impedance increases drastically. The emitter resistor $R_{\mathrm{E}}$ multiplied by a factor $\beta_{0}$ influences this value! However, the voltage gain decreases by the same factor (see Sect. 7.3.5.5).


### 7.3.5.4 Common-Emitter Circuit Output Impedance

The output impedance $r_{\text {out }}$ is calculated by considering the circuit as a voltage or a current source with an internal source resistance (of course, both yield the same result). See also Sect. 7.1.3.2.

The output impedance is then

$$
\begin{equation*}
r_{\mathrm{out}}=\frac{\text { open-circuit voltage }}{\text { AC short-circuit current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}} \tag{7.30}
\end{equation*}
$$



Fig. 7.35. Common-emitter circuit: calculation of the output impedance
Assume the input voltage $v_{\text {in }}$ in Fig. 7.35 is known. Then

$$
\begin{equation*}
r_{\mathrm{out}}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}}=\frac{-\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}} \beta_{0}\left(r_{\mathrm{CE}} \| R_{\mathrm{C}}\right)}{-\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}} \cdot \beta_{0}}=r_{\mathrm{CE}} \| R_{\mathrm{C}} \tag{7.31}
\end{equation*}
$$

Usually $r_{\text {CE }}$ can be neglected because of its high impedance. Then

$$
\begin{equation*}
r_{\text {out }} \approx R_{\mathrm{C}} \tag{7.32}
\end{equation*}
$$



Fig. 7.36. Common-emitter circuit without emitter capacitor $C_{\mathrm{E}}$

For the common-emitter circuit without the emitter capacitor $C_{\mathrm{E}}$ (Fig. 7.36) and neglecting $r_{\mathrm{CE}}$ :

$$
\begin{equation*}
r_{\mathrm{out}}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}} \approx \frac{-\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \beta_{0} R_{\mathrm{C}}}{-\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \beta_{0}}=R_{\mathrm{C}} \tag{7.33}
\end{equation*}
$$

The output of the common-emitter circuit is considered - physically correctly - a current source. The higher the value $R_{\mathrm{C}}$, the higher the circuit efficiency. Unfortunately, as the operating point is also defined by $R_{\mathrm{C}}$, the choice of $R_{\mathrm{C}}$ is not entirely free. It is possible to couple the alternating part of the collector current with high impedance using an (ideal) transformer in the collector arm (Fig. 7.37). In this case, the whole alternating part of the collector current flows through $R_{\mathrm{L}}$. The output impedance is then very high and is given by $r_{\text {out }}=r_{\mathrm{CE}}$.


Fig. 7.37. Common-emitter circuit with transformer coupling of the output current and its corresponding AC equivalent circuit

### 7.3.5.5 Common-Emitter Circuit AC Voltage Gain



Fig. 7.38. AC equivalent circuit for voltage gain calculation
Calculation of the AC (small-signal) voltage gain $G_{\mathrm{v}}$ (Fig. 7.38):

$$
\begin{equation*}
A_{\mathrm{v}}=\frac{v_{\mathrm{out}}}{v_{\text {in }}}=\frac{-\frac{v_{\text {in }}}{r_{\mathrm{BE}}} \beta_{0} R_{\mathrm{C}}}{v_{\text {in }}}=-\frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}} \tag{7.34}
\end{equation*}
$$

The voltage gain is negative. This means that the input and output voltage have opposite phases. If the output is loaded by a resistance $R_{\mathrm{L}}$ then the voltage gain decreases, as the
current $i_{\mathrm{B}} \cdot \beta_{0}$ divides between $R_{\mathrm{C}}$ and $R_{\mathrm{L}}$. Then

$$
\begin{equation*}
A_{\mathrm{v}}=-\frac{\beta_{0}}{r_{\mathrm{BE}}}\left(R_{\mathrm{C}} \| R_{\mathrm{L}}\right) \tag{7.35}
\end{equation*}
$$

For the common-emitter circuit without $C_{\mathrm{E}}$ (Fig. 7.39):

$$
\begin{equation*}
A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-\frac{v_{\text {in }}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}}}{v_{\text {in }}} \beta_{0} R_{\mathrm{C}}=-\frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \approx-\frac{R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \tag{7.36}
\end{equation*}
$$

When $\frac{r_{\mathrm{BE}}}{\beta_{0}} \ll R_{\mathrm{E}}$, then the gain $A_{\mathrm{V}}$ is given by $\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}}$. If the circuit is loaded by $R_{\mathrm{L}}$, then

$$
\begin{equation*}
A_{\mathrm{v}} \approx \frac{-R_{\mathrm{C}} \| R_{\mathrm{L}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \approx-\frac{R_{\mathrm{C}} \| R_{\mathrm{L}}}{R_{\mathrm{E}}} \tag{7.37}
\end{equation*}
$$



Fig. 7.39. Common-emitter circuit without emitter capacitor
The resistor $R_{\mathrm{E}}$ is called a negative-feedback resistor. Its voltage, which is proportional to $i_{\mathrm{C}}$, is subtracted from the input voltage, i.e. negatively fed back.


Fig. 7.40. Block diagram of the common-emitter circuit without emitter capacitor
The block diagram of the common-emitter circuit (Fig. 7.40) yields the same result (Eq. (7.36)).

### 7.3.5.6 Operating Point Biasing

The operating point, i.e. the point defined by the transistor DC values $V_{\mathrm{CE}}$ and $I_{\mathrm{C}}$, should be in the active region of the output characteristic curve and also beneath the power dissipation
hyperbolic curve. The operating point should be stable with respect to thermal runaway and with respect to the production variations in the current gain $\beta_{\mathrm{DC}}$.

The operating point is calculated as follows for the circuit shown in Fig. 7.41:

1. $V_{\mathrm{CE}}$ and $I_{\mathrm{C}}$ are chosen first. The voltage $V_{\mathrm{CE}}$ is chosen as a little less than half of the supply voltage $V_{\mathrm{CC}}$. The choice of the collector current $I_{\mathrm{C}}$ has an upper limit given by permitted transistor power dissipation $P_{\text {total }}$.

$$
V_{\mathrm{CE}} \approx 0.3 \cdots 0.5 V_{\mathrm{CC}}, \quad I_{\mathrm{C}}: P_{\text {total }}<V_{\mathrm{CE}} \cdot I_{\mathrm{C}}
$$

2. The resistor $R_{\mathrm{E}}$ stabilises the operating point. It is chosen so that approximately $1--2 \mathrm{~V}$ is dropped across it.
3. The voltage $V_{\mathrm{RC}}=V_{\mathrm{CC}}-V_{\mathrm{CE}}-V_{\mathrm{RE}}$ drops across the resistor $R_{\mathrm{C}}$. Then

$$
\begin{equation*}
R_{\mathrm{C}} \approx \frac{V_{\mathrm{CC}}-V_{\mathrm{CE}}-V_{\mathrm{RE}}}{I_{\mathrm{C}}} \tag{7.38}
\end{equation*}
$$

4. The base voltage is fixed by the resistors $R_{1}$ and $R_{2}$. They are also known as a base voltage divider. The choice of $R_{\mathrm{E}}$ and $I_{\mathrm{C}}$ means that the base voltage cannot be freely chosen.

$$
\begin{equation*}
V_{\mathrm{B} 0}=V_{\mathrm{RE}}+V_{\mathrm{BE}}=V_{\mathrm{RE}}+0.7 \mathrm{~V} \tag{7.39}
\end{equation*}
$$

The voltage divider current $I_{\mathrm{s}}$ is chosen to be approximately 10 times the base current. This means that the base current only slightly loads the voltage divider, and thus the production variation of the current gain $\beta_{\mathrm{DC}}$ does not change the operating point.


Fig. 7.41. Operating point biasing
Example: Fixing the operating point of a common-emitter circuit:

1. Choice of $V_{\mathrm{CE}}: V_{\mathrm{CE}}=4.5-7.5 \mathrm{~V}$, choose $V_{\mathrm{CE}}=6 \mathrm{~V}$

Choice of $I_{\mathrm{C}}: I_{\mathrm{C} \text { max }}=500 \mathrm{~mW} / 6 \mathrm{~V}=83 \mathrm{~mA}$, choose $I_{\mathrm{C}}=50 \mathrm{~mA}$
2. $\quad R_{\mathrm{E}}=1 \mathrm{~V} / 50 \mathrm{~mA}=20 \Omega$, choose $R_{\mathrm{E}}=22 \Omega$, it follows that $V_{\mathrm{RE}}=1.1 \mathrm{~V}$
3. $\quad R_{\mathrm{C}}=\left(V_{\mathrm{CC}}-V_{\mathrm{CE}}-V_{R_{\mathrm{E}}}\right) / I_{\mathrm{C}}=7.9 \mathrm{~V} / 50 \mathrm{~mA}=158 \Omega$, choose $R_{\mathrm{C}}=150 \Omega$
4. $I_{\mathrm{s}} \approx 10 \cdot I_{\mathrm{B}} \approx 10 \cdot I_{\mathrm{C}} / B=10 \cdot 50 \mathrm{~mA} / 200=2.5 \mathrm{~mA}$ $\Longrightarrow R_{2} \approx\left(V_{R_{\mathrm{E}}}+V_{\mathrm{BE}}\right) / I_{\mathrm{s}}=(1.1 \mathrm{~V}+0.7 \mathrm{~V}) / 2.5 \mathrm{~mA}=720 \Omega$

$\Longrightarrow R_{1} \approx\left[V_{\mathrm{CC}}-\left(V_{\mathrm{RE}}+V_{\mathrm{BE}}\right)\right] / I_{\mathrm{s}}=(15 \mathrm{~V}-1.9 \mathrm{~V}) / 2.5 \mathrm{~mA}=5.2 \mathrm{k} \Omega$
choose $R_{1}=5.6 \mathrm{k} \Omega$ and $R_{2}=820 \Omega$
The calculation just described yields realistic component values. It is, however, not the only solution. For example, the voltage divider could have a higher impedance to increase the input impedance. Alternatively, $R_{\mathrm{C}}$ could be larger in order to have a greater open circuit voltage gain (see Fig. above). It is also not the only means to do the calculation. If, for example, the output impedance $R_{\mathrm{C}}$ should be equal to the load impedance $R_{\mathrm{L}}$, then it is better to begin as follows: $R_{\mathrm{C}}=R_{\mathrm{L}}$
$\rightarrow I_{\mathrm{C}} \approx\left(V_{\mathrm{CC}} / 2\right) / R_{\mathrm{C}} \rightarrow R_{\mathrm{E}} \approx(1 \cdots 2 \mathrm{~V}) / I_{\mathrm{C}} \rightarrow V_{\mathrm{B} 0} \approx V_{\mathrm{BE}}+V_{\mathrm{RE}}, I_{\mathrm{s}} \approx$ $10 \cdot I_{\mathrm{C}} / B \rightarrow R_{2}=V_{\mathrm{B} 0} / I_{\mathrm{s}}$ and $R_{1}=\left(V_{\mathrm{CC}}-V_{\mathrm{B} 0}\right) / I_{\mathrm{s}}$.

In general:

- The base voltage divider and $R_{\mathrm{E}}$ define the collector current. The collector resistor $R_{\mathrm{C}}$ defines the collector-emitter voltage.


### 7.3.5.7 Operating Point Stabilisation

Changes in the transistor data lead to a shift in the operating point. Thermal runaway $\Delta V_{\mathrm{BE}}$ and production sample variation of the current gain $\beta_{\mathrm{DC}}$ are important in this context.

- All steps to stabilise the operating point must focus on keeping the collector current constant.


## Stabilising the operating point using current feedback:

The resistor $R_{\mathrm{E}}$ is called a feedback resistor.
The feedback mechanism: if the base-emitter voltage $V_{\mathrm{BE}}$ decreases by an amount $\Delta V_{\mathrm{BE}}$ because of a temperature increase, then the voltage $V_{\mathrm{RE}}$ increases (for $V_{\mathrm{B} 0}=$ constant). The difference of these two changes appears across the differential input impedance $r_{\mathrm{BE}}$ and produces a change $\Delta I_{\mathrm{B}}$ in the base current. This is multiplied by the current gain $\beta_{0}$, yielding the change in collector current $\Delta I_{\mathrm{C}}$. This in turn produces a change in the voltage drop across $R_{\mathrm{E}}$. The change $\Delta I_{\mathrm{C}}$ with feedback present can be used to calculate the voltage change $V_{\mathrm{RC}}$ and thus $V_{\mathrm{CE}}: \Delta V_{\mathrm{CE}}=-\Delta V_{\mathrm{RC}}=-\Delta I_{\mathrm{C}} \cdot R_{\mathrm{C}}$.
The relationship $\Delta I_{\mathrm{C}}=f\left(\Delta V_{\mathrm{BE}}\right)$ can be derived using the block diagram in Fig. 7.42.

$$
\begin{equation*}
\frac{\Delta I_{\mathrm{C}}}{\Delta V_{\mathrm{BE}}}=\frac{-1}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \tag{7.40}
\end{equation*}
$$



Fig. 7.42. Stabilising the operating point using current feedback
The voltage change $\Delta V_{\mathrm{BE}}$ is considered as an extra voltage source at the base.
The relationship

$$
\begin{equation*}
\frac{\Delta V_{\mathrm{CE}}}{\Delta V_{\mathrm{BE}}}=A_{\mathrm{DR}}=+\frac{1}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \cdot R_{\mathrm{C}} \approx+\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}} \tag{7.41}
\end{equation*}
$$

is the thermal voltage drift gain. It shows how much the collector voltage changes as a result of thermal drift. It decreases as $R_{\mathrm{E}}$ increases. Usual values for $A_{\mathrm{DR}}$ lie in the range 5-10.

- The stabilising effect improves the larger $R_{\mathrm{E}}$ becomes.

Note: $\quad$ The recommendations made in 7.3.5.6 for the measurement of $R_{\mathrm{E}}$ are directly related to the thermal voltage drift gain. For normal supply voltages, the voltage drop across $R_{\mathrm{E}}$ lies between $1-2 \mathrm{~V}$.

Stability for production sample variations of current gain is achieved using low impedance base voltage dividers. This means that sample variations in the base current do not influence the base quiescent current.

## Operating-point stabilisation using voltage feedback:



Fig. 7.43. Operating point stabilisation using voltage feedback
Feedback mechanism: if the voltage $V_{\mathrm{BE}}$ decreases by an amount $\Delta V_{\mathrm{BE}}$ because of a temperature increase, then the base current $I_{\mathrm{B}}$ increases. As $I_{\mathrm{B}}$ increases, the collector
current $I_{\mathrm{C}}$ also increases, causing the collector voltage to decrease. The base voltage defined by the voltage divider $R_{1}, R_{2}$ also decreases, and the base current (which was increased by the temperature increase) decreases again. This is represented in the block diagram in Fig. 7.43.

$$
\begin{equation*}
\frac{\Delta V_{\mathrm{CE}}}{\Delta V_{\mathrm{BE}}}=\frac{\frac{\beta_{0}}{r_{\mathrm{BE}}} \cdot R_{\mathrm{C}}}{1+\frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}} \frac{R_{2}}{R_{1}+R_{2}}}=\frac{1}{\frac{r_{\mathrm{BE}}}{\beta_{0} R_{\mathrm{C}}}+\frac{R_{2}}{R_{1}+R_{2}}} \approx \frac{R_{1}+R_{2}}{R_{2}} \tag{7.42}
\end{equation*}
$$

Note: The voltage feedback has the disadvantage that an AC current will also experience negative feedback. Therefore the AC current gain is the same as the thermal voltage drift gain. Alternatively, the AC voltage gain and thermal voltage drift gain with current feedback can be different, as the feedback resistor $R_{\mathrm{E}}$ can be AC-shorted by a capacitor $C_{\mathrm{E}}$ placed in parallel. Capacitor $C_{\mathrm{E}}$ is chosen so that it is a short circuit for the AC signal to be amplified, but exhibits a high impedance for the much slower changing thermal voltage drift.

## Nonlinear stabilisation of the operating point:

The stabilisation of the operating point using current feedback can be further improved if a $\mathrm{p}-\mathrm{n}$ junction is placed in the base voltage divider, which is thermally coupled with the transistor $Q_{1}$ (Fig. 7.44). Any thermal drift of the transistor $Q_{1}$ is therefore directly compensated for in the base voltage divider.


Fig. 7.44. Nonlinear operating point stabilisation

### 7.3.5.8 Load Line

The mesh equation $V_{\mathrm{CC}}=I_{\mathrm{C}} \cdot\left(R_{\mathrm{C}}+R_{\mathrm{E}}\right)+V_{\mathrm{CE}}$ is a linear equation.

$$
\begin{equation*}
I_{\mathrm{C}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{CE}}}{R_{\mathrm{C}}+R_{\mathrm{E}}}=\underbrace{-\frac{1}{R_{\mathrm{C}}+R_{\mathrm{E}}}}_{\text {slope }} \cdot V_{\mathrm{CE}}+\underbrace{\frac{V_{\mathrm{CC}}}{R_{\mathrm{C}}+R_{\mathrm{E}}}}_{\text {constant }} \tag{7.43}
\end{equation*}
$$

Equation (7.43) is called the static load line. $V_{\mathrm{CE}}$ and $I_{\mathrm{C}}$ can only take on values that lie on the static load line. The operating point can be so chosen, by using the load line, that a maximum output range is achieved that uses the entire active range of the transistor.


Fig. 7.45. Static and dynamic load line in the output characteristic

Bypassing $R_{\mathrm{E}}$ with a capacitor $C_{\mathrm{E}}$ leads to the dynamic load line (Fig. 7.45). The slope is given by $\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{d} V_{\mathrm{CE}}}=-\frac{1}{R_{\mathrm{C}}}$, or if the load resistance is included $\frac{\mathrm{d} I_{\mathrm{C}}}{\mathrm{d} V_{\mathrm{CE}}}=-\frac{1}{R_{\mathrm{C}} \| R_{\mathrm{L}}}$. This represents the relationship between the AC quantities $v_{\mathrm{CE}}$ and $i_{\mathrm{C}}$.

### 7.3.5.9 Common-Emitter Circuit at High Frequencies

The collector AC voltage is in antiphase to the base voltage. A frequency dependent feedback exists through the parasitic collector-base capacitance (Miller capacitance). This increases with increasing frequency. The amount of feedback also depends on the internal resistance of the input voltage source. The smaller the resistance, the smaller the amount of feedback.

Current feedback increases the critical frequency of the circuit. The voltage gain is decreased, and so the voltage feedback is less. Also, the current gain $\beta$ in the expression for the AC voltage gain is equally frequency dependent and thus decreases in value.

A value for the critical frequency can be measured or predicted with a suitable simulation system.

- A high critical frequency can be achieved by using current feedback and a small internal resistance in the input voltage source.


### 7.3.6 Common-Collector Circuit (Emitter Follower)

The common-collector circuit has a voltage gain of about 1 . The output voltage range is from around $0.7 \mathrm{~V} \leq V_{\mathrm{B}} \leq V_{\mathrm{CC}}$, i.e. the output voltage range practically extends to the supply voltage (Fig. 7.46).

The emitter voltage is always about 0.7 V below the base voltage. Hence the name emitter follower, as the emitter voltage follows the base voltage and differs by the fixed amount of 0.7 V .


Fig. 7.46. The common-collector circuit and its voltages

The common-collector circuit has a very high input impedance and a small output impedance. Therefore it is used as an impedance converter, e.g. in combination with a common-emitter circuit (Fig. 7.47).


Fig. 7.47. Common-collector circuit as an impedance converter for a common-emitter circuit

### 7.3.6.1 Common-Collector AC Equivalent Circuit



Fig. 7.48. Common-collector circuit and its AC equivalent circuit

### 7.3.6.2 Common-Collector Circuit Input Impedance

The common-collector input-impedance $r_{\text {in }}$ can be expressed as

$$
\begin{equation*}
r_{\text {in }}=\frac{v_{\text {in }}}{i_{\mathrm{B}}}=\frac{i_{\mathrm{B}} \cdot r_{\mathrm{BE}}+i_{\mathrm{B}} \cdot\left(1+\beta_{0}\right) \cdot R_{\mathrm{E}}}{i_{\mathrm{B}}}=r_{\mathrm{BE}}+\left(1+\beta_{0}\right) \cdot R_{\mathrm{E}} \approx \beta_{0} \cdot R_{\mathrm{E}} \tag{7.44}
\end{equation*}
$$

and with a load resistance $R_{\mathrm{L}}$ :

$$
\begin{equation*}
r_{\text {in }} \approx \beta_{0} \cdot\left(R_{\mathrm{E}} \| R_{\mathrm{L}}\right) \tag{7.45}
\end{equation*}
$$



Fig. 7.49. AC equivalent circuit for the calculation of the input and output resistance

### 7.3.6.3 Common-Collector Circuit Output Impedance

The output impedance is given by:

$$
\begin{equation*}
r_{\text {out }}=\frac{\text { open-circuit AC voltage }}{\text { short-circuit AC current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}} \tag{7.46}
\end{equation*}
$$

The input AC voltage $v_{\text {in }}$ is supplied.
This yields (Fig. 7.49):

$$
\begin{align*}
& v_{\mathrm{o} / \mathrm{c}}=i_{\mathrm{B}} \cdot\left(1+\beta_{0}\right) \cdot R_{\mathrm{E}}=\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}}\left(1+\beta_{0}\right) R_{\mathrm{E}} \approx v_{\mathrm{in}}  \tag{7.47}\\
& i_{\mathrm{s} / \mathrm{c}}=i_{\mathrm{B}} \cdot \beta_{0}=\frac{v_{\mathrm{in}}}{r_{\mathrm{BE}}} \beta_{0} \tag{7.48}
\end{align*}
$$

This further yields:

$$
\begin{equation*}
r_{\mathrm{out}} \approx \frac{r_{\mathrm{BE}}}{\beta_{0}} \tag{7.49}
\end{equation*}
$$

If the common-collector circuit is fed by a voltage source with an internal resistance $R_{\text {int }}$ (e.g. by a common-emitter circuit with $R_{\text {int }}=R_{\mathrm{C}}$ ), then this internal resistance appears at the output impedance reduced by a factor $\beta_{0}$.

$$
\begin{equation*}
r_{\mathrm{out}} \approx \frac{r_{\mathrm{BE}}+R_{\mathrm{int}}}{\beta_{0}} \tag{7.50}
\end{equation*}
$$

Note: The output impedance of a common-emitter stage can be reduced by a factor $\beta_{0}$ by the addition of an emitter follower (only two components!) as shown in Fig. 7.47.

### 7.3.6.4 Common-Collector Circuit AC Current Gain

The AC current gain is given by (Fig. 7.49):

$$
\begin{equation*}
A_{\mathrm{i}}=\frac{i_{\text {out }}}{i_{\text {in }}}=\beta_{0} \cdot \frac{R_{\mathrm{E}}}{R_{\mathrm{E}}+R_{\mathrm{L}}} \tag{7.51}
\end{equation*}
$$

The AC current gain of the emitter follower is unimportant in analogue design. Because of its large input impedance, a voltage is applied to the input of the emitter follower and is subsequently coupled to the output with a low output impedance.

### 7.3.6.5 Common-Collector Circuit at High Frequencies

The common-collector circuit has its critical frequency $f_{\mathrm{c}}$ approximately at the critical frequency of the current gain $f_{\beta}$ (see also Sect. 7.3.1.12).

$$
\begin{equation*}
f_{\mathrm{c}} \approx f_{\beta} \approx \frac{f_{\mathrm{T}}}{\beta_{0}} \tag{7.52}
\end{equation*}
$$

### 7.3.7 Common-Base Circuit

The common-base circuit has a current gain of 1 and a voltage gain similar to the commonemitter. The output voltage has the same phase as the input voltage. The input impedance is very small, so a transformer coupling is often used, which, depending on the winding ratio, can be very low impedance and deliver a large current for a small voltage (Fig. 7.50).


Fig. 7.50. Common-base circuit with transformer coupling
The common-base is suitable for very high frequencies. As its current gain $A_{\mathrm{i}}=1$ and the output voltage is in phase with the input voltage, it can be used up to approximately the unity gain frequency $f_{\mathrm{T}}$.

Note: The importance of the common-base diminished greatly with the introduction of field-effect transistors, because common-source circuits (comparable to common-emitter circuits) are suitable up to frequencies that are achievable with bipolar transistors only with the common-base circuit.

Operation of the common-base: The base-emitter voltage is the controlling voltage. Given that the base is at AC ground, the input voltage must control the emitter voltage.

This has the disadvantage that the input voltage source must supply the emitter current and not the base current as in the case of the common emitter. For a positive change in the input voltage, the base-emitter voltage decreases. The collector current decreases, and the collector voltage increases (Fig. 7.50).

### 7.3.7.1 Common-Base AC Equivalent Circuit



Fig. 7.51. Common-base circuit and its AC equivalent circuit

### 7.3.7.2 Common-Base Circuit Input Impedance

The input impedance is (Fig. 7.51):

$$
\begin{array}{r}
r_{\text {in }}=\frac{v_{\text {in }}}{i_{\mathrm{in}}}, \quad v_{\text {in }}=i_{\text {in }} \cdot R_{\mathrm{E}}+i_{\mathrm{B}} \cdot r_{\mathrm{BE}}=i_{\mathrm{in}}\left(R_{\mathrm{E}}+\frac{r_{\mathrm{BE}}}{1+\beta_{0}}\right) \\
\Longrightarrow r_{\mathrm{in}}=R_{\mathrm{E}}+\frac{r_{\mathrm{BE}}}{1+\beta_{0}} \approx R_{\mathrm{E}}+\frac{r_{\mathrm{BE}}}{\beta_{0}} \tag{7.53}
\end{array}
$$

If $R_{\mathrm{E}}$ is bypassed by a capacitor (Fig. 7.51), then the input impedance reduces to

$$
\begin{equation*}
r_{\mathrm{in}} \approx \frac{r_{\mathrm{BE}}}{\beta_{0}} \tag{7.54}
\end{equation*}
$$

### 7.3.7.3 Common-Base Circuit Output Impedance

The output impedance is given by:

$$
\begin{array}{r}
r_{\text {out }}=\frac{\text { open-circuit AC voltage }}{\text { short-circuit AC current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}} \\
v_{\mathrm{o} / \mathrm{c}} \approx i_{\mathrm{B}} \cdot \beta_{0} \cdot R_{\mathrm{C}}=v_{\text {in }} \frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}}, \quad i_{\mathrm{s} / \mathrm{c}} \approx i_{\mathrm{B}} \cdot \beta_{0}=\frac{v_{\text {in }}}{r_{\mathrm{BE}}} \beta_{0} \\
\Longrightarrow \quad r_{\mathrm{out}}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}} \approx R_{\mathrm{C}} \tag{7.57}
\end{array}
$$

- The common-base output impedance is the same as for the common emitter.


### 7.3.7.4 Common-Base Circuit AC Voltage Gain

The AC voltage gain of the common-base circuit is:

$$
\begin{align*}
A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}, \quad v_{\text {out }}=i_{\mathrm{B}} \beta_{0} R_{\mathrm{C}}, & v_{\text {in }}=i_{\mathrm{B}}\left(1+\beta_{0}\right) R_{\mathrm{E}}+i_{\mathrm{B}} \cdot r_{\mathrm{BE}} \\
\Longrightarrow & V_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}} \approx \frac{R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \tag{7.58}
\end{align*}
$$

If $R_{\mathrm{E}}$ is bypassed by a capacitor, the gain increases to:

$$
\begin{equation*}
A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\beta_{0} \cdot R_{\mathrm{C}}}{r_{\mathrm{BE}}} \tag{7.59}
\end{equation*}
$$

- The AC voltage gain of the common-base is as for the common-emitter circuit.


### 7.3.7.5 Common-Base Circuit at High Frequencies

The common-base current gain is 1 . Thus the current gain does not create any unwanted negative feedback. The output voltage is in phase with the input voltage, so that in this case feedback over parasitic capacitances is also not a problem. For these reasons the common-base can be operated up to approximately the unity gain frequency $f_{\mathrm{T}}$.

### 7.3.8 Overview: Basic Bipolar Transistor Circuits

Fig. 7.52 gives an overview of basic bipolar transistor circuits.

### 7.3.9 Bipolar Transistor Current Sources

Real current sources can be represented by a circuit diagram consisting of an ideal current source $I_{\mathrm{s}}$ and a source resistor $R_{\mathrm{int}}$, (Fig. 7.53).
Current sources in circuit theory should deliver a defined current:

- independent of the terminal voltage $V_{\text {out }}$, and
- independent of the supply voltage $V_{\mathrm{CC}}$ (in particular repressing any mains hum present)


## Bipolar transistor current source:

The mesh equation $-V_{\mathrm{z}}+V_{\mathrm{BE}}+I_{\mathrm{S}} \cdot R_{\mathrm{E}}=0$ yields an expression for the current $I_{\mathrm{S}}$ (Fig. 7.54):

$$
\begin{equation*}
I_{\mathrm{s}} \approx \frac{V_{\mathrm{z}}-0.7 \mathrm{~V}}{R_{\mathrm{E}}} \quad \text { for } \quad 0<V_{\text {out }}<\left(V_{\mathrm{CC}}-V_{\mathrm{z}}\right) \tag{7.60}
\end{equation*}
$$

The current $I_{\mathrm{s}}$ is independent of the output voltage $V_{\text {out }}$ with the choice of the Zener voltage $V_{\mathrm{Z}}$ and the emitter resistor $R_{\mathrm{E}}$. The Zener diode works as a constant voltage source. Other

|  | Common-emitter circuit | Common-collector circuit <br> (Emitter follower) | Common-base circuit |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}$ | $\begin{gathered} \frac{-\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \\ \approx \frac{-R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \end{gathered}$ | $\begin{gathered} \frac{1}{1+\frac{r_{\mathrm{BE}}}{\left(1+\beta_{0}\right) R_{\mathrm{E}}}} \\ \approx 1 \end{gathered}$ | $\begin{gathered} \frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \\ \approx \frac{R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \end{gathered}$ |
| $r_{\text {in }}=$ | $r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}$ | $r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}$ | $R_{\mathrm{E}}+\frac{r_{\mathrm{BE}}}{\left(1+\beta_{0}\right)}$ |
| $r_{\text {out }}=$ | $R_{\text {C }}$ | $\frac{R_{\mathrm{int}}+r_{\mathrm{BE}}}{\left(1+\beta_{0}\right)}$ | $R_{\text {C }}$ |

Fig. 7.52. Comparison of basic bipolar transistor circuits


Fig. 7.53. Current source representation


Fig. 7.54. Bipolar transistor current source
voltage sources could be used in place of the diode, such as reference elements, LEDs or series connected silicon diodes.
The source resistance of the current source can be determined from the AC equivalent circuit (Fig. 7.55).


Fig. 7.55. AC equivalent circuit for bipolar transistor current sources

$$
\begin{equation*}
r_{\mathrm{i}}=-\frac{v_{\mathrm{out}}}{i_{\mathrm{out}}}=\frac{R_{\mathrm{E}}\left(r_{\mathrm{BE}}+\beta_{0} r_{\mathrm{CE}}\right)+r_{\mathrm{CE}}\left(R_{\mathrm{E}}+r_{\mathrm{BE}}\right)}{R_{\mathrm{E}}+r_{\mathrm{BE}}} \tag{7.61}
\end{equation*}
$$

- The source resistance lies between $r_{\mathrm{CE}}$ and $\beta_{0} \cdot r_{\mathrm{CE}}$, depending on the circuit layout.

$$
\begin{equation*}
r_{\mathrm{CE}}<r_{\mathrm{i}}<\beta_{0} \cdot r_{\mathrm{CE}} \tag{7.62}
\end{equation*}
$$

For a normal choice of voltage $V_{\mathrm{z}}\left(V_{\mathrm{z}}=\right.$ a few volts $)$ the source resistance is approximately 10-20 times $r_{\text {CE }}$.

- In general, $r_{\mathrm{i}}$ increases with increasing $V_{\mathrm{z}}$ and $R_{\mathrm{E}}$.

Current source stabilisation against voltage supply variations only partially depends on the source resistance. The source resistance of the voltage source $V_{\mathrm{z}}$ has a similar influence. It causes $V_{\mathrm{z}}$ to change with the supply voltage $V_{\mathrm{CC}}$ and thus also the current $I_{\mathrm{s}}$. To reduce 100 Hz mains ripple, $V_{z}$ can be stabilised by using a low-pass filter (Fig. 7.56).


$$
C=10 \ldots 100 \cdot \frac{10 \mathrm{msec}}{R_{1} / 2}
$$

to reduce 100 Hz mains ripple

Fig. 7.56. Current source with improved mains ripple reduction

### 7.3.10 Bipolar Transistor Differential Amplifier

The differential amplifier amplifies the difference of the input voltages (Fig. 7.57):

$$
\begin{equation*}
-v_{\text {out } 1}=v_{\text {out } 2}=\left(v_{\text {in } 1}-v_{\text {in2 } 2}\right) \cdot A_{\mathrm{d}}=v_{\mathrm{d}} \cdot A_{\mathrm{d}} \tag{7.63}
\end{equation*}
$$



Fig. 7.57. Differential amplifier with bipolar transistors

Differential amplifiers are used mostly as addition points in a feedback loop.
Differential amplifiers are usually used with a symmetric plus/minus-supply voltage. The quiescent input voltage is at ground. The quiescent collector voltage (operating point) is chosen to be at $V_{\mathrm{CC}} / 2$ for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors or at $-V_{\mathrm{SS}} / 2$ for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors. The quiescent collector current is equal to half the source current $I_{\mathrm{s}}\left(I_{\mathrm{C}}=I_{\mathrm{s}} / 2\right)$. The emitter resistor $R_{\mathrm{E}}$ (current feedback) can be chosen to be very small, as the thermal drift effects both transistors. For selected transistors, which differ only slightly in their parameters (matched transistors), $R_{\mathrm{E}}$ can be discarded. If the output voltage is taken between the collector terminals, then $V_{\text {out }} \propto V_{\mathrm{d}}$ also in DC.
A distinction is made between common mode and differential mode. If the input voltages have the same amplitude and phase, then they are in common-mode. If the input voltages have the same amplitude and are in antiphase, then they are in differential mode. If $v_{\text {inl }}$ and $v_{\text {in } 2}$ are not equal, then they can be broken into common-mode and differential mode constituent parts.

In theory, a common-mode signal $v_{\text {in } 1}=v_{\text {in } 2}=v_{\mathrm{CM}}$ does not cause an output signal, as the current $I_{\mathrm{s}}$ is defined and should divide equally between the two transistor arms because of the input voltage symmetry. A common-mode signal produces an output signal only as a result of the finite source resistance of the current source $I_{\mathrm{s}}$.

The ratio

$$
\begin{equation*}
\frac{\text { common-mode output voltage }}{\text { common-mode input voltage }}=\frac{v_{\text {out }}}{v_{\mathrm{CM}}}=\frac{\mathrm{d} V_{\text {out }}}{\mathrm{d} A_{\mathrm{CM}}}=V_{\mathrm{CM}} \tag{7.64}
\end{equation*}
$$

is known as common-mode gain. Ideally it is zero.
A differential signal $v_{\text {in } 1}=-v_{\text {in } 2}=v_{\mathrm{d}} / 2$ produces an output signal $v_{\text {out } 1}=-v_{\text {out } 2}$, as it causes the current $I_{\mathrm{s}}$ to divide unequally between the two transistor arms.

The ratio

$$
\begin{equation*}
\frac{\text { differential output voltage }}{\text { differential input voltage }}=\frac{v_{\text {out1 }}}{v_{\text {in } 1}-v_{\text {in } 2}}=\frac{v_{\text {out1 }}}{v_{\mathrm{d}}}=\frac{\mathrm{d} V_{\text {out1 }}}{\mathrm{d}\left(V_{\text {in } 1}-V_{\text {in } 2}\right)}=A_{\mathrm{d}} \tag{7.65}
\end{equation*}
$$

is known as differential-mode gain.

### 7.3.10.1 Differential Mode Gain



Fig. 7.58. Calculation of the differential mode gain using an $A C$ equivalent circuit of the differential amplifier The AC equivalent circuit in Fig. 7.58 yields:

$$
\begin{align*}
v_{\mathrm{d}} & =i_{\mathrm{B} 1} \cdot r_{\mathrm{BE} 1}+i_{\mathrm{d}} \cdot 2 R_{\mathrm{E}}-i_{\mathrm{B} 2} \cdot r_{\mathrm{BE} 2}  \tag{7.66}\\
v_{\mathrm{out} 1} & =-i_{\mathrm{B} 1} \cdot \beta_{0} \cdot R_{\mathrm{C}}  \tag{7.67}\\
i_{\mathrm{d}} & =i_{\mathrm{B} 1} \cdot\left(1+\beta_{0}\right)=-i_{\mathrm{B} 2} \cdot\left(1+\beta_{0}\right) \tag{7.68}
\end{align*}
$$

It follows that:

$$
\begin{equation*}
A_{\mathrm{d}}=\frac{v_{\text {out } 1}}{v_{\mathrm{d}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{d}}}=-\frac{1}{2} \frac{\beta_{0} \cdot R_{\mathrm{C}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}} \tag{7.69}
\end{equation*}
$$

or, alternatively:

$$
\begin{equation*}
A_{\mathrm{d}}=\frac{v_{\text {out } 1}}{v_{\mathrm{d}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{d}}} \approx-\frac{1}{2} \frac{R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \tag{7.70}
\end{equation*}
$$

- The lower the resistance of $R_{\mathrm{E}}$, the greater the differential gain $A_{\mathrm{d}}$.

Note: In order to be able to choose a small feedback resistor $R_{\mathrm{E}}$, the transistors must be as similar as possible and be exposed to the same temperature. For this reason monolithic transistors (dual transistors in the same housing) are produced. These are manufactured in the same process (on the same chip) and are thus very similar, and they are at the same temperature because of the common casing. In this case $R_{\mathrm{E}}$ can be discarded.

### 7.3.10.2 Common-Mode Gain



Fig. 7.59. Differential amplifier AC equivalent circuit for the common-mode gain calculation
Calculation of the common-mode gain, taking into account the source resistance $r_{\text {is }}$ of the current source $I_{\mathrm{s}}$ the AC equivalent circuit yields (Fig. 7.59):

$$
\begin{align*}
v_{G l} & =i_{\mathrm{B} 1} \cdot r_{\mathrm{BE} 1}+i_{\mathrm{B} 1} \cdot\left(1+\beta_{0}\right) R_{\mathrm{E}}+i_{\mathrm{s}} \cdot r_{\mathrm{is}}  \tag{7.71}\\
v_{\mathrm{out}} & =-i_{\mathrm{B} 1} \cdot \beta_{0} \cdot R_{\mathrm{C}}  \tag{7.72}\\
i_{\mathrm{s}} & =\left(i_{\mathrm{B} 1}+i_{\mathrm{B} 2}\right) \cdot\left(1+\beta_{0}\right)=2 \cdot\left(1+\beta_{0}\right) \cdot i_{\mathrm{B} 1} \tag{7.73}
\end{align*}
$$

It follows that:

$$
\begin{equation*}
A_{\mathrm{CM}}=\frac{v_{\mathrm{out} 1}}{v_{\mathrm{CM}}}=-\frac{\beta_{0} R_{\mathrm{C}}}{r_{\mathrm{BE}}+\left(1+\beta_{0}\right) R_{\mathrm{E}}+\left(1+\beta_{0}\right) \cdot 2 r_{\mathrm{is}}} \tag{7.74}
\end{equation*}
$$

With $2 r_{\text {is }} \gg R_{\mathrm{E}}$ it follows that:

$$
\begin{equation*}
A_{\mathrm{CM}}=\frac{v_{\text {out } 1}}{v_{\mathrm{CM}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{CM}}} \approx-\frac{R_{\mathrm{C}}}{2 r_{\mathrm{is}}} \tag{7.75}
\end{equation*}
$$

- The higher the source impedance of the current source, the smaller the common mode gain is.


### 7.3.10.3 Common-Mode Rejection Ratio

The common-mode rejection ratio CMRR is the quotient of differential-mode gain and common-mode gain.

$$
\begin{equation*}
C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}} \tag{7.76}
\end{equation*}
$$

Usually it is expressed in dB . The common-mode rejection ratio is:

$$
\begin{equation*}
C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}}=\frac{r_{\mathrm{is}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}} \tag{7.77}
\end{equation*}
$$

### 7.3.10.4 Differential Amplifier Input Impedance

Differential-mode input resistance $r_{\mathrm{d}}$ (Fig. 7.58):

$$
\begin{gather*}
r_{\mathrm{d}}=\frac{v_{\mathrm{d}}}{i_{\mathrm{B} 1}}=2 r_{\mathrm{BE}}+\left(1+\beta_{0}\right) 2 R_{\mathrm{E}}  \tag{7.78}\\
r_{\mathrm{d}} \approx 2\left(r_{\mathrm{BE}}+\beta_{0} R_{\mathrm{E}}\right) \tag{7.79}
\end{gather*}
$$

Common-mode input resistance $r_{\mathrm{CM}}$ (Fig. 7.59):

$$
\begin{gather*}
r_{\mathrm{CM}}=\frac{v_{\mathrm{CM}}}{i_{\mathrm{B} 1}}=r_{\mathrm{BE}}+\left(1+\beta_{0}\right) \cdot R_{\mathrm{E}}+2 \cdot\left(1+\beta_{0}\right) \cdot r_{\mathrm{is}}  \tag{7.80}\\
r_{\mathrm{CM}} \approx 2 \beta_{0} \cdot r_{\mathrm{is}} \tag{7.81}
\end{gather*}
$$

### 7.3.10.5 Differential Amplifier Output Impedance

The output impedance $r_{\text {out }}$ is (as for the common-emitter circuit):

$$
\begin{equation*}
r_{\text {out }}=R_{\mathrm{C}} \tag{7.82}
\end{equation*}
$$

### 7.3.10.6 Offset Voltage of the Differential Amplifier

The offset voltage $V_{0}$ (input offset voltage) is the differential input voltage that must be applied so that the output voltages $V_{\text {out }}$ and $V_{\text {out2 }}$ are equal.

$$
\begin{equation*}
V_{0}=\left.\left(V_{\text {in } 1}-V_{\text {in2 } 2}\right)\right|_{V_{\text {out1 } 1}=V_{\text {out } 2}} \tag{7.83}
\end{equation*}
$$

The offset voltage is a tolerance value. The value given in the data sheet is the worst case.

### 7.3.10.7 Differential Amplifier Offset Current

The offset current $I_{0}$ (input offset current) is the differential input currenthat must be supplied so that $V_{\text {out }}$ and $V_{\text {out2 }}$ are equal.

$$
\begin{equation*}
I_{0}=\left.\left(I_{\text {in } 1}-I_{\text {in } 2}\right)\right|_{V_{\text {out } 1}=V_{\text {oul }}} \tag{7.84}
\end{equation*}
$$

### 7.3.10.8 Input Offset Voltage Drift

The thermal voltage drift of both differential amplifier transistors effectively cancels out because of their matched fabrication. Only the tolerance-defined differences in the thermal drift have an effect. The offset voltage drift (also described as the temperature coefficient of the input offset voltage) is the change in the offset voltage caused by the different temperature responses of the transistors. It lies several decades below the thermal voltage drift $\Delta V_{\mathrm{BE}}$. The input offset voltage drift is given in units of $\frac{\propto \mathrm{V}}{\mathrm{K}}$.

### 7.3.10.9 Differential Amplifier Examples



Fig. 7.60. Differential amplifier examples
A number of examples of differential amplifiers are given in Fig. 7.60:
a) Differential amplifier with current source, good mains-ripple repression and current feedback with a potentiometer for symmetry;
b) Differential amplifier with a single output voltage. A collector resistor can therefore be discarded. Disadvantage: The power dissipated in the transistors is different, causing the transistors' thermal symmetry to be lost.
c) Differential amplifier without current feedback. The transistor BCY87 is a dual transistor in a single casing especially suitable for differential amplifiers.
d) Symmetrical analogue signal transmission. Electromagnetically coupled interferences in the transmission channel cancel each other out in the receiver circuit.
e) Differential circuit with current mirror to couple current out, $i_{\text {out }}=\left(v_{\text {in } 1}-v_{\text {in } 2}\right) \frac{\beta_{0}}{r_{\mathrm{BE}}}$. This circuit is particularly important in IC design because of the required thermal coupling and the required small deviation in the transistor parameters .

### 7.3.11 Overview: Bipolar Transistor Differential Amplifiers

Differential-mode gain:
$A_{\mathrm{d}}=\frac{v_{\text {out } 1}}{v_{\mathrm{d}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{d}}}$

$\approx-\frac{1}{2} \frac{R_{\mathrm{C}}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}}$
with $v_{\text {in } 1}-v_{\text {in2 }}=v_{\mathrm{d}}$
common-mode gain:
$A_{\mathrm{CM}}=\frac{v_{\text {out } 1}}{v_{\mathrm{CM}}}=\frac{v_{\text {out } 2}}{v_{\mathrm{CM}}} \approx-\frac{R_{\mathrm{C}}}{2 r_{\text {is }}}$
with $v_{\text {in } 1}=v_{\text {in } 2}=v_{\mathrm{CM}}$
common-mode rejection ratio:
$C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}}=\frac{r_{\text {is }}}{\frac{r_{\mathrm{BE}}}{\beta_{0}}+R_{\mathrm{E}}}$
Differential-mode input impedance:
$r_{\mathrm{d}} \approx 2\left(r_{\mathrm{BE}}+\beta_{0} R_{\mathrm{E}}\right)$
Output impedance:
$r_{\text {out }}=R_{\mathrm{C}}$

### 7.3.12 Current Mirror

The current mirror produces an output current $I_{\text {out }}$, which is equal to the input current $I_{1}$. The circuit output has the qualities of a current source, i.e. it has a very high impedance source resistance.

In Fig. 7.61 current $I_{1}$ is the input quantity. Transistors $T_{1}$ and $T_{2}$ are equal and are at the same temperature. It follows that:

$$
\left.\begin{array}{rl}
I_{1} & =I_{\mathrm{C} 1}+I_{\mathrm{B}}, \quad I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=\frac{I_{\mathrm{B}}}{2}, \quad I_{\mathrm{C} 1}=\beta_{\mathrm{DC}} \cdot I_{\mathrm{B} 1} \\
I_{1} & =\beta_{\mathrm{DC}} \cdot I_{\mathrm{B} 1}+2 I_{\mathrm{B} 1}=\left(2+\beta_{\mathrm{DC}}\right) \cdot I_{\mathrm{B} 1}  \tag{7.86}\\
I_{\mathrm{out}} & =\beta_{\mathrm{DC}} \cdot I_{\mathrm{B} 2}=\beta_{\mathrm{DC}} \cdot I_{\mathrm{B} 1}
\end{array}\right\} \quad I_{\mathrm{out}} \approx I_{1}
$$



Fig. 7.61. Current mirror circuit

### 7.3.12.1 Current Mirror Variations

Fig. 7.62 shows how to multiply or to divide an input current.


Fig. 7.62. Current mirror variation

### 7.4 Field-Effect Transistor Small-Signal Amplifiers

Small-signal amplifiers are circuits that amplify small AC signals, where the signal amplitude is much smaller than the operating point values (i.e. the DC values applied to the components). The operating frequencies should be low, so that propagation delays and phase changes caused by parasitic elements can be neglected (otherwise it is pointed out in the operating conditions).

### 7.4.1 Transistor Characteristics and Ratings

### 7.4.1.1 Symbols, Voltages and Currents for Field-Effect Transistors

The transistor terminals are called the drain, the source and the gate. Field-effect transistors are voltage-controlled components. The drain-source current is controlled by the gate-source voltage. At low frequencies the control requires no power. This means that the gate current is insignificantly small.
A distinction is made between junction field-effect transistors (JFETor junction-FET) and insulated gate field-effect transistors (IGFET or insulated-gate FET while MOSFET). JFETs are always depletion types, while IGFETs can be depletion type or enhancement type. Depletion means that the drain-source path conducts for $V_{\mathrm{GS}}=0$. Enhancement means that the drain-source path does not conduct for $V_{\mathrm{GS}}=0$.

A further distinction is made between $\mathbf{n}$-channel and $\mathbf{p}$-channel types. In n-channel types the drain current flows into the drain. The drain current increases if the gate-source voltage is changed in a positive sense. In p-channel types the drain current flows from the drain. It increases if the gate-source voltage is changed in a negative sense.

Note: In terms of the current and voltage directions, an n-channel FET corresponds to an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor and a p-channel FET to a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor.

Figure 7.63 summerizes informtion for FETs
For JFETs the gate-source path is a silicon diode which is reverse-biased in normal operation. Forward biasing can easily lead to the destruction of the FET, as the current follows the forward-bias diode characteristic.

| TYPE |  |
| :--- | :--- | :--- | :--- |

Fig. 7.63. Classification, voltages, currents and characteristics of FETs

For IGFETs or MOSFETs the gate is isolated with respect to the drain and source. The maximum rating for the gate-source voltage is in the region of $\pm 20 \mathrm{~V}$.
MOSFETs are often used as 'electronic switches'. The smallest drain-source resistance $R_{\mathrm{DS}(\mathrm{ON})}$ (ON resistance) is given in the switched on state $\left(V_{\mathrm{GS}}>10 \mathrm{~V}\right)$.

MOSFETs often have a silicon diode in parallel (reverse-current diode). In the nonconducting state the source-drain path behaves like a forward-biased silicon diode. This diode must be a fast rectifier for applications in frequency inverters and in push-pull amplifiers.

In MOSFETs the termination is occasionally accessible. It is described by the term BULK (B). It has a similar controlling influence as the gate.

Note: To test whether an IGFET (MOSFET) is defective or not, a continuity tester can be used on the drain-source path in conjunction with a voltage source (about 10 V ), which controls the gate-source voltage. The state of the drain-source path must maintain its state (conducting or not), even if the control voltage $V_{\mathrm{GS}}$ is removed.

### 7.4.1.2 JFET Characteristic Curves

The transfer characteristic $I_{\mathrm{D}}=f\left(V_{\mathrm{GS}}\right)$ and the output characteristic $I_{\mathrm{D}}=f\left(V_{\mathrm{DS}}\right)$, where $V_{\mathrm{GS}}$ is a parameter, represent the relationship between all voltages and currents of the field-effect transistor (Fig. 7.64).
$V_{\mathrm{P}}$ is the pinch-off voltage. At $V_{\mathrm{GS}}=V_{\mathrm{P}}$ the drain current $I_{\mathrm{D}}$ becomes practically zero. The value of $V_{\mathrm{P}}$ is governed by sample variations and temperature dependence.
The input voltage of the gate-source voltage lies between $V_{\mathrm{P}}<V_{\mathrm{GS}}<0 \mathrm{~V}$ for the JFET. For $V_{\mathrm{GS}}>0 \mathrm{~V}$ the high impedance of the gate is lost.


Fig. 7.64. Transfer and output characteristics of a JFET (here: n-channel JFET)
The analytical form of the transfer characteristic is

$$
\begin{equation*}
I_{\mathrm{D}}=I_{\mathrm{DSS}}\left(1-\frac{V_{\mathrm{GS}}}{V_{\mathrm{P}}}\right)^{2} \tag{7.87}
\end{equation*}
$$

The output characteristic curve is divided into two regions, the saturation region and the linear region (or triode region). In the saturation region the characteristic curve is almost horizontal, and the drain current only depends on the gate-source voltage and is almost independent of the applied drain-source voltage. In the linear region the drain current increases approximately proportionally to the drain-source voltage. The increase depends on $V_{\mathrm{GS}}$. Both regions are separated by a pinch-off curve given by

$$
\begin{equation*}
V_{\mathrm{k}}=\left(V_{\mathrm{GS}}-V_{\mathrm{P}}\right) \tag{7.88}
\end{equation*}
$$

### 7.4.1.3 IGFET Characteristic Curves

The threshold voltage $V_{\text {th }}$ of the gate-source voltage for enhancement-type FETs lies in a positive voltage range and in a negative range for depletion types. The threshold voltage, like $V_{\mathrm{P}}$ for the JFET, varies greatly due to manufacturing tolerances. The gate isolation



Fig. 7.65. IGFET (MOSFET) transfer and output characteristics; here: enhancement-type n-channel IGFET from the conducting channel means that relatively high gate-source voltages may be used. Usual values are $\pm 20 \mathrm{~V}$.
The analytical form of the transfer characteristic of IGBTs is the same as for JFETs:

$$
\begin{equation*}
I_{\mathrm{D}}=I_{\mathrm{DSS}}\left(1-\frac{V_{\mathrm{GS}}}{V_{\mathrm{P}}}\right)^{2} \tag{7.89}
\end{equation*}
$$

For enhancement-type FETs the current $I_{\mathrm{D}}=I_{\mathrm{D}}\left(V_{\mathrm{GS}}=2 V_{\mathrm{th}}\right)$ is substituted for $I_{\mathrm{DSS}}$ (Fig. 7.65).

### 7.4.1.4 Transconductance

Transconductance $g_{\mathrm{m}}$ is given by the slope of the transfer characteristic curve $I_{\mathrm{D}}=$ $f\left(V_{\mathrm{GS}}\right)$, see Fig. 7.66.

$$
\begin{equation*}
g_{\mathrm{m}}=\left.\left.\frac{\mathrm{d} I_{\mathrm{D}}}{\mathrm{~d} V_{\mathrm{GS}}}\right|_{V_{\mathrm{DS}}=\text { const }} \approx \frac{\Delta I_{\mathrm{D}}}{\Delta V_{\mathrm{GS}}}\right|_{V_{\mathrm{DS}}=\text { const }} \tag{7.90}
\end{equation*}
$$

The drain-source voltage feedback to the gate is small at low frequencies, so that the measurement condition $V_{\mathrm{DS}}=$ const is practically meaningless.
Transconductance $g_{\mathrm{m}}$ is given in siemens or millisiemens.



Fig. 7.66. Definition of the forward transconductance in the transfer characteristic and in the output characteristic

### 7.4.1.5 Dynamic Output Resistance



Fig. 7.67. Definition of the differential output resistance
The dynamic output resistance defines the change in the drain current as a function of the drain-source voltage for a constant gate-source voltage (Fig. 7.67).

$$
\begin{equation*}
r_{\mathrm{DS}}=\left.\left.\frac{\mathrm{d} V_{\mathrm{DS}}}{\mathrm{~d} I_{\mathrm{D}}}\right|_{V_{\mathrm{GS}}=\text { const }} \approx \frac{\Delta V_{\mathrm{DS}}}{\Delta I_{\mathrm{D}}}\right|_{V_{\mathrm{GS}}=\text { const }} \tag{7.91}
\end{equation*}
$$

- $r_{\text {DS }}$ is extremely high, especially for MOSFETs (the output characteristic curve is almost horizontal).


### 7.4.1.6 Input Impedance

The input impedance of a field-effect transistor is the impedance of the gate-source junction, which is capacitive. It is given in data sheets either by $C_{\text {iss }}$ or by their two-port parameters $C_{11 \text { S }}$. The value is in the range of a few picofarads to several nanofarads.

### 7.4.2 Equivalent Circuit

### 7.4.2.1 Equivalent Circuit for Low Frequencies

The gate-source voltage controls the drain current. The value of $r_{\text {DS }}$ is usually so high that it can be neglected.
It then holds:

$$
\begin{equation*}
i_{\mathrm{D}} \approx g_{\mathrm{m}} \cdot v_{\mathrm{GS}}, \quad \text { and } \quad \triangle I_{\mathrm{D}} \approx \Delta g_{\mathrm{m}} \cdot V_{\mathrm{GS}}, \quad \text { respectively } \tag{7.92}
\end{equation*}
$$



Fig. 7.68. FET AC equivalent circuit for low frequencies

### 7.4.2.2 Equivalent Circuit for High Frequencies



Fig. 7.69. FET AC equivalent circuit for high frequencies
At higher frequencies the parasitic capacitances between each of the terminals begin to take effect (Fig. 7.69). The gate-source capacitance loads the input voltage source. The gatedrain capacitance causes feedback in the common-source circuit, the amount of which depends on the source resistance of the input voltage source. The frequency-dependent feedback decreases with decreasing source resistance.
The following connections exist between the data sheet parameters $C_{\mathrm{iss}}, C_{\mathrm{rss}}$ and $C_{\text {oss }}$ (also denoted by $C_{11 \mathrm{~S}}, C_{12 \mathrm{~S}}$ and $C_{22 \mathrm{~S}}$ ) and the equivalent circuit values:

| Input capacitance: | $C_{\text {iss }}=C_{11 \mathrm{~S}} \approx C_{\mathrm{GS}}+C_{\mathrm{GD}}$ |
| :--- | :--- |
| Reverse transfer capacitance: | $C_{\mathrm{rss}}=C_{12 \mathrm{~S}} \approx C_{\mathrm{GD}}$ |
| Output capacitance: | $C_{\mathrm{oss}}=C_{22 \mathrm{~S}} \approx C_{\mathrm{DS}}+C_{\mathrm{GD}}$ |

### 7.4.2.3 Critical Frequency of Transconductance

The critical frequency of transconductance is very high for field-effect transistors (for the BF245, a particularly popular JFET, it is at 700 MHz ). The FET is thus particularly suitable as a high-frequency amplifier.
The critical frequency of transconductance is only given for those FETs that are intended for analogue usage. It is not given, therefore, for most MOSFETs, which are intended for use in fast switching.

### 7.4.3 Basic Circuits using Field-Effect Transistors

Similar to bipolar transistors, there are three different small signal modes of operation. These are the common-source, the common-gate and the common-drain (Fig. 7.70, see also Sect. 7.3.4).

### 7.4.4 Common-Source Circuit

The common-source circuit is an amplifier circuit for voltage and current amplification (Fig. 7.71).

## Common-Source Circuit with JFET

Figure 7.71a shows the common-source circuit with a JFET. The transistor operating point is selected so that it lies in the saturation region of the output characteristic curve. $V_{\mathrm{GS}}$

|  | Common-source <br> circuit | Common-drain <br> circuit | Common-gate <br> circuit |
| :--- | :---: | :---: | :---: |
| Circuit | $\rightarrow 1$ | $\rightarrow 1$ | $>1$ |
| Voltage <br> gain $A_{\mathrm{v}}$ | $\rightarrow \infty$ | $\rightarrow \infty$ | 1 |
| Current <br> gain $A_{\mathrm{i}}$ | $\rightarrow$ | Very small | Small |
| Input <br> impedance $r_{\text {in }}$ | Very high | $\mathrm{i}_{\text {int }}$ |  |
| Output <br> impedance <br> $r_{\text {out }}$ | Intermediate | Small | Intermediate |

Fig. 7.70. Basic FET circuits


Fig. 7.71. Common-source circuit
must be therefore negative for depletion-type n-channel FETs. $R_{\mathrm{G}}$ connects the gate via a high impedance to Ground, while the drain current passing through $R_{\mathrm{S}}$ causes the source voltage to have a positive value. The source is connected to AC ground via the capacitor $C_{\mathrm{S}} . R_{\mathrm{D}}$ defines the DC drain-source voltage. The output voltage is taken from this point. The output voltage $v_{\text {out }}$ has the opposite phase to the input voltage $v_{\text {in }}$ (see Sect. 7.4.4.8).

## Common-Source Circuit with IGFET

Figure 7.71 b shows the common-source circuit with an enhancement-type IGFET. The configuration is similar to the common-emitter configuration. The gate voltage must be positive with respect to the source voltage. The stabilisation of the operating point is achieved using $R_{\mathrm{S}}$ (see also operating-point stabilisation for the IGFET).

### 7.4.4.1 Common-Source Two-Port Parameters

The common-source two-port parameters are usually given as $y$-parameters (Fig. 7.72 and Tab. 7.1).


$$
\begin{aligned}
i_{\mathrm{G}} & =y_{11 \mathrm{~S}} \cdot v_{\mathrm{GS}}+y_{12 \mathrm{~S}} \cdot v_{\mathrm{DS}} \\
i_{\mathrm{D}} & =y_{21 \mathrm{~S}} \cdot v_{\mathrm{GS}}+y_{22 \mathrm{~S}} \cdot v_{\mathrm{DS}}
\end{aligned}
$$

Fig. 7.72. Definition of the two-port parameters for the common-source circuit
Table 7.1. FET $y$-parameters of the common-source cicuit

|  | low <br> frequencies | high <br> frequencies |
| :--- | :---: | :---: |
| Input admittance with shorted output: <br> $Y_{11 S}=\left.\frac{\mathrm{d} I_{\mathrm{G}}}{\mathrm{d} V_{\mathrm{GS}}}\right\|_{V_{\mathrm{DS}}=\text { const }}=\left.\frac{i_{\mathrm{G}}}{v_{\mathrm{GS}}}\right\|_{v_{\mathrm{DS}}=0}$ <br> Reverse transconductance with shorted input: <br> $Y_{12 \mathrm{~S}}=\left.\frac{\mathrm{d} I_{\mathrm{G}}}{\mathrm{d} V_{\mathrm{DS}}}\right\|_{V_{\mathrm{GS}}=\text { const }}=\left.\frac{i_{\mathrm{G}}}{v_{\mathrm{DS}}}\right\|_{v_{\mathrm{GS}}=0} \approx$ <br> Forward transconductance with shorted output: <br> $Y_{21 S}=\left.\frac{\mathrm{d} I_{\mathrm{D}}}{\mathrm{d} V_{\mathrm{GS}}}\right\|_{V_{\mathrm{DS}}=\text { const }}=\left.\frac{i_{\mathrm{D}}}{v_{\mathrm{GS}}}\right\|_{v_{\mathrm{DS}}=0} \approx$ <br> Output admittance with shorted input: <br> $Y_{22 \mathrm{~S}}=\left.\frac{\mathrm{d} I_{\mathrm{D}}}{\mathrm{d} V_{\mathrm{DS}}}\right\|_{V_{\mathrm{GS}}=\text { const }}=\left.\frac{i_{\mathrm{D}}}{v_{\mathrm{DS}}}\right\|_{v_{\mathrm{GS}}=0} \approx$ | $g_{\mathrm{m}}$ | $g_{\mathrm{m}}$ |

### 7.4.4.2 AC Equivalent Circuit of the Common-Source Circuit

The resistance of $R_{\mathrm{G}}$ is usually selected to be very large, so it is not considered in the equivalent circuit.

The equivalent circuit for low frequencies can, in most cases, be the one used with fieldeffect transistors (Fig. 7.73a).

The equivalent circuit for high frequencies is valid when the parasitic reactances $1 / \omega C_{\mathrm{GD}}$, $1 / \omega C_{\mathrm{GS}}$ and $1 / \omega C_{\mathrm{DS}}$ are not negligible compared with $R_{\mathrm{D}}$, the source resistance of the voltage source, $R_{\text {int }}$ or the load (Fig. 7.73b). This could be the case even at lower frequencies, especially if the source resistance $R_{\text {int }}$ is large enough to effect feedback over the feedback capacitor $C_{G D}$ (Miller effect).

The equivalent circuit in Fig. 7.73 c is valid if $R_{\mathrm{S}}$ is not AC -bypassed by the capacitor $C_{\mathrm{S}}$.


Fig. 7.73. Equivalent circuits of the common-source: a for low frequencies; $\mathbf{b}$ for high frequencies; $\mathbf{c}$ for low frequencies and without $C_{\mathrm{S}}$

### 7.4.4.3 Input Impedance of the Common-Source Circuit

The input impedance is

$$
z_{\mathrm{in}}=\frac{1}{Y_{11 \mathrm{~S}}} \approx \begin{cases}\infty, & \text { for low frequencies }  \tag{7.93}\\ \omega C_{11 \mathrm{~S}}=\omega C_{\mathrm{iSS}}, & \text { for high frequencies }\end{cases}
$$

### 7.4.4.4 Output Impedance of the Common-Source Circuit

The output impedance is

$$
z_{\mathrm{out}}=\frac{\text { open-circuit AC voltage }}{\text { AC short-circuit current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}}=\frac{v_{\mathrm{o} / \mathrm{c}} S R_{\mathrm{D}}}{v_{\mathrm{o} / \mathrm{c}} S}
$$

this yields

$$
z_{\mathrm{out}}= \begin{cases}\frac{v_{\mathrm{o} / \mathrm{c}} g_{\mathrm{m}} R_{\mathrm{D}}}{v_{\mathrm{o} / \mathrm{c}} g_{\mathrm{m}}}=R_{\mathrm{D}}, & \text { for low frequencies }  \tag{7.94}\\ \frac{v_{\mathrm{o} / \mathrm{c}} g_{\mathrm{m}}\left(R_{\mathrm{D}} \| \frac{1}{\mathrm{j} \omega C_{22 \mathrm{~S}}}\right)}{v_{\mathrm{o} / \mathrm{c}} g_{\mathrm{m}}}=R_{\mathrm{D}} \| \frac{1}{\mathrm{j} \omega C_{22 \mathrm{~S}}}, & \text { for high frequencies }\end{cases}
$$

### 7.4.4.5 AC Voltage Gain

The small-signal AC gain $A_{\mathrm{v}}$ according to Fig. 7.73a is:

$$
\begin{equation*}
A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{v_{\mathrm{GS}} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{D}}}{v_{\mathrm{GS}}}=-g_{\mathrm{m}} \cdot R_{\mathrm{D}} \tag{7.95}
\end{equation*}
$$

If the load resistance $R_{\mathrm{L}}$ at the circuit output is considered, then this yields:

$$
\begin{equation*}
A_{\mathrm{v}}=-g_{\mathrm{m}} \cdot\left(R_{\mathrm{D}} \| R_{\mathrm{L}}\right) \tag{7.96}
\end{equation*}
$$

- The output voltage has the opposite phase from the input voltage.
- The voltage gain of the common-source circuit is significantly smaller than of the common-emitter circuit. This can be seen in the significantly smaller transconductance in the FET compared to the bipolar transistor.

The small-signal AC gain $A_{\mathrm{v}}$ according to Fig. 7.73c is:

$$
\begin{equation*}
A_{\mathrm{v}}=-\frac{g_{\mathrm{m}} \cdot R_{\mathrm{D}}}{1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}} \tag{7.97}
\end{equation*}
$$

At high frequencies the antiphase output voltage is returned to the gate-source voltage via the feedback capacitance $C_{\mathrm{GD}}$. The higher the value of $R_{\text {int }}$, the more this reduces the amplification. Furthermore, at high frequencies the impedance of the output capacitance reaches the region of the drain impedance, which causes a further decrease in the gain. An exact analysis of the gain at high frequencies in practice should be carried out by measurements or with a suitable simulation system.

### 7.4.4.6 Operating-Point Biasing

## Operating-point biasing for depletion-type FETs:

The transconductance curve and the output characteristic curve are used in the selection of the resistances $R_{\mathrm{D}}, R_{\mathrm{S}}$ and $R_{\mathrm{G}}$ (Fig. 7.74). The operating point $V_{\mathrm{D} S 0}, I_{\mathrm{D} 0}$ is chosen as follows

- $I_{\mathrm{D} 0}=0.3 \ldots 0.5 \cdot I_{\mathrm{DSS}}$, and $V_{\mathrm{DS} 0} \approx 0.3 \ldots 0.5 V_{\mathrm{CC}}$
- in the saturation region taking into account the gate voltage
- under the curve of the power loss.
$R_{\mathrm{S}}$ and $R_{\mathrm{D}}$ are then:

$$
\begin{equation*}
R_{\mathrm{S}}=\frac{-V_{\mathrm{GS} 0}}{I_{\mathrm{D} 0}}, \quad \text { and } \quad R_{\mathrm{D}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{DS} 0}}{I_{\mathrm{D} 0}} \tag{7.98}
\end{equation*}
$$



Fig. 7.74. Operating-point biasing for depletion-type FETs
$R_{\mathrm{D}}$ determines the voltage gain. To get a large voltage gain, small values of $I_{\mathrm{D} 0}$ should be chosen and large values of $V_{\mathrm{CC}}$ should be used.
$R_{\mathrm{G}}$ is present to connect the gate to ground. $R_{\mathrm{G}}$ can be chosen in the megohm range because of the large impedance of the gate.

The temperature dependence of $V_{\mathrm{P}}$ and its sample variations causes the operating point to shift on the bias line, whose slope is $-1 / R_{\mathrm{S}}$. This means that there is an acceptable operating point over a large range of tolerances.

## Operating-point definition for enhancement-type FETs:



Fig. 7.75. Operating-point definition for enhancement-type FETs

The operating point $V_{\mathrm{DS} 0}$ and $I_{\mathrm{D} 0}$ is chosen from the output characteristic curve:

- $V_{\mathrm{DS} 0} \approx 0.3 \ldots 0.5 V_{\mathrm{CC}}$;
- in the saturation region;
- underneath the power loss curve (Fig. 7.75).

The drain current is defined by the gate voltage divider $R_{1}, R_{2}$ and the source resistor $R_{\mathrm{S}}$. To determine the three resistors, the possible variations in the transconductance curve $I_{\mathrm{D}}=f\left(V_{\mathrm{GS}}\right)$ are considered. The bias line $-1 / R_{\mathrm{S}}$ is chosen so that, despite the variations in $V_{\mathrm{th}}$, the operating point remains in a valid position in the output characteristic curve. The choice of $R_{\mathrm{S}}$ and $V_{\mathrm{G}}$ may be carried out graphically from the transconductance curve.

The resistor values can be calculated thus:

$$
\begin{equation*}
R_{\mathrm{D}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{DS} 0}}{I_{\mathrm{D} 0}}-R_{\mathrm{S}}, \quad R_{\mathrm{S}}=\frac{V_{\mathrm{G}}-V_{\mathrm{GS} 0}}{I_{\mathrm{D} 0}}, \quad \frac{R_{1}}{R_{2}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{G}}}{V_{\mathrm{G}}} \tag{7.99}
\end{equation*}
$$

The voltage divider $R_{1} / R_{2}$ can be chosen in the megohm range.

### 7.4.4.7 Common-Drain Circuit, Source Follower



Fig. 7.76. Common-drain circuit (source follower)
The common-drain is similar to the emitter follower, but has a smaller gain $A_{\mathrm{v}}<1$ because of the smaller transconductance of the FET compared to the bipolar transistor. The gate voltage divider $R_{1}, R_{2}$ can be discarded if the common-drain is used as a stage after a common-source stage (Fig. 7.76).

The common-drain input impedance is extremely high. The output impedance is small, so the common-drain circuit is particularly useful as an impedance converter.

### 7.4.4.8 AC Equivalent Circuit of the common-drain Circuit



Fig. 7.77. Common-drain circuit (source follower) and its AC equivalent circuit

### 7.4.4.9 Input Impedance of the Common-Drain Circuit

The input impedance of the common-drain circuit is extremely high:

$$
\begin{equation*}
r_{\mathrm{in}} \rightarrow \infty \tag{7.100}
\end{equation*}
$$

### 7.4.4.10 Output Impedance of the Common-Drain Circuit

$$
r_{\text {out }}=\frac{\text { open-circuit AC voltage }}{\text { AC short-circuit current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}}
$$

According to Fig. 7.77 it holds that:
Open circuit: $v_{\text {in }}=v_{\mathrm{GS}}+v_{\mathrm{GS}} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{S}}, \quad v_{\mathrm{o} / \mathrm{c}}=v_{\mathrm{GS}} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{S}}, \quad v_{\mathrm{o} / \mathrm{c}}=\frac{g_{\mathrm{m}} \cdot R_{\mathrm{S}}}{1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}} v_{\text {in }}$
Short circuit: $i_{\mathrm{s} / \mathrm{c}}=v_{\text {in }} \cdot g_{\mathrm{m}}$
This yields:

$$
\begin{equation*}
r_{\text {out }}=\frac{R_{\mathrm{S}}}{1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}} \tag{7.101}
\end{equation*}
$$

### 7.4.4.11 Voltage Gain of the Common-Drain Circuit

According to Fig. 7.77 it holds that:

$$
v_{\mathrm{in}}=v_{\mathrm{GS}}+v_{\mathrm{GS}} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{S}}, \quad v_{\mathrm{out}}=v_{\mathrm{GS}} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{S}}
$$

This yields:

$$
\begin{equation*}
A_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{\mathrm{m}} \cdot R_{\mathrm{S}}}{1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}} \tag{7.102}
\end{equation*}
$$

### 7.4.4.12 Common-Drain Circuit at High Frequencies

The common-drain circuit is suitable for operation up to the transconductance critical frequency $f_{y 21 \mathrm{~S}}$.

### 7.4.5 Common-Gate Circuit

The common-gate is similar to the common-base in bipolar transistors (Fig. 7.78). The current gain is 1 , and the voltage gain corresponds to that of the common-source circuit. The input impedance is small, and the output impedance is $R_{\mathrm{D}}$. The circuit is suitable as a voltage amplifier for high frequencies, as the output voltage has the same phase as the input voltage, and thus there can be no undesired frequency-dependent feedback. The operating point is determined and stabilised by $R_{\mathrm{S}}$.


Fig. 7.78. Common-gate and its AC equivalent circuit

### 7.4.5.1 Input Impedance of the Common-Gate Circuit

The impedance is

$$
\begin{equation*}
r_{\text {in }}=\frac{1}{g_{\mathrm{m}}} \| R_{\mathrm{S}} \approx \frac{1}{g_{\mathrm{m}}} \tag{7.103}
\end{equation*}
$$

### 7.4.5.2 Output Impedance of the Common-Gate Circuit

The output impedance is

$$
\begin{equation*}
r_{\text {out }}=R_{\mathrm{D}} \tag{7.104}
\end{equation*}
$$

### 7.4.5.3 Voltage Gain of the Common-Gate Circuit

The voltage gain is

$$
\begin{equation*}
A_{\mathrm{v}}=g_{\mathrm{m}} \cdot R_{\mathrm{D}} \tag{7.105}
\end{equation*}
$$

### 7.4.6 Overview: Basic Circuits using Field-Effect Transistors

| Circuit | Common-source <br> circuit | Common-drain <br> circuit <br> (source follower) | Common-gate <br> circuit |
| :--- | :---: | :---: | :---: | :---: |
| AC equivalent |  |  |  |
| circuit |  |  |  |

Fig. 7.79. Comparison of basic FET circuits

### 7.4.7 FET Current Source



Fig. 7.80. JFET Current source
FET current sources are mainly realised using depletion-type FETs (Fig. 7.81). They have the advantages over bipolar transistors that they

- consist of only two components, and
- have a very high mains-ripple repression, as they do not require a reference voltage, which is supplied by the 'humming' supply voltage

A disadvantage is that the source current $I_{\mathrm{s}}$ can vary considerably because of production tolerances.


Fig. 7.81. AC equivalent circuit of the current source (equivalent circuit for small/incremental changes $i_{\text {out }}$ of the source current $I_{\mathrm{s}}$ )

The differential internal impedance $r_{\text {out }}$ is (Fig. 7.81):

$$
\begin{equation*}
r_{\text {out }}=-\frac{\mathrm{d} V_{\text {out }}}{\mathrm{d} I_{\text {out }}}=-\frac{v_{\text {out }}}{i_{\text {out }}}=r_{\mathrm{DS}}\left(1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}\right)+R_{\mathrm{S}} \approx r_{\mathrm{DS}}\left(1+g_{\mathrm{m}} \cdot R_{\mathrm{S}}\right) \tag{7.106}
\end{equation*}
$$

- A horizontal progression of the output characteristic curve means that $r_{\mathrm{DS}}$ has a very large resistance, and thus that the current source has a very high impedance.


### 7.4.8 Differential Amplifier with Field-Effect Transistors

The differential amplifier with field-effect transistors operates similarly to the differential amplifier with bipolar transistors, as described in Sect. 7.3.10. The current $I_{\mathrm{s}}$ is divided up evenly between the two transistor arms, because of the symmetry of the input voltages.

The source voltage and thus the gate-source voltage is defined by the corresponding transconductance curve, while the drain currents are $I_{\mathrm{D}}=I_{\mathrm{s}} / 2$ for symmetry reasons (Fig. 7.82). In order to guarantee the required symmetry of the transistor parameters, monolithic dual FETs should be used. Differential amplifiers with field-effect transistors are employed where an extremely high input impedance is required.


Fig. 7.82. Differential amplifier with FETs and the AC equivalent circuit, where $r_{\mathrm{int}}$ is the differential resistance of the current source $I_{\mathrm{S}}$

### 7.4.8.1 Differential Mode Gain

Differential amplification is the amplification that exists for antiphase, equal amplitude input voltages.
From the AC equivalent circuit in Fig. 7.82 it follows that:
$V_{\mathrm{d}}=v_{\mathrm{GS} 1}-v_{\mathrm{GS} 2}, \quad v_{\text {out } 1}=-v_{\mathrm{GS} 1} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{D}}, \quad v_{\mathrm{GS} 1}=-v_{\mathrm{GS} 2}, \quad A_{\mathrm{d}}=\frac{v_{\text {out } 1}}{v_{\mathrm{d}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{d}}}$

$$
\begin{equation*}
A_{\mathrm{d}}=\frac{v_{\mathrm{out} 1}}{v_{\mathrm{d}}}=-\frac{1}{2} g_{\mathrm{m}} \cdot R_{\mathrm{D}} \tag{7.107}
\end{equation*}
$$

### 7.4.8.2 Common-Mode Gain

Common-mode gain is the gain that exists for input voltages that are in phase and have equal amplitudes.
The source resistance $r_{\text {int }}$ of the current source is now inserted (Fig. 7.82):

$$
\begin{align*}
& v_{\text {in } 1}=v_{\text {in } 2}, \quad v_{\text {in } 1}=v_{\mathrm{GS} 1}+i_{\mathrm{s}} \cdot r_{\text {int }}, \quad v_{\text {out } 1}=-v_{\mathrm{GS} 1} \cdot g_{\mathrm{m}} \cdot R_{\mathrm{D}}, \\
& i_{\mathrm{s}}=v_{\mathrm{GS} 1} \cdot g_{\mathrm{m}}+v_{\mathrm{GS} 2} \cdot g_{\mathrm{m}} \\
& A_{\mathrm{CM}}=\frac{v_{\text {out }}}{v_{\text {in } 1}}=\frac{v_{\text {out } 2}}{v_{\text {in } 1}}=-\frac{R_{\mathrm{D}}}{2 r_{\text {int }}} \tag{7.108}
\end{align*}
$$

### 7.4.8.3 Common-Mode Rejection Ratio

The common-mode rejection ratio is:

$$
\begin{equation*}
C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}} \approx g_{\mathrm{m}} \cdot r_{\mathrm{int}} \tag{7.109}
\end{equation*}
$$

### 7.4.8.4 Input Impedance

Differential mode input impedance:

$$
z_{\mathrm{d}}= \begin{cases}\rightarrow \infty, & \text { for low frequencies }  \tag{7.110}\\ 2 \frac{1}{\mathrm{j} \omega C_{11 \mathrm{~S}}}, & \text { for high frequencies }\end{cases}
$$

## Common-mode input impedance:

$$
\begin{equation*}
r_{\mathrm{CM}} \rightarrow \infty \tag{7.111}
\end{equation*}
$$

### 7.4.8.5 Output Impedance

$$
\begin{equation*}
r_{\text {out }}=R_{\mathrm{D}} \tag{7.112}
\end{equation*}
$$

### 7.4.9 Overview: Differential Amplifier with Field-Effect Transistors



Differential mode gain:
$A_{\mathrm{d}}=\frac{v_{\text {out } 1}}{v_{\mathrm{d}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{d}}}$
$\approx-\frac{1}{2} g_{\mathrm{m}} \cdot R_{\mathrm{D}}$
with $v_{\text {in } 1}-v_{\text {in } 2}=v_{\text {d }}$
Common-mode gain:
$A_{\mathrm{CM}}=\frac{v_{\text {out } 1}}{v_{\mathrm{CM}}}=-\frac{v_{\text {out } 2}}{v_{\mathrm{CM}}}$
$\approx-\frac{R_{\mathrm{D}}}{2 r_{\text {int }}}$
with $v_{\text {in } 1}=v_{\text {in } 2}=v_{\mathrm{CM}}$

Common-mode rejection ratio:

$$
C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}} \approx g_{\mathrm{m}} \cdot r_{\mathrm{int}}
$$

Differential mode input impedance:
$z_{\mathrm{d}} \approx 2 \cdot \frac{1}{\mathrm{j} \omega C_{11 \mathrm{~S}}}$
Output impedance:
$r_{\text {out }}=R_{\mathrm{D}}$

### 7.4.10 Controllable Resistor FETs

The FET as a controllable resistor is operated in the linear region of the output characteristic curve. This means that in this case the FET is operated with a very small drain-source voltage ( $V_{\mathrm{DS}}<V_{\mathrm{k}}$ ) (Fig. 7.83).
The resistance of small-signal FETs is in the range of tens to several hundred Ohms.


Fig. 7.83. The resistive range of the output characteristics
A linearisation of the curved characteristics is achieved with the circuit for the adjustable voltage divider in Fig. 7.84. The linearisation works as follows: for increasing output voltages the gate-source voltage is increased and thus the nonlinear characteristic curve is compensated. The resistors are chosen so that $R_{2}=R_{3} \gg R_{\mathrm{DS}}$.
It then holds that:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{\mathrm{DS}}}{R_{1}+R_{\mathrm{DS}}} \tag{7.113}
\end{equation*}
$$



Fig. 7.84. Linearised voltage-controlled voltage divider
The FET as a controllable resistance is used, for example, in

- automatic voltage-level control,
- adjustable voltage dividers,
- amplitude stabilisation of oscillators, and
- circuits with variable gain.


### 7.5 Negative Feedback

Feedback is the term used when a circuit's output signal is fed back to the input. The term negative feedback is used when a part of the output signal is subtracted from the input signal, while for positive feedback the portion of the output signal is added to the input signal. For AC voltages negative feedback means that a part of the output signal is added in antiphase to the input signal, and positive feedback means that the portion of the output signal is added in phase to the input signal.

Positive-feedback systems are usually unstable, i.e. an independent oscillation exists or the output voltage saturates to the positive or negative rail. Positive feedback is important in the area of oscillators.
Systems with negative feedback are stable. Instabilities exist only if unwanted positive feedback occurs as a result of output signals that are phase-shifted at certain frequencies with respect to the input signal.
The purpose of negative feedback is

- to improve the linearity of an amplifier,
- to make the gain independent of the semiconductor parameters,
- to stabilise the output signal against load variations,
- to reduce the load on the source, and
- to improve the frequency response of an amplifier.

In general, negative feedback can be represented in a block diagram (Fig. 7.85). The output signal is multiplied by the feedback factor $\beta$ and then subtracted from the input signal. The difference is amplified by $A_{\mathrm{OL}}$. Such a system with negative feedback is also known as a closed-loop system.


Fig. 7.85. System with negative feedback
The closed-loop gain $A_{\mathrm{CL}}=v_{\text {out }} / v_{\text {in }}$ of the negative feedback system with

$$
\begin{equation*}
v_{\mathrm{out}}=\left(v_{\mathrm{in}}-\beta \cdot v_{\mathrm{out}}\right) \cdot A_{\mathrm{OL}} \tag{7.114}
\end{equation*}
$$

is:

$$
\begin{equation*}
A_{\mathrm{CL}}=\frac{A_{\mathrm{OL}}}{1+\beta \cdot A_{\mathrm{OL}}} \tag{7.115}
\end{equation*}
$$

The expression $\beta A_{\mathrm{OL}}$ is known as the loop gain.
The amount of feedback is given by $1+\beta A_{\mathrm{OL}}$. The closed loop gain $A_{\mathrm{CL}}$ decreases with increasing amounts of feedback. In this context the gain $A_{\text {OL }}$ is called open-loop gain. This is the effective gain if the feedback loop is removed.
Transforming Eq. (7.115) yields:

$$
\begin{equation*}
A_{\mathrm{CL}}=\frac{1}{\frac{1}{A_{\mathrm{OL}}}+\beta} \tag{7.116}
\end{equation*}
$$

It can be seen that the closed-loop gain becomes approximately independent of $A_{\mathrm{OL}}$ if $A_{\mathrm{OL}}$ is very high.

$$
\text { For } \quad A_{\mathrm{OL}} \gg \frac{1}{\beta}, \quad \text { follows } \quad A_{\mathrm{CL}} \approx \frac{1}{\beta}
$$

- If the open-loop gain is very high, the closed-loop gain becomes approximately $1 / \beta$.
- The feedback circuit is usually a linear resistor network. If $\beta A_{\mathrm{OL}}$ is very large, then the amplifier with negative feedback is independent of the nonlinearities and tolerances of the semiconductor parameters of the amplifier $A_{\mathrm{OL}}$ and depends only on the feedback circuit.


### 7.5.1 Feedback Topologies

A distinction is made between four different kinds of negative feedback, depending on whether the input and output quantities are 'current' or 'voltage' (Fig. 7.86).

The description of the different types of feedback depends on the manner in which the output is sampled and fed back to the input. The first term of the description refers to the connection at the input and the second term refers to the connection at the output. So, for example, in series-parallel feedback the input of the corresponding circuit receives feedback in series and the output is sampled in parallel. Then the output appears to be a voltage source, and the input should be fed by a voltage source. The term shunt is often also used instead of parallel. The kinds of negative feedback are summarised as follows (Fig. 7.86):
a) series-parallel feedback: the output is sampled in parallel to give a series voltage feedback at the input.
input: voltage
stabilised output: voltage
type of amplifier: voltage amplifier
b) parallel-parallel feedback: the output voltage is sampled in parallel to give a parallel current feedback at the input.
input: current
stabilised output: voltage
type of amplifier: transimpedance amplifier, current-voltage converter
c) series-series feedback: the output is sampled in series to give a series voltage feedback at the input.
input: voltage
stabilised output: current
type of amplifier: transconductance amplifier, voltage-current converter
d) parallel-series feedback: the output current is sampled in series to give a parallel current feedback at the input.
input: current
stabilised output: current
type of amplifier: current amplifier

Example: The current of a photodiode is to be converted into a voltage. Photodiodes behave approximately like current source. In order to convert this current into a voltage, a transimpedance amplifier is required (parallel-parallel feedback, Fig. 7.87 a).

Example: The sensitive measurement voltage in a strain gauge is to be converted into a current in order to transmit the analogue measurement result over a greater distance. In this case series-series feedback is applied (Fig. 7.87 b ).

## Parallel-series feedback



## Parallel-parallel feedback


b)

## Series-parallel feedback



## Series-parallel feedback



Fig. 7.86. Different types of feedback


Fig. 7.87. Examples of a parallel-parallel feedback and $\mathbf{b}$ series-series feedback

### 7.5.2 Influence of Negative Feedback on Input and Output Impedance

The influence of negative feedback on the input and output impedance is calculated in the example on series-parallel feedback (for a noninverting amplifier), see Fig. 7.88.

## Input Impedance

The input impedance of the open loop amplifier is assumed to be $r_{\text {in }}^{\prime}$.

$$
\begin{gather*}
r_{\text {in }}=\frac{v_{\text {in }}}{i_{\text {in }}}, \quad v_{\text {out }}=A_{\text {OL }} \cdot v_{\text {in }}^{\prime}, \quad r_{\text {in }}=\frac{v_{\text {in }}^{\prime}+\beta \cdot v_{\text {out }}}{i_{\text {in }}}=\frac{v_{\text {in }}^{\prime}+v_{\text {in }}^{\prime} \beta \cdot A_{\text {oL }}}{i_{\text {in }}} \\
r_{\text {in }}=r_{\text {in }}^{\prime}\left(1+\beta \cdot A_{\mathrm{OL}}\right) \tag{7.117}
\end{gather*}
$$



Fig. 7.88. Input configuration of the system with series-parallel feedback

- The input impedance increases in the case of series-parallel feedback by the amount of feedback.


## Output Impedance

The output impedance of the open-loop amplifier is assumed to be $r_{\text {out }}^{\prime}$ (Fig. 7.89).

$$
\begin{aligned}
& r_{\mathrm{out}}=\frac{\text { open-circuit voltage }}{\text { short-circuit current }}=\frac{v_{\mathrm{o} / \mathrm{c}}}{i_{\mathrm{s} / \mathrm{c}}}=\frac{v_{\mathrm{out}}}{i_{\mathrm{s} / \mathrm{c}}}, \quad v_{\mathrm{out}}=v_{\mathrm{in}} \frac{A_{\mathrm{OL}}}{1+\beta \cdot A_{\mathrm{OL}}}, \\
& i_{\mathrm{s} / \mathrm{c}}=\frac{v_{\text {in }} \cdot A_{\mathrm{OL}}}{r_{\mathrm{out}}^{\prime}}
\end{aligned}
$$

(for the short circuit $v_{\text {out }}=0$ and $v_{\text {in }}=v_{\text {in }}^{\prime}$ )

$$
\begin{equation*}
r_{\mathrm{out}}=\frac{r_{\mathrm{out}}^{\prime}}{1+\beta \cdot A_{\mathrm{OL}}} \tag{7.118}
\end{equation*}
$$

- The output impedance decreases in the case of series-parallel feedback by the amount of the feedback.


Fig. 7.89. Output configuration of the system with series-shunt feedback

### 7.5.2.1 Input and Output Impedance of the Four Kinds of Feedback

|  | $\frac{r_{\mathrm{in}}}{r_{\mathrm{in}}^{\prime}}$ | $\frac{r_{\mathrm{out}}}{r_{\mathrm{out}}^{\prime}}$ |
| :--- | :---: | :---: |
| a) Series-parallel feedback | $1+\beta \cdot A_{\mathrm{OL}}$ | $\frac{1}{1+\beta \cdot A_{\mathrm{OL}}}$ |
| b) Parallel-parallel feedback | $\frac{1}{1+\beta \cdot A_{\mathrm{OL}}}$ | $\frac{1}{1+\beta \cdot A_{\mathrm{OL}}}$ |
| c) Series-series feedback | $1+\beta \cdot A_{\mathrm{OL}}$ | $1+\beta \cdot A_{\mathrm{OL}}$ |
| d) Parallel-series feedback | $\frac{1}{1+\beta \cdot A_{\mathrm{OL}}}$ | $1+\beta \cdot A_{\mathrm{OL}}$ |

- Negative feedback has always a positive effect on the input and output impedance: voltage outputs get a lower impedance, and current outputs get a higher impedance; voltage-driven inputs get a higher impedance, and current-driven inputs get a lower impedance.


### 7.5.3 Influence of Negative Feedback on Frequency Response

The amplifier $A_{\mathrm{OL}}$ is assumed to have low-pass characteristics:

$$
A_{\mathrm{OL}}(f)=\frac{A_{\mathrm{OL} 0}}{1+\mathrm{j} f / f_{\mathrm{c}}^{\prime}}
$$

$A_{\mathrm{OL} 0}$ : DC gain or low-frequency gain
$f_{\mathrm{c}}^{\prime}$ : critical frequency

The transfer function of the system with negative feedback is then:

$$
\begin{equation*}
A_{\mathrm{CL}}(f)=\frac{A_{\mathrm{OL}}(f)}{1+\beta \cdot A_{\mathrm{OL}}(f)}=\underbrace{\frac{A_{\mathrm{OL} 0}}{1+\beta \cdot A_{\mathrm{OL} 0}}}_{\text {gain }} \cdot \underbrace{\frac{1}{1+\mathrm{j} \frac{f}{f_{\mathrm{c}}^{\prime}} \frac{1}{1+\beta \cdot A_{\mathrm{OL} 0}}}}_{\text {frequency response }} \tag{7.119}
\end{equation*}
$$

- The critical frequency of the closed-loop system increases with respect to the critical frequency of the open-loop system by the amount of feedback $\left(1+\beta A_{\mathrm{OL} 0}\right)$.
- The gain decreases by the amount of feedback (Fig. 7.90).


Fig. 7.90. Frequency response of the amplifier $A_{\mathrm{OL}}$ and of the closed-loop system

### 7.5.4 Stability of Systems with Negative Feedback

In theory systems with negative feedback are always stable. However, real amplifier gains $A_{\text {OL }}$ have low-pass filter properties. This means that the gain decreases with increasing frequency and the phase is shifted between the input and output signal. Each pole rotates the input signal by $90^{\circ}$. Positive feedback will occur at the frequencies at which the phase is shifted by $180^{\circ}$, so that the output signal is added in phase to the input signal. If the loop gain $\beta \cdot A_{\mathrm{OL}}$ is greater than 1 at any of these frequencies the signal is further amplified, the system becomes unstable and oscillations can occur (see also Sect. 7.6.2).
The oscillation criterion (barkhausencriterion) for feedback systems is given in general by:

Amplitude criterion: $\beta \cdot A_{\mathrm{OL}} \geq 1, \quad$ and
Phase criterion: $\quad \varphi=n \cdot 360^{\circ}, n=0,1,2, \ldots$

- An oscillation is generated in a closed-loop system if the phase shift is $0^{\circ}$ or multiples of $360^{\circ}$ and the loop gain is greater than 1.

The stability of a negative feedback system can be verified in a Bode plot: at a certain frequency (in Fig. 7.91 called $f_{1}$ ) the amplifier shifts the phase by $180^{\circ}$, and the negative feedback turns into positive feedback (Fig. 7.91, phase response). Thus, at this frequency the phase criterion has been fulfilled. The magnitude response $A_{\mathrm{d}}(f)$ is split into the loop gain $\beta \cdot A_{\mathrm{OL}}(f)$ and $1 / \beta$. If the loop gain at the frequency $f_{\text {critical }}$ is larger than 1 the closedloop system is unstable. If the loop gain at $f_{\text {critical }}$ is smaller than unity the closed-loop system is stable.

Note: In a negative-feedback system the critical phase shift $\left(360^{\circ}\right)$ occurs when the amplifier $A_{\text {OL }}$ shifts the phase by $180^{\circ}$. A further shift of $180^{\circ}$ occurs at the summation point where the feedback signal is subtracted from the input signal.

Note: $\quad$ The smaller the value of $\beta$ is, the smaller is the portion of the output signal that is fed back, and the smaller is the risk of oscillation. A system with a large $A_{\mathrm{OL}}$ and large feedback, i.e. with a small overall gain $A_{\mathrm{CL}}$ is more likely to have problems with oscillations.


Fig. 7.91. Oscillation criterion in the Bode plot: at a frequency $f\left(\varphi=-180^{\circ}\right)$ the closed loop gain is $\beta \cdot A_{\mathrm{OL}}>1$, the system starts oscillating (i.e. it is unstable)

### 7.6 Operational Amplifiers

An operational amplifier (op-amp) is an amplifier with a very high open-loop gain (Fig. 7.93). They are usually employed with negative feedback. Because of the high gain of the operational amplifier the amplification of the negative-feedback/closed-loop circuit depends only on the feedback circuit (see Sect. 7.5).

The operational amplifier input is a differential amplifier. One input is called the inverting input $\left(V_{\mathrm{n}}\right)$, and the other is the noninverting input $\left(V_{\mathrm{p}}\right)$. The differential voltage $V_{\mathrm{d}}$ is amplified with a gain of $A_{\mathrm{d}}$. The output voltage is $V_{\text {out }}=A_{\mathrm{d}} V_{\mathrm{d}}$. The gain $A_{\mathrm{d}}$ usually falls in the range of $10^{4}-10^{5}$. The output voltage can vary between the positive and the negative supply voltages. In order to obtain positive and negative output voltages, the operational amplifier requires a positive and a negative supply voltage (usually: $\pm 15 \mathrm{~V}$ ).


Fig. 7.92. Circuit symbol of the operational amplifier


Fig. 7.93. Simplified circuit of an operational amplifier

### 7.6.1 Characteristics of the Operational Amplifier

### 7.6.1.1 Output Voltage Swing

The range of values that the output voltage can have is called the output voltage swing. The maximum peak output voltage swing lies about $1-3 \mathrm{~V}$ below the supply voltages (Fig. 7.94).
It is also possible to find so-called single supply op-amps which are supplied by a single positive supply voltage and whose output voltage swing is from 0 V up to approximately 1 V below the positive supply voltage value.
There are also so-called rail-to-rail op-amps whose output voltage swing is from exactly the negative to the positive supply voltage values.

### 7.6.1.2 Offset Voltage

The offset voltage $V_{0}$ (input offset voltage) is the input differential voltage $V_{\mathrm{d}}$ that has to be applied at the operational amplifier in order to obtain an output voltage of 0 V . $V_{0}$ is a worst case tolerance.

The transfer characteristic $V_{\text {out }}=f\left(V_{\mathrm{d}}\right)$ of the ideal operational amplifier goes through the origin. For real op-amps the zero crossing is at $V_{0}$ (Fig. 7.94).


Fig. 7.94. Transfer characteristic of an operational amplifier

### 7.6.1.3 Offset Voltage Drift

The offset voltage $V_{0}$ is temperature dependent. The change in the offset voltage with temperature $\Delta V_{\mathrm{Gl}} / \Delta \vartheta$ is called the input offset voltage drift. It is in the range of 3$10 \propto \mathrm{~V} / \mathrm{K}$.

### 7.6.1.4 Common-Mode Input Swing

$$
\xrightarrow[\substack{\mathrm{V}_{\mathrm{cc}}}]{\frac{\Delta \mathrm{V}_{\text {out }}}{\Delta \mathrm{V}_{\mathrm{CM}}}=\begin{array}{c}
\text { mode } \\
\text { gain }
\end{array}}
$$

Fig. 7.95. Common-mode input swing
Common-mode amplification occurs when $V_{\text {in }-}=V_{\text {in }+}=V_{\mathrm{CM}}$. Then $V_{\mathrm{d}}=0 \mathrm{~V}$. The ideal operational amplifier output voltage is also 0 V , independent of the value of $V_{\mathrm{CM}}$. For real op-amps the common-mode input swing $V_{\mathrm{CM}}$ is given to define the range in which $V_{\text {out }}=0 \mathrm{~V}$ (Fig. 7.95).

### 7.6.1.5 Differential Mode Gain

The differential mode gain is The differential mode gain is usually in the region of 100000 ,


$$
\begin{equation*}
A_{\mathrm{d}}=\frac{V_{\text {out }}}{V_{\mathrm{d}}} \tag{7.120}
\end{equation*}
$$

i.e. 100 dB .

### 7.6.1.6 Common-Mode Gain

The common-mode gain is


$$
\begin{equation*}
G_{\mathrm{CM}}=\frac{V_{\text {out }}}{V_{\mathrm{CM}}} \tag{7.121}
\end{equation*}
$$

### 7.6.1.7 Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) is

$$
\begin{equation*}
C M R R=\frac{A_{\mathrm{d}}}{A_{\mathrm{CM}}} \tag{7.122}
\end{equation*}
$$

Often this value is expressed in decibels. The range is $10^{4}-10^{5}$, or between 80 and 100 dB , respectively.

### 7.6.1.8 Power Supply Rejection Ratio

The power supply rejection ratio (PSRR) is a measure of the influence of the supply voltage on the output voltage. It is defined via the offset voltage $V_{0}$. Its value expresses by how much the offset voltage has to be corrected in order to keep the output voltage at 0 V , when one of the supply voltages changes. The power supply rejection ratio is in the range of $10-100 \propto \mathrm{~V} / \mathrm{V}$. It is also expressed in dB .

### 7.6.1.9 Input Impedance

A distinction is made between the differential input impedance $r_{\mathrm{d}}$ and the common-mode input impedance $r_{\mathrm{CM}}$. With bipolar operational amplifiers the differential input impedance $r_{\mathrm{d}}$ lies in the megohm range. Operational amplifiers with FET input stages have a differential input impedance of $10^{12} \Omega$. The common-mode input impedance is in the range $10^{9} \Omega$ to $10^{12} \Omega$.

Note: The input impedance is changed by the amount of feedback in the case of negative feedback (see Sect. 7.5.2):

$$
r_{\mathrm{in}}=r_{\mathrm{d}}\left(1+\beta A_{\mathrm{OL}}\right), \quad \text { or } \quad \frac{r_{\mathrm{d}}}{\left(1+\beta A_{\mathrm{OL}}\right)}
$$

### 7.6.1.10 Output Impedance

The output impedance of operational amplifiers is in the range of several hundred ohms to a few kilohms.

- This value is changed by negative feedback, so that, depending on the form of feedback used, the output can be regarded approximately as an ideal voltage source or as an ideal current source (see Sect. 7.5.2).


### 7.6.1.11 Input Bias Current

The input bias currents are the base currents absorbed by the differential amplifier. They are in the range of some tens to hundreds nanoamperes. In FET input stages the input bias currents are practically zero.

Note: Negative feedback does not influence the input bias currents.

### 7.6.1.12 Gain-Bandwidth Product (Unity Gain Frequency)

The differential gain $A_{\mathrm{d}}$ has low-pass filter characteristics (Fig. 7.96):

$$
A_{\mathrm{d}}=\frac{A_{\mathrm{d} 0}}{1+\mathrm{j} f / f_{\mathrm{c}}}
$$

Above the critical frequency it approximately holds that:

$$
A_{\mathrm{d}} \approx \frac{A_{\mathrm{d} 0}}{\mathrm{j} f / f_{\mathrm{c}}}
$$

Therefore:

$$
\begin{equation*}
A_{\mathrm{d}} \cdot f=A_{\mathrm{d} 0} \cdot f_{\mathrm{c}}=f_{\mathrm{T}} \tag{7.123}
\end{equation*}
$$

- At the unity gain frequency $f_{\mathrm{T}}$ the differential gain of the amplifier is 1 . The unity gain frequency for op-amps is often given as the gain-bandwidth product because of the following relationship: $f_{\mathrm{T}}=A_{\mathrm{d} 0} \cdot f_{\mathrm{c}}$.


### 7.6.1.13 Critical Frequency

The critical frequency for frequency-compensated op-amps (see Sect. 7.6.2) lies between a few hertz and a few hundred hertz. With negative feedback this increases by the amount of feedback (see Sect. 7.5.3).


Fig. 7.96. Frequency response of the operational amplifier

### 7.6.1.14 Slew Rate of the Output Voltage

The slew rate defines the maximum rate of change of the output voltage. It is given in $\mathrm{V} / \sim \mathrm{s}$.

### 7.6.1.15 Equivalent Circuit of the Operational Amplifier

Figure 7.97 shows an equivalent circuit for a real operational amplifier. For standard frequency-compensated op-amps the following values are used:

- Input bias current $I_{\mathrm{B}}$ : for bipolar op-amps in the nanoampere range, negligible in FET op-amps.
- Differential input resistance $r_{\mathrm{d}}$ : for bipolar op-amps in the megohm range, for FET op-amps extremely high.
- Common-mode input resistance $r_{\mathrm{CM}}$ : almost always extremely high.


Fig. 7.97. Equivalent circuit of an operational amplifier

- Differential gain $A_{\mathrm{d}}$ : Characteristic curve like a low-pass filter. DC voltages gain $A_{\mathrm{d} 0}$ lies around $10^{5}(100 \mathrm{~dB})$, and the critical frequency $f_{\mathrm{c}}$ lies between 10 and 100 Hz .
- Output resistance $r_{\text {out }}^{\prime}$ : lies between $100-1000 \Omega$.
- Offset voltage $V_{0}$ : lies between 1 and a few millivolts.
- Common-mode rejection ratio $C M R R$ (not considered in the equivalent circuit): for DC it is about 80 dB and decreases dramatically with increasing frequency.

Note: The critical frequency and the output impedance of the op-amp with negative feedback depend on the amount of feedback $\left(1+\beta A_{\mathrm{d}}\right)$ where $\beta$ is the amount of feedback. The critical frequency increases by the amount of feedback, while the output impedance decreases by the amount of feedback. For an amplification in an op-amp with feedback of, for example, $A=100$ the critical frequency would be about $10-100 \mathrm{kHz}$ and the output impedance about $0.1-1 \Omega$ ! (Sect. 7.5.2).

Note: As well as the op-amp characteristics shown here, there are numerous designs with special characteristics, such as, for example, offset voltage in the microvolt range, input bias current in the picoampere range or a critical frequency in the megahertz range.

### 7.6.2 Frequency Compensation

Op-amps are frequency compensated for stability reasons. The low-pass filter characteristic is altered so that the critical frequency is shifted to lower frequencies. This is achieved by inserting a capacitor $C_{\text {comp }}$ as a means of feed-back from the collector to the base of the voltage-amplifying emitter stage (see Fig. 7.93). This causes the gain $A_{\mathrm{d}}$ to dramatically decrease at high frequencies, so that in the system with feedback the loop gain $\beta A_{\mathrm{d}}$ is lower than unity when the phase shift reaches $\varphi=180^{\circ}$ (see Sect. 7.5.4).
For op-amps a distinction is made between frequency-compensated op-amps (internally compensated) and uncompensated op-amps. Uncompensated op-amp have external contacts, which can be connected to a capacitor $C_{\text {comp }}$. The choice of capacitance depends greatly on the amount of feedback chosen. The smaller the desired feedback, then the smaller is the required capacitance, i.e. the greater is the gain of the feedback system. The determination of $C_{\text {comp }}$ can be carried out in an iterative manner. A square-wave input voltage can be applied to the system and the step response may be measured on an oscilloscope. Values of $C_{\text {comp }}$ that are too large lead to a damping of the square-wave, while values of $C_{\text {comp }}$ that are too small lead to oscillations and to instability in the circuit.


Fig. 7.98. Bode plot for frequency compensation: a uncorrected: $\beta A_{\mathrm{d}}>1$ at $f\left(\varphi=-180^{\circ}\right)$, the circuit is unstable; $\mathbf{b}$ corrected: at $\beta A_{\mathrm{d}} 1$ the phase shift $\varphi=-180^{\circ}$ has not yet occurred, the circuit is stable

The angle $\alpha=180^{\circ}-\varphi_{\left(\beta A_{d}=1\right)}$ is known as the phase margin. It is a measure of the stability of the circuit (Fig. 7.98). If the phase margin is small, then the amplifier with feedback reacts to any change in the input voltage with damped oscillations. If $\alpha=90^{\circ}$ then this is the critically damped case, and for $\alpha=65^{\circ}$ there are overshoots of about $4 \%$, which is often used in practice.

The gain margin is another measure of the stability of a system with feedback, as well as the phase margin (Fig. 7.98).

Internally frequency-compensated op-amps have a frequency compensation, which for a feedback network with $\beta=1$ shows a phase margin of $65^{\circ}$. This ensures that the amplifier with feedback is always stable. It has the disadvantage that it is very slow for small amounts of feedback ( $\beta \ll 1, A_{\mathrm{CL}} \gg 1$ ), which happens when a high closed-loop gain is desired.

### 7.6.3 Comparators

Comparators are operational amplifiers that are operated without feedback. They are used to compare voltages. Therefore the output voltage can only have two states, high or low, depending on the sign of the input voltage $V_{\mathrm{d}}$. The output is usually an open collector, which is connected to a pull-up resistor.

### 7.6.4 Circuits with Operational Amplifiers

Operational amplifier circuits can have positive or negative feedback. Circuits with positive feedback show two-state behaviour (e.g. Schmitt trigger) or can oscillate (Wien-Robinson oscillator). Circuits with negative feedback are stable, and the output voltage is proportional to the input voltage with linear feedback. Because of the high gain of the operational amplifier, the voltage difference between the input terminals is practically zero, when negative feedback is used. Calculations using Kirchhoff's laws are not used in the following. Block diagrams are occasionally used to display the circuit principle.

### 7.6.4.1 Impedance Converter (follower)

The impedance converter is an operational amplifier operated in series-parallel feedback with $\beta=1$ (Fig. 7.99).
The amount of feedback is $\left(1+\beta A_{\mathrm{d}}\right) \approx A_{\mathrm{d}}$. The transfer function is

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{\mathrm{d}}}{1+\beta A_{\mathrm{d}}} \approx 1,
$$

So, in general, it is assumed that:

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \tag{7.124}
\end{equation*}
$$



Fig. 7.99. Impedance converter: a circuit diagram; $\mathbf{b}$ block diagram
The input has an extremely high impedance:

$$
\begin{equation*}
r_{\text {in }}=r_{\mathrm{d}}\left(1+A_{\mathrm{d}}\right) \approx \rightarrow \infty \tag{7.125}
\end{equation*}
$$

where $r_{\mathrm{d}}$ is the differential input impedance of the operational amplifier.
Note: The input bias current is unaffected in this analysis! It loads the input voltage source independently of the amount of feedback. An op-amp with a FET input provides some relief from this problem.

The output has an extremely low impedance:

$$
\begin{equation*}
r_{\text {out }}=\frac{r_{\text {out }}^{\prime}}{1+A_{\mathrm{d}}} \approx 0 \tag{7.126}
\end{equation*}
$$

where $r_{\text {out }}^{\prime}$ is the output impedance of the operational amplifier.

### 7.6.4.2 Noninverting Amplifier

The noninverting amplifier (Fig. 7.100) is an operational amplifier that is used in seriesparallel feedback with $\beta=\frac{R_{2}}{R_{1}+R_{2}}$. The amount of feedback is

$$
1+\frac{R_{2}}{R_{1}+R_{2}} A_{\mathrm{d}}
$$

The transfer function is:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{\mathrm{d}}}{1+\beta A_{\mathrm{d}}} \approx 1+\frac{R_{1}}{R_{2}}
$$



Fig. 7.100. Noninverting amplifier: a circuit diagram; $\mathbf{b}$ block diagram
So, in general, it is assumed that:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{1}}{R_{2}} \tag{7.127}
\end{equation*}
$$

The input has an extremely high impedance:

$$
\begin{equation*}
r_{\text {in }}=r_{\mathrm{d}}\left(1+\frac{R_{2}}{R_{1}+R_{2}} A_{\mathrm{d}}\right) \approx \rightarrow \infty \tag{7.128}
\end{equation*}
$$

where $r_{\mathrm{d}}$ is the differential input impedance of the operational amplifier.
Note: The input bias current is not affected by this consideration! The current drained from the input voltage source is independent of the feedback. An op-amp with a FET input provides some relief from this problem.

The output has an extremely low impedance:

$$
\begin{equation*}
r_{\text {out }}=r_{\text {out }}^{\prime} \frac{1}{1+\frac{R_{2}}{R_{1}+R_{2}} A_{\mathrm{d}}} \approx 0 \tag{7.129}
\end{equation*}
$$

where $r_{\text {out }}^{\prime}$ is the output impedance of the operational amplifier.

### 7.6.4.3 Inverting Amplifier



Fig. 7.101. Inverting amplifier: a circuit diagram; b block diagram
The inverting amplifier (Fig. 7.101) is an op-amp that uses parallel-parallel feedback with $\beta=1 / R_{2}$. The amount of feedback is

$$
1+\frac{1}{R_{2}} A_{\mathrm{z}}
$$

The input current is determined by $R_{1}$. The transfer function is given by:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{1}} \frac{-A_{\mathrm{z}}}{1+\frac{1}{R_{2}}\left(-A_{z}\right)} \approx-\frac{R_{2}}{R_{1}},
$$

So the transfer function is, in general, defined as:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}} \tag{7.130}
\end{equation*}
$$

Its input impedance is:

$$
r_{\text {in }}=R_{1}
$$

The output has an extremely low impedance:

$$
\begin{equation*}
r_{\text {out }}=\frac{r_{\text {out }}^{\prime}}{1+\frac{1}{R_{2}} A_{\mathrm{z}}} \approx 0 \tag{7.131}
\end{equation*}
$$

where $r_{\text {out }}^{\prime}$ is the output impedance of the operational amplifier.
Note: The op-amp is employed here as a transimpedance amplifier, i.e. the transfer function $A_{\mathrm{z}}$ of the amplifier has the qualities of an impedance. Referring to the equivalent circuit in Sect. 7.6.1.15 yields:


Note: The input bias current $I_{\mathrm{B}-}$ causes an offset voltage. This amounts to $I_{\mathrm{B}-} \cdot R_{1}$. It can be compensated for by connecting a resistor $R=\left(R_{1} \| R_{2}\right)$ to ground from the noninverting input (Fig. 7.102).


Fig. 7.102. Compensation of the input bias current

### 7.6.4.4 Summing Amplifier

The summing amplifier, like the inverting amplifier, employs parallel-parallel feedback (Fig. 7.103). The input currents $V_{\mathrm{i}} / R_{i}$ are summed at the inverting input of the operational


Fig. 7.103. Summing amplifier
amplifier. The output voltage is:

$$
\begin{equation*}
V_{\mathrm{out}}=-\sum_{i=1}^{n} I_{i} \cdot R_{N} \tag{7.132}
\end{equation*}
$$

Alternatively, $V_{\text {out }}$ can be expressed as a function of the input voltages $V_{\text {in }}$ :

$$
\begin{equation*}
V_{\text {out }}=-\left(V_{\text {in } 1} \frac{R_{N}}{R_{1}}+V_{\text {in } 2} \frac{R_{N}}{R_{2}}+\cdots+V_{\text {in } n} \frac{R_{N}}{R_{n}}\right) \tag{7.133}
\end{equation*}
$$

In the case where all resistors are equal it holds that:

$$
\begin{equation*}
V_{\mathrm{out}}=-\sum_{i=1}^{n} V_{\mathrm{i}} \tag{7.134}
\end{equation*}
$$

### 7.6.4.5 Difference Amplifier



Fig. 7.104. Difference amplifier
The difference amplifier amplifies the difference of two input voltages (Fig. 7.104). Its gain is $R_{2} / R_{1}$.

$$
\begin{equation*}
V_{\text {out }}=\left(V_{\text {in } 1}-V_{\text {in } 2}\right) \frac{R_{2}}{R_{1}} \tag{7.135}
\end{equation*}
$$

The input impedance is $r_{\text {in }}=2 R_{1}$.

If $V_{\mathrm{in} 1}=0$, then the circuit is the same as the inverting amplifier with input-bias current compensation. Input-bias current compensation is automatic in the difference amplifier.

Fig. 7.105 shows a difference amplifier with high input impedance.


Fig. 7.105. Difference amplifier with high input impedance
Its transfer function is:

$$
\begin{equation*}
V_{\text {out }}=\left(V_{\text {in } 1}-V_{\text {in } 2}\right)\left(1+\frac{R_{2}}{R_{1}}\right) \tag{7.136}
\end{equation*}
$$

### 7.6.4.6 Instrumentation Amplifier



Fig. 7.106. Instrumentation amplifier
The instrumentation amplifier measures the difference between the input voltages $V_{\text {in } 1}$ and $V_{\text {in2 }}$ (Fig. 7.106). Its gain is:

$$
\begin{equation*}
V_{\text {out }}=\left(V_{\text {in } 1}-V_{\text {in } 2}\right) \cdot\left(1+2 \frac{R_{2}}{R_{1}}\right) \tag{7.137}
\end{equation*}
$$

It has an extremely high input impedance (see Sect. 7.6.4.2).

### 7.6.4.7 Voltage-Controlled Current Source

The voltage-controlled current source employs series-series feedback as shown in Fig. 7.107a. The input voltage is equated to the voltage drop across the current-sensing resistor $R$, so it holds that

$$
\begin{equation*}
V_{\text {in }}=R I_{\text {out }} \tag{7.138}
\end{equation*}
$$

A transistor connected in series after the circuit permits higher output currents and has the advantage with the open drain (or open collector) that the choice of output potential is free (Fig. 7.107b).
For earthed loads the current source shown in Fig. 7.108 is suitable. The relationship $I_{\text {out }}=V_{\text {in }} / R$ is all the more valid the larger $R_{1}$ is compared to $R$.


Fig. 7.107. a,b Voltage-controlled current sources employing series-series feedback


Fig. 7.108. Voltage-controlled current source for earthed/grounded loads

### 7.6.4.8 Integrator

The integrator works like the inverting amplifier. The input current $I_{\text {in }}=V_{\text {in }} / R$ charges the capacitor $C$ (Fig. 7.109). Therefore the output voltage is the integral of the input signal:

$$
\begin{equation*}
V_{\text {out }}=-\frac{1}{R C} \int V_{\text {in }} \mathrm{d} t \tag{7.139}
\end{equation*}
$$




$$
V_{\text {out }}=-\frac{1}{R C} \int_{t_{0}}^{t_{1}} v_{\text {in }}(t) \mathrm{d} t+V_{\text {out }}\left(t_{0}\right)
$$

Fig. 7.109. Integrators: a simple integrator, $\mathbf{b}$ differential integrator
For a sinusoidal input the voltage gain is:

$$
\begin{equation*}
A_{\mathrm{v}}=-\frac{1}{\mathrm{j} \omega R C} \tag{7.140}
\end{equation*}
$$

The input bias current is no longer negligible for large time constants. Relief can be provided either by using input-bias current compensation or - even simpler - by inserting an op-amp with a FET input stage. The input-bias current compensation is carried out in a similar way to the inverting amplifier, except that the noninverting input is connected to ground via a parallel combination of a resistor $R$ and a capacitor $C$ (see Sect. 7.6.4.3).

Integrators are mainly used as I-controllers in negative-feedback systems.
In systems without feedback the output voltage saturates to the positive or negative power supply rails, as the offset voltage and input bias current are integrated as well as the applied voltage signal $V_{\text {in }}$. Integrators must therefore be reset to zero at suitable time intervals, in order to be able to achieve a defined output state for the integration. This can be achieved with a relay or a FET in parallel with the capacitor (Fig. 7.110). In the use of a MOSFET, the internal reverse-current diode limits the output voltage range to positive voltages.


Fig. 7.110. Integrators: reset circuits for $V_{\mathrm{a}(t))}=0$

### 7.6.4.9 Differentiator

The input current of the differentiator in Fig. 7.111 is

$$
I_{\mathrm{in}}=C \frac{\mathrm{~d} V_{\mathrm{in}}}{\mathrm{~d} t}
$$

This current flows through $R$, so the output voltage is

$$
\begin{equation*}
V_{\text {out }}=-R C \frac{\mathrm{~d} V_{\text {in }}}{\mathrm{d} t} \tag{7.141}
\end{equation*}
$$

For a sinusoidal input the voltage gain is

$$
\begin{equation*}
A_{\mathrm{v}}=-\mathrm{j} \omega R C \tag{7.142}
\end{equation*}
$$

The differentiator is mainly used as the D-stage in PID controllers.


Fig. 7.111. Differentiator

### 7.6.4.10 AC Voltage Amplifier with Single-Rail Supply

Sometimes amplifiers are operated with only one supply voltage. In that case the reference voltage at the inverting input is set to $V_{\mathrm{CC}} / 2$ using a voltage divider (Fig. 7.112).


Fig. 7.112. AC voltage amplifier with single-rail supply

### 7.6.4.11 Voltage Setting with Defined Slew Rate

The output voltage of the circuit in Fig. 7.113 can only change at a rate given by

$$
\frac{\mathrm{d} V_{\text {out }}}{\mathrm{d} t}= \pm V_{\text {out } \max } \frac{1}{R C} \approx \pm V_{\mathrm{CC}} \frac{1}{R C}
$$



Fig. 7.113. Voltage setting with a defined slew rate
For $V_{\text {out }} \neq V_{\text {in }}$ the first op-amp's output voltage $V_{\text {out }}$ jumps to one of its supply rails of $\pm V_{\text {out max }}$. The output voltage $V_{\text {out }}$ therefore changes at a defined slew rate to the value given by $V_{\text {out }}=V_{\text {in }}$.

### 7.6.4.12 Schmitt Trigger

Schmitt triggers (comparators with hysteresis) are bistable circuits that use positive feedback. Thus the output voltage can only jump between the output voltage limits of $\pm V_{\text {out max }}$. By using feedback two thresholds exist for the input voltage, which are defined by the switching of the output voltage. Once a threshold has been exceeded, the other threshold must be exceeded in order to change to a new state.

Schmitt triggers are employed in bistable controllers. They are also used instead of comparators to avoid multiple switching if the input signal is noisy.

## Inverting Schmitt Trigger




Fig. 7.114. Inverting Schmitt trigger
The trigger levels of the inverting Schmitt trigger (Fig. 7.114) are

$$
\begin{equation*}
V_{\text {in on }}=-\frac{R_{1}}{R_{1}+R_{2}} V_{\text {out max }}, \quad \text { and } \quad V_{\text {in off }}=+\frac{R_{1}}{R_{1}+R_{2}} V_{\text {out max }} \tag{7.143}
\end{equation*}
$$

## Noninverting Schmitt Trigger



Fig. 7.115. Noninverting Schmitt trigger
The trigger levels of the noninverting Schmitt trigger (Fig.7.115) are

$$
\begin{equation*}
V_{\text {in on }}=+\frac{R_{1}}{R_{2}} V_{\text {out max }}, \quad \text { and } \quad V_{\text {in off }}=-\frac{R_{1}}{R_{2}} V_{\text {out max }} \tag{7.144}
\end{equation*}
$$

### 7.6.4.13 Triangle- and Square-Wave Generator




Fig. 7.116. Triangle- and square-wave generator
The triangle- and square-wave generator is a free-running circuit, consisting of an integrator and a noninverting Schmitt trigger (Fig. 7.116). The amplitude of the triangular wave is equal to the Schmitt trigger threshold value. The frequency of the output voltage waveforms is

$$
\begin{equation*}
f=\frac{R_{3}}{R_{2}} \frac{1}{4 R_{1} C_{1}} \tag{7.145}
\end{equation*}
$$

for a symmetrical output voltage swing of $\pm V_{2}$.

### 7.6.4.14 Multivibrator



Fig. 7.117. Multivibrator
The multivibrator or square wave generator is a free-running circuit (Fig. 7.117).
The switching frequency is

$$
\begin{equation*}
f=\frac{1}{2 R_{1} C_{1} \ln \left(1+\frac{2 R_{2}}{R_{3}}\right)} \tag{7.146}
\end{equation*}
$$

For small hysteresis, i.e. $R_{2} \ll R_{3}$, it holds that

$$
\begin{equation*}
f \approx \frac{1}{2 R_{1} C_{1}} \frac{R_{3}}{2 R_{2}} \tag{7.147}
\end{equation*}
$$

### 7.6.4.15 Sawtooth Generator



Fig. 7.118. Sawtooth generator
A sawtooth voltage has the form of a ramp (Fig. 7.118). It is generated by charging a capacitor with a constant current and then discharging it in a very short time.
The discharge occurs over a clock pulse, which can be generated externally or internally.

### 7.6.4.16 Pulse-Width Modulator

Pulse width-modulators (PWM) are mainly used in measurement technology or in switched-mode power supplies. They convert an analogue signal into a digital signal,
where the duty cycle $t_{1} / T$ is proportional to the analogue input voltage. Pulse-width modulators are a simple means to prepare analogue signals for digital systems.

## Pulse width modulator with fixed pulse frequency:



Fig. 7.119. Pulse-width modulator with fixed pulse frequency
The duty cycle is:

$$
\frac{t_{1}}{T}=\frac{V_{\mathrm{in}}}{\hat{V}_{\mathrm{S}}}
$$

A pulse-width modulated voltage can be generated by comparing a sawtooth voltage with an analogue voltage (Fig. 7.119). For measurement purposes the sawtooth can be triggered by a digital system and the time $t_{1}$ measured. This results in a simple analogue-to-digital converter. This does have the disadvantage, however, that the peak value of the sawtooth must be known, i.e. if necessary must be adjusted.

## Precision Pulse-Width Modulator

The accuracy of the pulse-width modulation can be enhanced significantly with the use of an I-controller (Fig. 7.120). The comparison between the desired and the actual value is carried out at the integrator. The integrator output voltage $V^{\prime}{ }_{\text {in }}$ changes value, so that $V_{\text {ref }} \cdot \frac{t_{1}}{T}=V_{\text {in }}$. The sawtooth amplitude and nonlinearities are not included in the result. The disadvantage of the circuit is that the integrator time constant must be large compared with the periodic time of the sawtooth.
Fig. 7.121 shows a free-running pulse width modulator. The duty cycle of the output voltage is $t_{1} / T=0.5$ for $V_{\text {in }}=0 \mathrm{~V}$. The accuracy of the modulator is dependent on the symmetry of the bidirectional reference voltage source $V_{z}$. The disadvantage of this circuit is that the switching frequency is dependent on the input voltage $V_{\text {in }}$. The switching frequency for $V_{\text {in }}=0 \mathrm{~V}$ is:

$$
\begin{equation*}
f_{\left(V_{\mathrm{in}}=0\right)}=\frac{1}{4 R_{1} C_{1}} . \tag{7.148}
\end{equation*}
$$

The switching frequency decreases with increasing input voltage $V_{\text {in }}$, and $f=0$ for $V_{\text {in }}=V_{z}$.


Fig. 7.120. Precision pulse-width modulator


Fig. 7.121. Precision pulse-width modulator

### 7.7 Active Filters

Filters are circuits with a frequency-dependent transfer function. A distinction is made between low-pass, high-pass and bandpass filters and band-stop or notch filters. All of these filters have in common that their transfer function is divided into stop-bands and passbands. The border between the pass- and stop-bands is called the corner or critical frequency. The critical frequency (or -3 dB point) is the frequency where the magnitude of the transfer function is -3 dB (i.e. $1 / \sqrt{2}$ ) lower than the pass-band magnitude. This frequency-dependent attenuation of the signal in the stop-band depends on the order of the filter. The higher the order the steeper is the frequency-dependent rejection.

Another member of the filter family is the all-pass filter. It does not alter the signal amplitude, but changes the phase of the signal depending on its frequency. Band-stop filters and all-pass filter are not covered further in this section.

A further distinction is made between active and passive filters. Active filters are filters that contain active components. The active components are used as impedance converters, so that higher-order filters can be combined from series-connected filters of second order, with no extra feedback requirement. This simplifies the design and the calibration of those filters compared to passive filters. Furthermore, the use of active components means that
inductors are not required. Active filters usually employ only resistors and capacitors as the frequency-selective components. Passive filters are combinations of resistors, capacitors and inductors. They do not contain active components.

### 7.7.1 Low-Pass Filters

### 7.7.1.1 Theory of Low-Pass Filters

The transfer function of a low-pass filter is explained by the example of a second-order RLC low-pass filter (Fig. 7.122a:


Fig. 7.122. Second-order RLC low-pass filter; a circuit, b frequency response

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}}=F(\mathrm{j} \omega)=\frac{\frac{1}{\mathrm{j} \omega C}}{\mathrm{j} \omega L+R+\frac{1}{\mathrm{j} \omega C}}=\frac{1}{1+\mathrm{j} \omega R C+(\mathrm{j} \omega)^{2} L C} \tag{7.149}
\end{equation*}
$$

- For small values of $\omega$ the expression for $F(\mathrm{j} \omega)$ is approximately equal to 1 .
- For large values of $\omega$ the quadratic term in the denominator dominates: $F(\mathrm{j} \omega)$ drops at a rate of $40 \mathrm{~dB} /$ decade.
- The attenuation around the natural frequency defines the transition from passband to stop-band (see Sect. 1.2.6). For smaller attenuation there is a rise due to resonance, whereas for larger attenuation $F(\mathrm{j} \omega)$ begins to fall away even before the natural frequency. The attenuation has no influence in the regions of very high or very low values of $\omega$ (Fig. 7.122 b).


## Normalisation:

Substituting $\mathrm{j} \omega$ with the complex frequency $s$ and normalising this with respect to the critical frequency $\omega_{\mathrm{c}}$ with $\mathrm{s}=\omega_{\mathrm{c}} \mathrm{S}$ yields:

$$
\begin{equation*}
F(\mathrm{~s})=\frac{1}{1+R C \mathrm{~s}+L C \mathrm{~s}^{2}}, \quad \text { with } \mathrm{j} \omega=\mathrm{s} \tag{7.150}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\mathrm{~S})=\frac{1}{1+\omega_{\mathrm{c}} R C \mathrm{~S}+\omega_{\mathrm{c}}^{2} L C \mathrm{~S}^{2}}, \quad \text { with } \mathrm{S}=\frac{\mathrm{s}}{\omega_{\mathrm{c}}} \tag{7.151}
\end{equation*}
$$

If the S coefficients are replaced by general real coefficients $a_{1}$ and $b_{1}$, then an independent general function of a second-order low-pass filter can be derived from the circuit:

$$
\begin{equation*}
F(\mathbf{S})=\frac{1}{1+a_{1} \mathrm{~S}+b_{1} \mathrm{~S}^{2}} \tag{7.152}
\end{equation*}
$$

A low-pass filter of higher order, i.e. a low-pass filter with a steeper drop from the critical frequency, can be realised by connecting in series several low-pass filters, of first and second order.

The general transfer function of a $2 n$ th-order low-pass filter is then:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{0}}{\left(1+a_{1} \mathrm{~S}+b_{1} \mathrm{~S}^{2}\right) \cdot\left(1+a_{2} \mathrm{~S}+b_{2} \mathrm{~S}^{2}\right) \cdot \ldots \cdot\left(1+a_{n} \mathrm{~S}+b_{n} \mathrm{~S}^{2}\right)} \tag{7.153}
\end{equation*}
$$

- The second-order low-pass filter is the basic building block used to build low-pass filters of higher order.
- A steeper fall-off about the critical frequency can be achieved if several low-pass filters of first and second order are connected in series. First-order low-pass filters can be considered as special versions of second order low-pass filters, for which the coefficient $b$ is equal to zero (Eq. (7.153)). The factor $F_{0}$ in the expression takes into consideration any frequency-independent amplification in the low-pass filter.
- The highest power in the denominator polynomial defines the filter order of the lowpass filter. It defines the fall-off in the expression 7.153 around the critical frequency. Each power of two in the order produces a fall-off of $20 \mathrm{~dB} /$ decade (see Sect. 5.3.2).
- The roots of the denominator polynomial are called the poles of $F(\mathrm{~S})$. They can be real or complex conjugates, depending on the values of the coefficients $a_{i}$ and $b_{i}$. Complex conjugate poles cause a resonant bump in the region between the stop- and passbands.
- The number of poles is equal to the filter order.
- The coefficients $\mathbf{a}_{\mathbf{i}}$ and $\mathbf{b}_{\mathbf{i}}$ decide the form of the region between the stop- and passbands. Functions with complex conjugate poles have a higher critical frequency compared with functions that have real poles (Fig. 7.123) and therefore cause a steeper transition from the pass- to the stop-band. For this reason most filters (almost without exception) are built with complex conjugate poles.


Fig. 7.123. Frequency response of a 2 nd order low-pass filter with complex conjugate and real poles

Different filter characteristics are defined, depending on the choice of the coefficients $a_{i}$ and $b_{i}$ (Fig. 7.124):

Butterworth: the magnitude response $F(\mathrm{~S})$ is flat at the level $F_{0}$ almost as far as the critical frequency.
Bessel: below the critical frequency this filter has an optimum square-wave transfer characteristic.
Chebyshev: the magnitude response has a defined amount of ripple in the passband (resonance effect). The fall-off after the critical frequency is particularly steep.
Critical Damping: filters with real poles. All poles have the same value. The filter has no resonance effects.

- Filters of the same order and the same critical frequency, but with different characteristics are distinguished by their $a_{i}$ and $b_{i}$ coefficients. This means that filters with different characteristics may be realised by the same circuits using different values for the constituent components.


Fig. 7.124. Comparison of fourth-order low-pass filters: 1. Chebyshev, 2. Butterworth, 3. Bessel, 4. Filter with critical damping

The coefficients for different filter characteristics are given in Tables 7.2 to 7.5 up to the sixth order. The magnitude responses of the corresponding transfer functions are shown in Figs. 7.125 to 7.128. The fifth and sixth table columns give the normalised critical frequency of the individual second-order filters and their Q-factors. These parameters are useful in confirming the performance of the individual second-order filters by measurement.

## Butterworth:

Table 7.2. Butterworth-filter

| Order $n$ | $i$ | $a_{i}$ | $b_{i}$ | $f_{\mathrm{c} i} / f_{\mathrm{c}}$ | $Q_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1.0000 | 0.0000 | 1.000 | - |
| 2 | 1 | 1.4142 | 1.0000 | 1.000 | 0.71 |
| 3 | 1 | 1.0000 | 0.0000 | 1.000 | - |
|  | 2 | 1.0000 | 1.0000 | 1.272 | 1.00 |
| 4 | 1 | 1.8478 | 1.0000 | 0.719 | 0.54 |
|  | 2 | 0.7654 | 1.0000 | 1.390 | 1.31 |
| 5 | 1 | 1.0000 | 0.0000 | 1.000 | - |
|  | 2 | 1.6180 | 1.0000 | 0.859 | 0.62 |
|  | 3 | 0.6180 | 1.0000 | 1.448 | 1.62 |
| 6 | 1 | 1.9319 | 1.0000 | 0.676 | 0.52 |
|  | 2 | 1.4142 | 1.0000 | 1.000 | 0.71 |
|  | 3 | 0.5176 | 1.0000 | 1.479 | 1.93 |



Fig. 7.125. Butterworth low-pass filters second to sixth order

## Bessel:

Table 7.3. Bessel-filter

| Order $n$ | $i$ | $a_{i}$ | $b_{i}$ | $f_{\mathrm{c} i} / f_{\mathrm{c}}$ | $Q_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1.0000 | 0.0000 | 1.000 | - |
| 2 | 1 | 1.3617 | 0.6180 | 1.000 | 0.58 |
| 3 | 1 | 0.7560 | 0.0000 | 1.323 | - |
|  | 2 | 0.9996 | 0.4772 | 1.414 | 0.69 |
| 4 | 1 | 1.3397 | 0.4889 | 0.978 | 0.52 |
|  | 2 | 0.7743 | 0.3890 | 1.797 | 0.81 |
| 5 | 1 | 0.6656 | 0.0000 | 1.502 | - |
|  | 2 | 1.1402 | 0.4128 | 1.184 | 0.56 |
|  | 3 | 0.6216 | 0.3245 | 2.138 | 0.92 |
| 6 | 1 | 1.2217 | 0.3887 | 1.063 | 0.51 |
|  | 2 | 0.9686 | 0.3505 | 1.431 | 0.61 |
|  | 3 | 0.5131 | 0.2756 | 2.447 | 1.02 |



Fig. 7.126. Bessel low-pass filters second to sixth order

## Chebyshev with 0.5 dB ripple:

Table 7.4. Chebyshev-filter with 0.5 dB ripple

| Order $n$ | $i$ | $a_{i}$ | $b_{i}$ | $f_{\mathrm{c} i} / f_{\mathrm{c}}$ | $Q_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1.0000 | 0.0000 | 1.0000 | - |
| 2 | 1 | 1.3614 | 1.3827 | 1.0000 | 0.86 |
| 3 | 1 | 1.8636 | 0.0000 | 0.537 | - |
|  | 2 | 0.6402 | 1.1931 | 1.335 | 1.71 |
| 4 | 1 | 2.6282 | 3.4341 | 0.538 | 0.71 |
|  | 2 | 0.3648 | 1.1509 | 1.419 | 2.94 |
| 5 | 1 | 2.9235 | 0.0000 | 0.342 | - |
|  | 2 | 1.3025 | 2.3534 | 0.881 | 1.18 |
|  | 3 | 0.2290 | 1.0833 | 1.480 | 4.54 |
| 6 | 1 | 3.8645 | 6.9797 | 0.366 | 0.68 |
|  | 2 | 0.7528 | 1.8573 | 1.078 | 1.81 |
|  | 3 | 0.1589 | 1.0711 | 1.495 | 6.51 |



Fig. 7.127. Chebyshev low-pass filters second to sixth order with 0.5 dB ripple

## Chebyshev with $\mathbf{3 d B}$ ripple:

Table 7.5. Chebyshev-filter with 3 dB ripple

| Order $n$ | $i$ | $a_{i}$ | $b_{i}$ | $f_{\mathrm{c} i} / f_{\mathrm{c}}$ | $Q_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1.0000 | 0.0000 | 1.000 | - |
| 2 | 1 | 1.0650 | 1.9305 | 1.000 | 1.30 |
| 3 | 1 | 3.3496 | 0.0000 | 0.299 | - |
|  | 2 | 0.3559 | 1.1923 | 1.396 | 3.07 |
| 4 | 1 | 2.1853 | 5.5339 | 0.557 | 1.08 |
|  | 2 | 0.1964 | 1.2009 | 1.410 | 5.58 |
| 5 | 1 | 5.6334 | 0.0000 | 0.178 | - |
|  | 2 | 0.7620 | 2.6530 | 0.917 | 2.14 |
|  | 3 | 0.1172 | 1.0686 | 1.500 | 8.82 |
| 6 | 1 | 3.2721 | 11.6773 | 0.379 | 1.04 |
|  | 2 | 0.4077 | 1.9873 | 1.086 | 3.46 |
|  | 3 | 0.0815 | 1.0861 | 1.489 | 12.78 |



Fig. 7.128. Chebyshev low-pass filters second to sixth order with 3 dB ripple

### 7.7.1.2 Low-Pass Filter Calculations

Low-pass filter calculations are carried out in the following steps:

- Choice of the filter type, of the critical frequency and of the order.
- Choice of a filter circuit (see also Sect. 7.7.1.3).
- Calculation of the transfer function $F(\mathrm{~s})$ and normalisation with $\mathrm{S}=\mathrm{s} / \omega_{\mathrm{c}}$.
- Conversion of the normalised transfer function according to Eq. (7.153).
- Determination of the component values by comparing the coefficients with the coefficients $a_{i}$ and $b_{i}$ (the number of equations is smaller than the number of variables, so that some components can be chosen freely).
- If some component values are unsuitable, the values can be changed without repeating the complete calculation:

A change of $C$ into $C^{\prime}$ changes $R$ and $L$ to: $R^{\prime}=R \frac{C}{C^{\prime}}$, and $L^{\prime}=L \frac{C}{C^{\prime}}$
A change of $R$ into $R^{\prime}$ changes $C$ and $L$ to: $C^{\prime}=C \frac{R}{R^{\prime}}$, and $L^{\prime}=L \frac{R^{\prime}}{R}$ A change of $L$ into $L^{\prime}$ changes $R$ and $C$ to: $C^{\prime}=C \frac{L}{L^{\prime}}$, and $R^{\prime}=R \frac{L^{\prime}}{L}$

- The fifth and sixth columns of the table, $f_{\mathrm{ci}} / f_{\mathrm{c}}$ and $Q_{i}$, are useful for confirming the performance of the individual filters of first or second order by measurement.

Example: Calculation of a third-order Chebyshev low-pass filter with 3 dB ripple with a critical frequency $f_{\mathrm{c}}=10 \mathrm{kHz}$.
For the realisation, the circuit in Fig. 7.129 was chosen


Fig. 7.129. Low-pass filter of third order
The transfer function of the circuit is:

$$
F(\mathrm{~s})=\frac{1}{1+R_{1} C_{1} \mathrm{~s}} \cdot \frac{1}{1+R_{2} C_{2} \mathrm{~s}+L_{2} C_{2} \mathrm{~s}^{2}}
$$

with $S=\mathrm{s} / w_{\mathrm{c}}$ follows

$$
F(\mathrm{~S})=\frac{1}{1+\underbrace{\omega_{\mathrm{c}} R_{1} C_{1}}_{a_{1}} \mathrm{~S}} \cdot \frac{1}{1+\underbrace{\omega_{\mathrm{c}} R_{2} C_{2}}_{a_{2}} \mathrm{~S}+\underbrace{\omega_{c}^{2} L_{2} C_{2} \mathrm{~S}^{2}}_{b_{2}}}
$$

Table 7.5 yields:

$$
a_{1}=3.3496, \quad b_{1}=0.0000, \quad a_{2}=0.3559, \quad b_{2}=1.1923 .
$$

$C_{1}$ and $C_{2}$ are chosen in advance: $C_{1}=10 \mathrm{nF}$, and $C_{2}=10 \mathrm{nF}$. This yields for $R_{1}, R_{2}$ and $L_{2}$ :

$$
\begin{aligned}
& R_{1}=\frac{a_{1}}{\omega_{\mathrm{c}} \cdot C_{1}}=\frac{3.3496}{2 \mathbf{a} \cdot 10 \mathrm{kHz} \cdot 10 \mathrm{nF}}=5.334 \mathrm{k} \Omega \\
& R_{2}=\frac{a_{2}}{\omega_{\mathrm{c}} \cdot C_{2}}=\frac{0.3559}{2 \mathbf{a} \cdot 10 \mathrm{kHz} \cdot 10 \mathrm{nF}}=567 \Omega \\
& L_{2}=\frac{b_{2}}{\omega_{\mathrm{c}}^{2} \cdot C_{2}}=\frac{1.1923}{(2 \mathrm{a})^{2} \cdot 100 \cdot 10^{6} \mathrm{~Hz}^{2} \cdot 10 \mathrm{nF}}=30 \mathrm{mH}
\end{aligned}
$$

### 7.7.1.3 Low-Pass Filter Circuits

## Noninverting First-Order Low-Pass Filter



Fig. 7.130. Noninverting first-order low-pass filter $\mathbf{a}$ with operational amplifier; $\mathbf{b}$ with emitter follower as impedance converter

The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{0}}{1+a \mathrm{~S}}=\frac{1+R_{2} / R_{3}}{1+\underbrace{\omega_{\mathrm{c}} R_{1} C_{1}}_{a} \mathrm{~S}} \tag{7.154}
\end{equation*}
$$

## Inverting First-Order Low-Pass Filter



Fig. 7.131. Inverting first-order low-pass filter
The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{0}}{1+a \mathrm{~S}}=\frac{-R_{2} / R_{1}}{1+\underbrace{\omega_{\mathrm{c}} R_{2} C_{1}}_{a} \mathrm{~S}} \tag{7.155}
\end{equation*}
$$

## Inverting Second-Order Low-Pass Filter



Fig. 7.132. Inverting second-order low-pass filter
The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{0}}{1+a \mathrm{~S}+b \mathrm{~S}^{2}}=\frac{-R_{2} / R_{1}}{1+\underbrace{\omega_{\mathrm{c}} C_{1}\left(R_{2}+R_{3}+R_{2} R_{3} / R_{1}\right)}_{a} \mathrm{~S}+\underbrace{\omega_{\mathrm{c}}^{2} C_{1} C_{2} R_{2} R_{3}}_{b} \mathrm{~S}^{2}} \tag{7.156}
\end{equation*}
$$

$C_{1}$ and $C_{2}$ are chosen in advance. Then:

$$
R_{2}=\frac{a C_{2}-\sqrt{a^{2} C_{2}^{2}-4 C_{1} C_{2} b\left(1-F_{0}\right)}}{2 \omega_{\mathrm{c}} C_{1} C_{2}}, \quad R_{1}=\frac{-R_{2}}{F_{0}}, \quad R_{3}=\frac{b}{\omega_{\mathrm{c}}^{2} C_{1} C_{2} R_{2}}
$$

In order to obtain a real value for $R_{2}$ it must hold that:

$$
\frac{C_{2}}{C_{1}} \geq \frac{4 b\left(1-F_{0}\right)}{a^{2}}
$$

## Noninverting Second-Order Low-Pass Filter



Fig. 7.133. Noninverting second-order low-pass filter $\mathbf{a}$ with operational amplifier; $\mathbf{b}$ with emitter follower as impedance converter

The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{0}}{1+a \mathrm{~S}+b \mathrm{~S}^{2}}=\frac{1}{1+\underbrace{\omega_{\mathrm{c}} C_{1}\left(R_{1}+R_{2}\right)}_{a} \mathrm{~S}+\underbrace{\omega_{\mathrm{c}}^{2} C_{1} C_{2} R_{1} R_{2}}_{b} \mathrm{~S}^{2}} \tag{7.157}
\end{equation*}
$$

$C_{1}$ and $C_{2}$ are chosen in advance. Then:

$$
R_{2}, R_{1}=\frac{a C_{2} \pm \sqrt{a^{2} C_{2}^{2}-4 b C_{1} C_{2}}}{2 \omega_{\mathrm{c}} C_{1} C_{2}}
$$

In order to obtain a real value for $R_{2}$ it must hold that:

$$
\frac{C_{2}}{C_{1}} \geq \frac{4 b}{a^{2}}
$$

### 7.7.2 High-Pass Filters

### 7.7.2.1 Theory of High-Pass Filters

See also Sect. 7.7.1.1: Theory of low-pass filters.
The general transfer function of an $n$ th-order high-pass filter is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{\infty}}{\left(1+\frac{a_{1}}{\mathrm{~S}}+\frac{b_{1}}{\mathrm{~S}^{2}}\right) \cdot\left(1+\frac{a_{2}}{\mathrm{~S}}+\frac{b_{2}}{\mathrm{~S}^{2}}\right) \cdot \ldots \cdot\left(1+\frac{a_{n}}{\mathrm{~S}}+\frac{b_{n}}{\mathrm{~S}^{2}}\right)} \tag{7.158}
\end{equation*}
$$

As in the case for low-pass filters, a distinction is made between Chebyshev, Butterworth and Bessel high-pass filters. Tables 7.2 to 7.5 are valid for the coefficients $a_{i}$ and $b_{i}$, and $F_{\infty}$ gives the gain for very high frequencies $(f \rightarrow \infty)$.

### 7.7.2 $\quad$ High-Pass Filter Circuits

## First-Order Noninverting High-Pass Filter



Fig. 7.134. First-order noninverting high-pass filter a with operational amplifier; $\mathbf{b}$ with emitter follower as impedance converter

The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{\infty}}{1+\frac{a}{\mathrm{~S}}}=\frac{1+\frac{R_{2}}{R_{3}}}{1+\frac{1}{\omega_{\mathrm{c}} R_{1} C_{1}} \cdot \frac{1}{\mathrm{~S}}}, \quad a=\frac{1}{\omega_{\mathrm{c}} R_{1} C_{1}} \tag{7.159}
\end{equation*}
$$

## First-Order Inverting High-Pass Filter

The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{\infty}}{1+\frac{a}{\mathrm{~S}}}=\frac{-\frac{R_{2}}{R_{1}}}{1+\frac{1}{\omega_{\mathrm{c}} R_{1} C_{1}} \cdot \frac{1}{\mathrm{~S}}}, \quad a=\frac{1}{\omega_{\mathrm{c}} R_{1} C_{1}} \tag{7.160}
\end{equation*}
$$



Fig. 7.135. First-order inverting high-pass filter

## Second-Order Noninverting High-Pass Filter



Fig. 7.136. Second-order noninverting high-pass filter
The transfer function is:

$$
\begin{equation*}
F(\mathrm{~S})=\frac{F_{\infty}}{1+\frac{a}{\mathrm{~S}}+\frac{b}{\mathrm{~S}^{2}}}=\frac{-\frac{R_{2}}{R_{1}}}{1+\frac{C_{1}+C_{2}}{\omega_{\mathrm{c}} R_{1} C_{1} C_{2}} \cdot \frac{1}{\mathrm{~S}}+\frac{1}{\omega_{\mathrm{c}}^{2} R_{1} R_{2} C_{1} C_{2}} \frac{1}{\mathrm{~S}^{2}}} \tag{7.161}
\end{equation*}
$$

with

$$
a=\frac{1}{\omega_{\mathrm{c}} R_{1} C_{1} C_{2}}, \quad b=\frac{1}{\omega_{\mathrm{c}}^{2} R_{1} R_{2} C_{1} C_{2}}
$$

If $C_{1}=C_{2}=C$, it then holds that:

$$
R_{1}=\frac{2}{a \cdot \omega_{\mathrm{c}} C}, \quad \text { and } \quad R_{2}=\frac{a}{2 b \cdot \omega_{\mathrm{c}} C}
$$

### 7.7.3 Bandpass Filters

### 7.7.3.1 Second-Order Bandpass Filter

The transfer function of a bandpass filter of second order is similar to that of an RLC bandpass filter (Fig. 7.137):


Fig. 7.137. Second-order RLC bandpass filter a circuit diagram; $\mathbf{b}$ amplitude response

- The magnitude response $|F(f)|$ has the value of 1 at the resonant frequency $f_{0}$.
- The centre frequency of the bandpass filter is equal to the resonant frequency $f_{0}$.
- The bandwidth $\mathbf{B}$ is the frequency range between the -3 dB -points.

The transfer function of the bandpass filter according to Fig. 7.137 is:

$$
\begin{equation*}
F(\mathrm{~s})=\frac{\mathrm{s} R C}{1+\mathrm{s} \underbrace{R C}_{2 D / \omega_{0}}+\mathrm{s}^{2} \underbrace{L C}_{1 / \omega_{0}^{2}}} \tag{7.162}
\end{equation*}
$$

where $D$ is the damping, $\omega_{0}$ is the resonant frequency, see also Sect. 1.2.6.1. If the damping $D$ is substituted for by the bandwidth $B$, and the resonant frequency $\omega_{0}$ by the resonant frequency $f_{0}$, then

$$
B=2 D \frac{\omega_{0}}{2 \mathbf{a}} \quad \text { and } \quad f_{0}=\frac{\omega_{0}}{2 \mathbf{a}}
$$

a general expression for a bandpass filter of second order:

$$
\begin{equation*}
F(\mathrm{~s})=\frac{F_{0} \cdot \mathrm{~s} \frac{B}{2 \mathbf{a} f_{0}^{2}}}{1+\mathrm{s} B / 2 \mathbf{a} f_{0}^{2}+\mathrm{s}^{2} 1 /\left(2 \mathrm{a} f_{0}\right)^{2}} \tag{7.163}
\end{equation*}
$$

The factor $F_{0}$ takes into account a frequency-independent amplification, so that the transfer function does not have to have the value of 1 at the resonant frequency.

- The centre frequency and the bandwidth of each bandpass filter of second order can be determined by coefficient comparison with this general transfer function.

Example: For the RLC bandpass filter given above:

$$
R C=\frac{B}{2 \mathbf{a} f_{0}^{2}}, \quad \text { and } \quad L C=\frac{1}{\left(2 \mathbf{a} f_{0}\right)^{2}},
$$

and it follows that

$$
f_{0}=\frac{1}{2 \mathbf{a} \sqrt{L C}}, \quad \text { and } \quad B=\frac{1}{2 \mathbf{a}} \cdot \frac{R}{L}
$$

### 7.7.3.2 Second-Order Bandpass Filter Circuit

The transfer function of the bandpass filter shown in Fig. 7.138 is:

Resonant frequency: $\quad f_{0}=\frac{1}{2 \mathbf{a} R C}$
Bandwidth:

$$
B=\frac{3-\beta}{2 \mathrm{a} R C}
$$



Fig. 7.138. Second-order bandpass filter
The resonant frequency and the bandwidth can be chosen independently of each other. The amplification at the resonant frequency is not equal to 1 . It is given by $\left|F\left(f_{0}\right)\right|=\frac{\beta}{3-\beta}$.
To be able to freely select the amplification, a corresponding amplifier must be connected in after the filter circuit.

### 7.7.3.3 Fourth- and Higher-Order Bandpass Filters

## Fourth Order Bandpass Filter

Fourth-order bandpass filters fall off at $40 \mathrm{~dB} /$ decade. They can be realised by connecting in series two second-order bandpass filters whose centre frequencies are slightly different. The bandwidth $B=(1 / 2) \sqrt{2} f_{0}$ yields a maximally flat passband. The gain in the passband decreases in proportion to the mismatch of the resonant frequencies.

## Higher-Order Bandpass Filters with Larger Bandwidth

Bandpass filters of higher orders with a larger bandwidth can be realised by connecting in series a low-pass filter and a high-pass filter with the same characteristics. The bandpass filter fall-off is equal to the low-pass filter and high-pass filter fall-offs. The filter characteristics agree even more for larger values of bandwidth. For Butterworth and Bessel filters this is approximately the case if the critical frequencies from the low- and high-pass filters are separated by a factor of 10 . For Chebyshev filters the bandwidth must increase as the order of filter increases (Figs. 7.127 and 7.128).

### 7.7.4 Universal Filter

A filter can be realised using integrators with feedback (Fig. 7.139).


Fig. 7.139. Block diagram of a universal filter
The circuit shown in Fig. 7.139 offers three different output possibilities, depending on whether a high-pass, a low-pass or a bandpass filter is required. The transfer functions are given by:

Low-pass filter:

$$
\begin{equation*}
F_{\mathrm{LPF}}=\frac{1}{1+\mathrm{s} T_{2}+\mathrm{s}^{2} T_{1} T_{2}}=\frac{1}{1+\underbrace{\omega_{\mathrm{g}} T_{2}}_{a} \mathrm{~S}+\underbrace{\omega_{\mathrm{g}}^{2} T_{1} T_{2}}_{b} \mathrm{~S}^{2}} \tag{7.165}
\end{equation*}
$$

Bandpass filter:

$$
\begin{equation*}
F_{\mathrm{BPF}}=\frac{\mathrm{s} T_{2}}{1+\mathrm{s} \underbrace{T_{2}}_{B / 2 \mathrm{a} f_{0}^{2}}+\mathrm{s}^{2} \underbrace{T_{1} T_{2}}_{1 /\left(2 \mathrm{a} f_{0}\right)^{2}}, \quad f_{0}=\frac{1}{2 \mathrm{a} \sqrt{T_{1} T_{2}}}, \quad B=\frac{1}{2 \mathrm{a} T_{1}}, \quad \mid} \tag{7.166}
\end{equation*}
$$

High-pass filter:

$$
\begin{equation*}
F_{\mathrm{HPF}}=\frac{1}{1+\frac{1}{T_{1}} \cdot \frac{1}{\mathrm{~s}}+\frac{1}{T_{1} T_{2}} \cdot \frac{1}{\mathrm{~s}^{2}}}=\frac{1}{1+\underbrace{\frac{1}{\omega_{\mathrm{g}} T_{1}}}_{a} \cdot \frac{1}{\mathrm{~S}}+\underbrace{\frac{1}{\omega_{\mathrm{g}}^{2} T_{1} T_{2}}}_{b} \cdot \frac{1}{\mathrm{~S}^{2}}} \tag{7.167}
\end{equation*}
$$

### 7.7.5 Switched-Capacitor Filter

In Sect. 7.7.4 it was shown how an active filter can be realised using integrators with feedback. Fig. 7.140 shows an integrator created with a switched capacitor.


Fig. 7.140. Integrator with a switched capacitor

The capacitor $C_{1}$ charges and discharges at a frequency $f$. The average integration current is proportional to the value of $f$. Thus the integrator time constant $T$ can be controlled by the frequency $f$.
The output voltage is:

$$
V_{\text {out }}=-\frac{1}{C_{2}} \int \bar{i}_{\mathrm{C} 2} \mathrm{~d} t
$$

With $\bar{i}_{\mathrm{C} 2}=f \cdot Q=f \cdot V_{\mathrm{in}} \cdot C_{1}$ it follows that

$$
\begin{equation*}
F(\mathrm{~s})=-\frac{C_{1}}{C_{2}} f \cdot \frac{1}{\mathrm{~s}} \tag{7.168}
\end{equation*}
$$

The integrator time constant is: $T=\frac{C_{2}}{f \cdot C_{1}}$
If a universal filter is built using such integrators, then the critical frequency as well as the filter characteristics can be controlled and determined by using various switching frequencies for the individual integrators.

### 7.8 Oscillators

Systems with feedback can only oscillate, provided the loop gain is

$$
\begin{equation*}
\beta(j \omega) \cdot A(j \omega) \geq 1 \quad \text { (Barkhausen criterion) } \tag{7.169}
\end{equation*}
$$

(see also Sect. 7.5.4). An independent oscillation occurs exactly at the frequency at which the phase shift for the feedback loop is

$$
\begin{equation*}
\left(\varphi_{\beta}+\varphi_{\mathrm{A}}\right)=0,2 \mathbf{a}, 4 \mathbf{a}, \ldots \quad \text { (phase criterion) } \tag{7.170}
\end{equation*}
$$

and the gain for the feedback loop is

$$
\begin{equation*}
|\beta| \cdot|A| \geq 1 \quad \text { (gain criterion) } \tag{7.171}
\end{equation*}
$$



Fig. 7.141. System with positive feedback

- An independent oscillation occurs in systems with feedback, if the phase shift is $0^{\circ}$ or integer multiples of $360^{\circ}$ and the loop gain is greater than 1 .
- Oscillators oscillate with exponentially growing amplitude if the phase criterion is met and the loop gain is larger than 1 . The amplitude remains constant when the loop gain is equal to 1 .

Frequency-selective networks are used in the feedback arm if oscillations are to be produced at a definite frequency value. This means that the phase-shift criterion in particular is valid at only one frequency. Such frequency-selective networks are usually RC stages, resonant circuits or quartz crystals.

Example: The feedback loop gain of the circuit in Fig. 7.142 is:

$$
\begin{equation*}
\beta \cdot A=\frac{\underline{V_{1}}}{\underline{V_{\text {out }}}} \underline{\frac{V_{\text {out }}}{\underline{V}_{1}}}=\underbrace{\frac{R_{1}}{R_{1}+R+\mathrm{j}(\omega L-1 / \omega C)}}_{\beta} \cdot A \tag{7.172}
\end{equation*}
$$



Fig. 7.142. Simple oscillator with series resonant circuit
The phase-shift criterion is fulfilled when the imaginary part of $\beta$ is equal to zero. This is true at the resonant frequency $\omega_{0}=\sqrt{1 / L C}$. The feedback-loop gain criterion is fulfilled when $A \cdot R_{1} /\left(R_{1}+R\right) \geq 1$, i.e. the noninverting amplifier gain is chosen to be greater than $\left(R+R_{1}\right) / R_{1}$.

Figure 7.143 shows the oscillator from Fig. 7.142 with amplitude stabilisation. The JFET increases its impedance with increasing amplitude and thus reduces the noninverting amplifier gain until the loop gain is 1 .


Fig. 7.143. Oscillator with amplitude stabilisation

### 7.8.1 RC Oscillators

### 7.8.1.1 Phase-Shift Oscillator

The phase-shift circuit $\beta$ shifts the phase by at most $270^{\circ}$. The phase shift criterion is fulfilled at $\varphi_{\beta}=-180^{\circ}$, as a further $180^{\circ}$ shift occurs at the inverting amplifier (Fig. 7.144).



Fig. 7.144. Phase-shift oscillator
The phase-shift criterion is fulfilled by

$$
\begin{equation*}
f_{0}=\frac{1}{2 \mathrm{a} R C \sqrt{6}}=\frac{1}{15.4 \cdot R C} \tag{7.173}
\end{equation*}
$$

The feedback loop gain criterion is fulfilled by

$$
\begin{equation*}
|A| \geq 29 \tag{7.174}
\end{equation*}
$$

(Bode plot in Fig. 7.144).

### 7.8.1.2 Wien Bridge Oscillator

The Wien bridge oscillator feedback circuit is a Wien bandpass filter. The feedback loop transfer function is:

$$
\begin{equation*}
\beta \cdot A=\frac{1}{3+\mathrm{j}(\omega R C-1 / \omega R C)} \cdot A \tag{7.175}
\end{equation*}
$$

The phase-shift criterion is fulfilled when the imaginary part of the loop gain is zero, i.e. at $\omega=1 / R C$. The feedback loop gain is then one-third. The feedback-loop gain criterion is fulfilled when $A \geq 3$.


Fig. 7.145. Wien bridge oscillator
Amplitude stabilisation of the Wien bridge oscillator is possible (Fig. 7.143).

### 7.8.2 LC Tuned Oscillators

LC oscillators use tuned circuits for frequency selection. These can either be series or parallel tuned circuits. They are more stable than RC oscillators, as the phase shift is very large in the range of resonance.

### 7.8.2.1 Meissner Oscillator

The loop gain is:

$$
\begin{equation*}
\beta \cdot A=\frac{1}{1 / R_{\mathrm{P}}+\mathrm{j}(\omega C-1 / \omega L)} \cdot \frac{N_{1}}{N_{2}} \frac{\beta_{\mathrm{AC}}}{r_{\mathrm{BE}}} \tag{7.176}
\end{equation*}
$$

The resistor $R_{\mathrm{P}}$ represents the tuned circuit damping. The equivalent resistance $r_{\mathrm{BE}}$ represents the input impedance of the common-emitter circuit and can be assumed to be given by $r_{\mathrm{BE}} \approx V_{\mathrm{T}} / I_{\mathrm{B}} \approx V_{\mathrm{T}} \cdot\left(\beta_{\mathrm{DC}} / I_{\mathrm{C}}\right)$ where $V_{\mathrm{T}}$ is the thermal voltage (approximately 25 mV ), and $I_{\mathrm{B}}$ is the DC base current (Fig. 7.146).


Fig. 7.146. Meissner oscillator in a common-emitter circuit: a circuit, $\mathbf{b}$ equivalent circuit, $\mathbf{c}$ block diagram
The phase-shift criterion is fulfilled when $\omega=1 / \sqrt{L C}$, i.e. at the tuned-circuit resonant frequency.
The feedback-loop gain criterion is fulfilled when $\frac{N_{1}}{N_{2}} \geq \frac{r_{\mathrm{BE}}}{\beta_{\mathrm{AC}} R_{\mathrm{P}}}$.

- The transformer ratio can be chosen to be very small as in practice the base winding only requires a few turns.


### 7.8.2.2 Hartley Oscillator

The Hartley oscillator uses an inductive voltage divider for feedback. The phase-shift criterion is fulfilled at the tuned circuit resonant frequency. The feedback-loop gain criterion is approximately fulfilled for the circuit shown in Fig. 7.147a for $L_{1} \geq \frac{L r_{\mathrm{BE}}}{\beta_{\mathrm{AC}} R_{\mathrm{P}}}$, or expressed in terms of the turns: $N_{1} \geq N \sqrt{\frac{r_{\mathrm{BE}}}{\beta_{\mathrm{AC}} R_{\mathrm{P}}}}$.

- In practice, one or a small number of turns are sufficient for $N_{1}\left(r_{\mathrm{BE}}, \beta_{\mathrm{AC}}\right.$ and $R_{\mathrm{P}}$, see Sect. 7.8.2.1).


Fig. 7.147. a Hartley oscillator; b Colpitts oscillator

### 7.8.2.3 Colpitts Oscillator

The Colpitts oscillator uses a capacitive voltage divider for feedback. The phase-shift criterion is fulfilled at the resonant frequency for the tuned circuit. The feedback-loop gain criterion is approximately fulfilled for the circuit shown in Fig. 7.147b for $C_{1} \leq C_{2} \frac{\beta_{\mathrm{AC}} R_{\mathrm{P}}}{r_{\mathrm{BE}}}$.

- $C_{1}$ is chosen to be very large with respect to $C_{2}\left(r_{\mathrm{BE}}, \beta_{\mathrm{AC}}\right.$ and $R_{\mathrm{P}}$, see Sect. 7.8.2.1).


### 7.8.3 Quartz/Crystal Oscillators



Fig. 7.148. Quartz: a symbol; b equivalent circuit
A quartz is a crystal; it is also an electrically excitable, mechanical device capable of oscillating. It can be represented by an electrical equivalent circuit. The $L_{1}, C_{1}$ and $R_{1}$ values are the electrical equivalent values for the mechanical oscillator. The capacitor $C_{0}$ represents the capacitance between the electrical terminals of the quartz; its value depends on the circuit layout. Typical values, for example, for a 1 MHz quartz are: $L_{1}=2.53 \mathrm{H}$, $C_{1}=0.01 \mathrm{pF}, R_{1}=50 \Omega, C_{0}=5 \mathrm{pF}$.

It is worth noting in particular that such oscillators can achieve Q -factors that are not realisable with electrical circuits. Values between $10^{6}$ and $10^{10}$ can be achieved.

The equivalent circuit shown in Fig. 7.148b has both a series and a parallel resonance frequency.

$$
\begin{aligned}
& \text { The series resonance occurs at } \quad \omega_{0 \mathrm{~S}}=\frac{1}{\sqrt{L_{1} C_{1}}} \\
& \text { The parallel resonance occurs at } \quad \omega_{0 \mathrm{P}}=\frac{1}{\sqrt{L_{1} C_{1}} \sqrt{1+\frac{C_{1}}{C_{0}}}}
\end{aligned}
$$

- The series resonance depends only on the mechanical properties of the quartz, which can be very accurate as quartz can be manufactured very precisely. The frequency stability lies between $\Delta f / f_{0}=10^{-4} \ldots 10^{-10}$.
- The series and parallel resonances are very close to each other, as $C_{0}$ is much greater than $C_{1}$ (Fig. 7.149).

If a capacitor $C_{\mathrm{S}}$ is connected in series with the quartz, then a resonant frequency exists between the series resonance $\omega_{0 \mathrm{~S}}$ and the parallel resonance $\omega_{0 \mathrm{p}}$ :


$$
\begin{equation*}
\omega_{0}=\omega_{0 \mathrm{~S}} \sqrt{1+\frac{C_{1}}{C_{0}+C_{\mathrm{S}}}} \tag{7.177}
\end{equation*}
$$

The capacitor $C_{\mathrm{S}}$ permits a high-precision tuning of the oscillation frequency.



Fig. 7.149. Frequency response of the quartz impedance

### 7.8.3.1 Pierce Oscillator

Figure 7.150a shows a Pierce oscillator with a CMOS inverter as a driver. This circuit is usually used for CMOS microprocessor clock generation. The oscillator works like the Colpitts oscillator. The current $i_{1}$ flows in a closed loop, which is formed by the quartz crystal and the capacitors $C_{1}$ and $C_{2}$. Because of this, the voltages across $C_{1}$ and $C_{2}$ are in antiphase. Then $v_{\text {out }} \approx-v_{\text {in }}$. The quartz crystal has a large inductive impedance in this configuration and oscillates close to its parallel resonance. The phase-shift criterion is


Fig. 7.150. Pierce oscillator: a with CMOS inverter; $\mathbf{b}$ with common-emitter stage as an amplifier
fulfilled in this case, as a further $180^{\circ}$ is supplied by the inverter. The feedback loop gain criterion is fulfilled by the very high gain of the inverter. The amplitude of oscillation is limited by the supply voltage, so that the output voltage is approximately a square wave. The resistor $R$ ensures that the circuit will start oscillating by initially charging $C_{2}$. It can have a very large value ( $10 \mathrm{M} \Omega$ ).

### 7.8.3.2 Quartz Oscillator with TTL Gates

Here the quartz crystal oscillates at its series resonance frequency. The TTL gates are used as linear amplifiers (Fig. 7.151). The phase-shift criterion is fulfilled if the Quartz impedance is real. The loop gain is greatest when the quartz impedance is at its minimum (feedback-loop gain criterion).


Fig. 7.151. Quartz oscillator with TTL gates

### 7.8.4 Multivibrators

Multivibrators are self-oscillating digital circuits (Fig. 7.152). The feedback contains a time delay that determines the oscillation frequency. It is unusual to describe multivibrators using the criterion for oscillation.

### 7.9 Heating and Cooling

Electronic circuits produce power losses, which must be given off as heat into the local environment. The power dissipation is usually given, for example, in the choice of the operating point for a transistor ( $P_{\mathrm{V}}=V_{\mathrm{CE}}, I_{\mathrm{C}}$ ). The temperature on the component depends


Fig. 7.152. Multivibrators: $\mathbf{a}$ and $\mathbf{b}$ with inverters; $\mathbf{c}$ and $\mathbf{d}$ with Schmitt triggers
on the geometry of its construction, on the heat-conducting material and the air flow. A large surface area and a good air flow facilitate the heat dissipation. A component with a small surface area and bad air flow will reach a higher temperature.
A heatsink and a fan are suitable means to keep the component temperature low. A thermal paste or compound used between the mounting area of the semiconductor and the heatsink, improves the heat conductivity.

### 7.9.1 Reliability and Lifetime

In electronics the reliability of a component is its ability to function without failure over an acceptable time span. In order to quantify this property the failure rate $\lambda$ is defined:

$$
\lambda=\frac{\text { failures }}{\text { total number } \cdot \text { time }}=\frac{\Delta N}{N \cdot \Delta t}
$$

$\Delta N$ : Number of failures;
$N$ : Number of components;
$\Delta t$ : Test time.
The failure rate defines the average number of failures for usage of the component and over time. The failure rate is measured in fit (failure in time), $1 \mathrm{fit}=10^{-9} \frac{1}{\mathrm{~h}}$.
In addition to the failure rate, the mean time between failures (MTBF) is defined:

$$
T_{\mathrm{m}}=\frac{1}{\lambda}
$$

The MTBF defines the average amount of time before failure. For a large number of equal test components, then after a time $T_{\mathrm{m}}$ probably $63 \%$ of the components will have failed.

For a group of $n_{i}$ electronic devices, containing $i$ different devices and for a device failure rate of $\lambda_{i}$, there is an overall failure rate $\lambda_{\text {total }}$ and an average MTBF $T_{\mathrm{m} \text { tot }}$ of the group of:

$$
\lambda_{\text {total }}=\sum_{i} n_{i} \cdot \lambda_{i}, \quad \text { and } \quad T_{\mathrm{m} \text { total }}=\frac{1}{\lambda_{\text {total }}}
$$

The reliability, i.e. the failure rate and the lifetime, of electronic components is mainly dependent on the temperature. The Arrhenius law defines this relationship. The failure rate $\lambda$ is:

$$
\begin{equation*}
\lambda=\frac{\text { failures }}{\text { total number } \cdot \text { time }}=\frac{\mathrm{d} N}{N \cdot \mathrm{~d} t}=\mathrm{e}^{-\frac{V_{\mathrm{a}}}{k T}} \tag{7.178}
\end{equation*}
$$

with $\quad N$ : Number of components;
$V_{\mathrm{a}}:$ Activation energy $(\mathrm{eV}), 1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}$;
$k$ : Boltzmann's constant, $1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$;
$T$ : Absolute temperature.

- The reliability and lifetime of an electronic circuit is mainly dependent on the temperature of the components. The failure rate increases exponentially with the temperature.

The activation energy lies between 0.3 and 1.3 eV , with a typical value of 0.5 eV .
If for a temperature $T_{1}$ the failure rate $\lambda_{1}$ is known, then the failure rate for a temperature $T_{2}$ is:

$$
\begin{equation*}
\lambda_{2}=\lambda_{1} \mathrm{e}^{-\frac{V_{\mathrm{a}}}{k}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)} \tag{7.179}
\end{equation*}
$$



Fig. 7.153. Typical increase in the failure rate as a function of the temperature for two different activation energies $V_{\mathrm{a}}$

Figure 7.153 shows a typical relationship between the failure rate and the device temperature. The aim of a heatsink calculation therefore should not be to stay directly below the temperature limits given in the data sheets, but rather to keep the temperature as low as possible - in an economical manner.

- The temperature of an electronic circuit should be kept as low as possible - taking financial restraints into account.


### 7.9.2 Temperature Calculation

Heat dissipation can be modelled and calculated using an electrical equivalent circuit.

### 7.9.2.1 Thermal Resistance



Fig. 7.154. The thermal resistance
A heat power $P$, travelling through a spatial path, causes a temperature difference $\Delta \vartheta$. Such a spatial path could be, for example, the path from a p-n junction, where the heat power occurs, to the surrounding environment where the heat is given off. The geometry, material qualities and the air flow of the heat path define the temperature difference.
Thermal resistance $R_{\mathrm{th}}$ is defined in a similar manner to electrical resistance using Ohm's law. The thermal resistance replaces the electrical resistance, the heat power $P$ replaces the electrical current and the temperature difference $\Delta \vartheta$ replaces the voltage drop.
Ohm's law for heat conduction is given by:

$$
\begin{equation*}
\Delta \vartheta=R_{\mathrm{th}} \cdot P \tag{7.180}
\end{equation*}
$$

- The thermal resistance $R_{\mathrm{th}}$ is given in $\frac{\mathrm{K}}{\mathrm{W}}$ (degrees kelvin per watt).

The thermal resistances $R_{\mathrm{th}}$ for individual heat junctions are given in the corresponding data sheets. Thus, for example, the thermal resistance $R_{\mathrm{thJC}}$ (JC: junction-case) is given in the transistor data sheets or the thermal resistance of a heatsink is given in the specifications of a heatsink manufacturer. The thermal resistance of a heatsink is given if necessary for forced and natural convection. Figure 7.155 shows the relative change in thermal resistance with forced convection as a function of the air-flow rate.


Fig. 7.155. Relative change in thermal resistance with forced convection as a function of the air-flow rate

Example: The power dissipation in the $\mathrm{p}-\mathrm{n}$ junction is passed on from there to the transistor housing, from there via the insulation (e.g. a mica wafer or an aluminium oxide wafer) to the heatsink and from there to the surrounding environment.

Each of these heat junctions has a thermal resistance. Thus the thermal resistance between the $\mathrm{p}-\mathrm{n}$ junction and the housing $R_{\mathrm{thJC}}$, (JC: junction-case), the thermal resistance of the insulation $R_{\text {thiNS }}$ and the thermal resistance between the heatsink and the surrounding environment $R_{\mathrm{thHS}}$ (Fig. 7.156). The electrical equivalent circuit for these heat junctions in the static case is shown in Fig. 7.157.


Fig. 7.156. Heat transfer for a transistor $\mathrm{p}-\mathrm{n}$ junction to the environment


Fig. 7.157. Equivalent circuit for static heat junctions used for the construction of the previous diagram
The junction temperature $\vartheta_{\mathrm{J}}$ is:

$$
\begin{equation*}
\vartheta_{\mathrm{J}}=\Delta \vartheta_{\mathrm{JC}}+\Delta \vartheta_{\mathrm{INS}}+\Delta \vartheta_{\mathrm{HS}}+\vartheta_{\mathrm{env}}=P\left(R_{\mathrm{thJC}}+R_{\mathrm{thINS}}+R_{\mathrm{thHS}}\right)+\vartheta_{\mathrm{env}} \tag{7.181}
\end{equation*}
$$

### 7.9.2.2 Thermal Capacity

In addition to the heat conductivity of the material carrying the heat, the thermal capacity must also be taken into consideration (Fig. 7.158). This can absorb heat energy. Thus a device will not heat up in an abrupt fashion, but rather will heat up slowly depending on the thermal capacity and amount of heat power.


Fig. 7.158. The thermal capacity
The relationship between power and temperature across the thermal capacity corresponds to the analogy of the electrical capacitance:

$$
\begin{equation*}
P=C_{\mathrm{th}} \cdot \frac{\mathrm{~d} \vartheta}{\mathrm{~d} t}, \quad \text { or } \quad \Delta \vartheta=\frac{1}{C_{\mathrm{th}}} \int P \mathrm{~d} t+\Delta \vartheta_{0} \tag{7.182}
\end{equation*}
$$

The thermal capacity $C_{\text {th }}$ is given in $\mathrm{Ws} / \mathrm{K}$ (watt-seconds per degree kelvin).
It is calculated from the specific thermal capacity $c_{\text {th }}(\mathrm{Ws} / \mathrm{kg} \mathrm{K})$ and the mass $m$ of the material.

$$
\begin{equation*}
C_{\mathrm{th}}=c_{\mathrm{th}} \cdot m \tag{7.183}
\end{equation*}
$$

The specific thermal capacity is
for copper: $\quad c_{\mathrm{thCu}} \approx 400 \frac{\mathrm{Ws}}{\mathrm{kg} \cdot \mathrm{K}}$
for aluminium: $c_{\mathrm{thAl}} \approx 900 \frac{\mathrm{Ws}}{\mathrm{kg} \cdot \mathrm{K}}$
The thermal resistance $R_{\mathrm{th}}$ and the thermal capacity $C_{\mathrm{th}}$ together form the thermal time constant $\tau_{\mathrm{th}}$. This is given by: $\tau_{\mathrm{th}}=R_{\mathrm{th}} \cdot C_{\mathrm{th}}$. For transistors it lies between a few hundredths to a few seconds, for heatsinks between minutes and hours.

- For pulsating power dissipation the device temperature can be calculated using the average power, if the thermal time constant is large compared with the periodic time of the power pulses.

Example: If the thermal capacities are considered in the construction shown in Fig. 7.156, then this yields the equivalent circuit shown in Fig. 7.159. The transistor case and the heatsink have a thermal capacity. The thermal capacity of the insulation was neglected in this equivalent circuit. The thermal resistance and the thermal capacity together form the thermal time constants $\tau_{\mathrm{JC}}=R_{\mathrm{thJC}} C_{\mathrm{thJC}}$ and $\tau_{\mathrm{HS}}=$ $R_{\mathrm{thHS}} C_{\mathrm{thHS}}$.


Fig. 7.159. Equivalent circuit for the transient heat junction in the construction of the example in Fig. 7.157

### 7.9.2.3 Transient Thermal Impedance

Semiconductors can support very large power dissipation for a short time. For impulsive power dissipation the thermal capacities in the vicinity of the junction store the dissipated energy.
For very high frequency power pulses calculations can be performed using the average power. If the power pulses' periodic time is in the range of the thermal time constants, the transient thermal responses are not negligible in the calculation of the junction temperature. The semiconductor manufacturer therefore gives the transient thermal impedance $Z_{\mathrm{th}}$.
The transient thermal impedance $Z_{\mathrm{th}}$ is given as a function of the impulse duration and the duty cycle $D$ (impulse duration/impulse repetition period, Fig. 7.160).
The temperature difference between the $\mathrm{p}-\mathrm{n}$ junction and case can be then calculated as:

$$
\begin{equation*}
\Delta \vartheta_{\mathrm{JC}}=\hat{P} \cdot Z_{\mathrm{thJC}}\left(t_{\mathrm{P}}, T\right) \tag{7.184}
\end{equation*}
$$

- The temperature difference is calculated using the amplitude of the dissipated power. The power pulses and their duty cycle are considered in the different curves in the transient thermal impedance diagram with $D=t_{\mathrm{p}} / T$.


Fig. 7.160. Transient thermal impedance

- The transient thermal resistance is important in the frequency range from a few hertz to a few kilohertz (especially rectifiers and thyristors at $50 / 60 \mathrm{~Hz}$ mains). For higher frequency power pulses the average power and the thermal resistance are usually used for calculations: $\Delta \vartheta=P_{\text {avg. }} \cdot R_{\mathrm{th}}$.


### 7.10 Power Amplifiers

Power amplifiers offer a large power output with a reasonably good efficiency. The output can usually be regarded as a voltage source with a low source resistance. The gain is usually about 1 . Good linearity is obtained as the power amplifier is operated in a feedback system with a large open loop gain.

### 7.10.1 Emitter Follower

Fig. 7.161 shows the emitter follower.


## Gain

The gain $A=V_{\text {out }} / V_{\text {in }}$ is:

$$
\begin{equation*}
A \approx 1 \tag{7.185}
\end{equation*}
$$

## Input and Output Impedance

The input impedance $r_{\text {in }}$ is:

$$
\begin{equation*}
r_{\text {in }} \approx \beta \cdot\left(R_{\mathrm{E}} \| R_{\mathrm{L}}\right) \quad \text { where } \beta \text { is the small-signal current gain } \tag{7.186}
\end{equation*}
$$

The output impedance $r_{\text {out }}$ is:

$$
\begin{equation*}
r_{\mathrm{out}} \approx \frac{R_{\mathrm{int}}+r_{\mathrm{BE}}}{\beta} \tag{7.187}
\end{equation*}
$$

with $R_{\text {int }}$ : internal resistance of the input voltage source
$r_{\mathrm{BE}}$ : dynamic input resistance of the base-emitter junction
$r_{\mathrm{BE}}=h_{11 \mathrm{E}} \approx \frac{V_{\mathrm{T}}}{I_{\mathrm{B}}}, \quad V_{\mathrm{T}}:$ thermal voltage 25 mV at $T=25^{\circ} \mathrm{C}$
$I_{\mathrm{B}}$ : DC base current

## Operating Limits

Positive operating limit:

$$
\hat{V}_{\text {out max }} \approx+V_{\mathrm{CC}}
$$

Negative operating limit:

$$
\begin{equation*}
\hat{V}_{\text {out } \min } \approx-V_{\mathrm{CC}} \cdot \frac{R_{\mathrm{L}}}{R_{\mathrm{E}}+R_{\mathrm{L}}} \tag{7.188}
\end{equation*}
$$

## Maximum Output Power

The maximum available output power is calculated for the case where the peak value of the output voltage is equal to the negative output voltage limit, i.e. that a sinusoidal output is still just about possible.

$$
\hat{V}_{\text {out }}=\hat{V}_{\text {out } \min } \approx V_{\mathrm{CC}} \cdot \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{E}}+R_{\mathrm{L}}\right)}, \quad P_{\text {out }}=\frac{1}{2} \cdot \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}=\frac{1}{2} \cdot V_{\mathrm{CC}}^{2} \cdot \frac{R_{\mathrm{L}}^{2}}{\left(R_{\mathrm{E}}+R_{\mathrm{L}}\right)^{2} R_{\mathrm{L}}}
$$

The derivative $\mathrm{d} P_{\text {out }} / \mathrm{d} R_{\mathrm{L}}$ is calculated and made equal to zero, to discover which load resistance $R_{\mathrm{L}}$ causes the maximum power transfer.

$$
\frac{\mathrm{d} P_{\text {out }}}{\mathrm{d} R_{\mathrm{L}}}=\frac{1}{2} \cdot V_{\mathrm{CC}}^{2} \cdot \frac{\left(R_{\mathrm{E}}+R_{\mathrm{L}}\right)^{2}-R_{\mathrm{L}} \cdot 2 \cdot\left(R_{\mathrm{E}}+R_{\mathrm{L}}\right)}{\left(R_{\mathrm{E}}+R_{\mathrm{L}}\right)^{4}}=0
$$

It follows that:

$$
\begin{equation*}
R_{\mathrm{L}}=R_{\mathrm{E}} \tag{7.189}
\end{equation*}
$$

The maximum output voltage for $R_{\mathrm{L}}=R_{\mathrm{E}}$ is:

$$
\begin{equation*}
\hat{V}_{\mathrm{out}}=\frac{V_{\mathrm{CC}}}{2} \tag{7.190}
\end{equation*}
$$

- The maximum power is delivered to the load resistance $R_{\mathrm{L}}$, when $R_{\mathrm{L}}$ is equal to the emitter resistance $R_{\mathrm{E}}$ and the amplitude of the output voltage is $V_{\text {out }}=V_{\mathrm{CC}} / 2$.


## The Transistor Power Dissipation

The transistor power dissipation $P_{\mathrm{T} 1}$ for a sinusoidal output voltage is given by:

$$
\begin{align*}
& P_{\mathrm{T} 1}=\frac{1}{T} \int_{0}^{T} v_{\mathrm{CE}}(t) \cdot i_{\mathrm{C}}(t) \mathrm{d} t \\
&=\frac{1}{T} \int_{0}^{T}\left(V_{\mathrm{CC}}-\hat{V}_{\text {out }} \sin \omega t\right) \cdot\left(\frac{V_{\mathrm{CC}}+\hat{V}_{\text {out }} \sin \omega t}{R_{\mathrm{E}}}+\frac{\hat{V}_{\text {out }} \sin \omega t}{R_{\mathrm{L}}}\right) \mathrm{d} t \\
& P_{\mathrm{T} 1}=\frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}}-\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}-\frac{1}{2} \frac{\hat{V}_{\mathrm{out}}^{2}}{R_{\mathrm{E}}}  \tag{7.191}\\
& P_{\mathrm{T} 1 \max }=\frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}} \tag{7.192}
\end{align*}
$$

- The transistor power dissipation is a maximum when the output is zero.
- The maximum transistor power dissipation is given by $\frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}}$


## The Total Input Power

The total input power is given by:

$$
\begin{equation*}
P_{\mathrm{tot}}=P_{\mathrm{out}}+P_{\mathrm{T} 1}+P_{\mathrm{RE}} \tag{7.193}
\end{equation*}
$$

$P_{\text {out }}$ : output power
$P_{\mathrm{T} 1}$ : transistor power dissipation
$P_{\mathrm{RE}}$ : power loss in the emitter resistor $R_{\mathrm{E}}$

$$
\begin{aligned}
& P_{\text {out }}=\frac{1}{2} \cdot \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}, \quad P_{\mathrm{RE}}=\frac{1}{T} \int_{0}^{T} \frac{v_{\mathrm{RE}}^{2}}{R_{\mathrm{E}}} \mathrm{~d} t=\frac{1}{T} \int_{0}^{T} \frac{\left(V_{\mathrm{CC}}+\hat{V}_{\text {out }} \sin \omega t\right)^{2}}{R_{\mathrm{E}}} \mathrm{~d} t=\frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}}+\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{E}}} \\
& P_{\mathrm{T} 1}=\frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}}-\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}-\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{E}}}
\end{aligned}
$$

$$
\begin{equation*}
P_{\text {out }}+P_{\mathrm{T} 1}+P_{R_{\mathrm{E}}}=P_{\text {total }}=2 \frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}} \tag{7.194}
\end{equation*}
$$

- The total input power $P_{\text {total }}$ of the emitter follower is $2 \frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{E}}}$ and is independent of the load $R_{\mathrm{L}}$ and independent of the output voltage $V_{\text {out }}$.


## Efficiency

The efficiency is defined as

$$
\eta=\frac{\text { delivered power }}{\text { total power }}=\frac{\text { output power }}{\text { input power }}=\frac{P_{\text {out }}}{P_{\text {total }}}
$$

The efficiency $\eta$ reaches its maximum value when the output power is highest, i.e. if $R_{\mathrm{E}}=R_{\mathrm{L}}$ and $V_{\text {out }}=V_{\mathrm{CC}} / 2$.
The efficiency is:

$$
\begin{equation*}
\eta_{\max }=\frac{P_{\text {out } \max }}{P_{\text {total }}}=\frac{V_{\mathrm{CC}}^{2} / 8 R_{\mathrm{L}}}{2 V_{\mathrm{CC}}^{2} / R_{\mathrm{E}}}=\frac{1}{16}=6.25 \% \tag{7.195}
\end{equation*}
$$

- The maximum efficiency of the emitter follower is $6.25 \%$.


## Class A Operation

Class A operation of an amplifier is defined by:

- the total input power is constant and independent of the load and the output voltage, and
- the transistor current is never zero.
- The emitter follower is an amplifier in class A operation.


### 7.10.2 Complementary Emitter Follower in Class B Operation




Fig. 7.162. Complementary emitter follower: a circuit; $\mathbf{b}$ diagram of the voltages and currents

In the complementary emitter follower only one transistor conducts at any one time. For a positive input voltage transistor $Q_{1}$ conducts, and for a negative input voltage $Q_{2}$ conducts. Neither transistor conducts at the zero-crossing point of the input voltage ( $-0.7 \mathrm{~V}<V_{\text {in }}<$ +0.7 V ), the gain in this case being approximately zero. As the transfer characteristic is nonlinear in this region, this is known as crossover distortion.

## Gain

The gain is:

$$
\begin{equation*}
A \approx 1 \tag{7.196}
\end{equation*}
$$

## Output Voltage Limit

The output voltage limit is:

$$
\begin{equation*}
\hat{V}_{\text {out }} \approx \pm V_{\mathrm{CC}} \tag{7.197}
\end{equation*}
$$

## Input and Output Impedance

The input impedance $r_{\text {in }}$ is:

$$
\begin{equation*}
r_{\text {in }}=\beta \cdot R_{\mathrm{L}}, \quad \text { where } \beta \text { is the small-signal current gain } \tag{7.198}
\end{equation*}
$$

The output impedance $r_{\text {out }}$ is:

$$
\begin{equation*}
r_{\mathrm{out}} \approx \frac{R_{\mathrm{int}}+r_{\mathrm{BE}}}{\beta} \tag{7.199}
\end{equation*}
$$

with $R_{\text {int }}$ : source resistance of the input voltage source
$r_{\mathrm{BE}}: \quad$ dynamic input resistance of the base-emitter junction
$r_{\mathrm{BE}} \approx \frac{V_{\mathrm{T}}}{I_{\mathrm{B}}}, \quad V_{\mathrm{T}}:$ thermal voltage 25 mV at $T=25^{\circ} \mathrm{C}$
$I_{\mathrm{B}}$ : DC base current

## Maximum Output Power

The maximum output power is:

$$
\begin{equation*}
P_{\text {out }}=\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}} \approx \frac{1}{2} \frac{V_{\mathrm{CC}}^{2}}{R_{\mathrm{L}}} \tag{7.200}
\end{equation*}
$$

## Transistor Power Dissipation

The transistor power dissipation for a sinusoidal output voltage per transistor is :

$$
P_{\mathrm{T} 1}=P_{\mathrm{T} 2}=\frac{1}{T} \int_{0}^{T / 2} \underbrace{\left(V_{\mathrm{CC}}-\hat{V}_{\mathrm{out}} \sin \omega t\right)}_{V_{\mathrm{CE} 1}} \cdot \underbrace{\left(\frac{\hat{V}_{\text {out }} \sin \omega t}{R_{\mathrm{L}}}\right)}_{I_{\mathrm{C} 1}} \mathrm{~d} t=\frac{V_{\mathrm{CC}} \cdot \hat{V}_{\mathrm{out}}}{\mathrm{a} \cdot R_{\mathrm{L}}}-\frac{\hat{V}_{\text {out }}^{2}}{4 R_{\mathrm{L}}}
$$

In the calculation of the maximum transistor power dissipation the derivative $\frac{\mathrm{d} P_{\mathrm{T}}}{\mathrm{d} \hat{V}_{\text {out }}}$ is set to zero. This yields the output voltage at which the maximum transistor power dissipation occurs:

$$
\frac{\mathrm{d} P_{\mathrm{T}}}{\mathrm{~d} \hat{V}_{\mathrm{out}}}=\frac{V_{\mathrm{CC}}}{\mathrm{a} \cdot R_{\mathrm{L}}}-2 \frac{\hat{V}_{\text {out }}}{4 R_{\mathrm{L}}}=0 \quad \Rightarrow \quad \hat{V}_{\text {out }}=\frac{2}{\mathrm{a}} V_{\mathrm{CC}}=0.64 \cdot V_{\mathrm{CC}}
$$

- The maximum transistor power dissipation occurs at an output voltage swing of $64 \%$ of the supply voltage (Fig. 7.163).

The maximum transistor power dissipation per transistor is:

$$
\begin{equation*}
P_{\mathrm{T} 1 \max }=P_{\mathrm{T} 2 \max }=\frac{V_{\mathrm{C}}^{2}}{\mathrm{a}^{2} R_{\mathrm{L}}} \tag{7.201}
\end{equation*}
$$

## Input Power

The total input power is given by (Fig. 7.163)

$$
P_{\text {total }}=P_{\text {out }}+P_{\mathrm{T} 1}+P_{\mathrm{T} 2} \quad \Rightarrow \quad P_{\text {total }}=\frac{2 V_{\mathrm{CC}} \hat{V}_{\text {out }}}{\square R_{\mathrm{L}}}
$$

and has its maximum in $\hat{V}_{\text {out }}=V_{\mathrm{CC}}$

## Efficiency

$$
\eta=\frac{P_{\text {out }}}{P_{\text {total }}}=\frac{\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}}{\frac{2 V_{\mathrm{CC}} \cdot \hat{V}_{\text {out }}}{\mathbf{a} \cdot R_{\mathrm{L}}}-\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}+\frac{1}{2} \frac{\hat{V}_{\text {out }}^{2}}{R_{\mathrm{L}}}}=\frac{\hat{V}_{\text {out }}}{V_{\mathrm{CC}}} \cdot \frac{\mathrm{a}}{4}=0.785 \cdot \frac{\hat{V}_{\text {out }}}{V_{\mathrm{CC}}}
$$

$\eta$ has its maximum for $\hat{V}_{\text {out }}=V_{\text {CC }}$ :

$$
\begin{equation*}
\eta_{\max }=78.5 \% \tag{7.202}
\end{equation*}
$$

## Class B operation

Class B operation of an amplifier is defined by:

- the total input power increases proportionally to $\hat{V}_{\text {out }}$, and
- each transistor conducts only for half a period.
- The complimentary emitter follower is a class B amplifier.


Fig. 7.163. Output power, power dissipated and total input power as function of the level of output voltage swing

### 7.10.3 Complementary Emitter Follower in Class C Operation



Fig. 7.164. Complementary emitter follower in class $C$ operation
In class C operation the complementary transistors do not conduct in the range of $-V_{0}<$ $V_{\text {in }}<+V_{0}$. This causes the amplifier efficiency to improve compared to the class B operation. This is important if the amplifier is activated by a constant amplitude and where the crossover distortion is unimportant, e.g. radio transmitter amplifiers.

### 7.10.4 The Characteristic Curves of the Operation Classes

Fig. 7.165a shows the operational point in the transistor output characteristics for different operation classes of power amplifiers. Fig. 7.165b shows the corresponding transistor current.


Fig. 7.165. a The characteristic curves of the operation classes (for the transistor $\mathrm{T}_{1}$ ); $\mathbf{b}$ time variation of the collector current with a sinusoidal activation

### 7.10.5 Complementary Emitter Follower in Class AB Operation



Fig. 7.166. Complementary emitter follower in class $A B$ operation

In class AB operation equal-value bias voltages $V_{0}$ are applied to the complementary transistors. $V_{0}$ is chosen so that a small quiescent current flows in the transistors at the zero-crossing of the input voltage. The transfer characteristic is thus linearised, and the crossover distortion is reduced (Fig. 7.166). The small quiescent current is chosen so that the heat dissipation in the transistors for no input voltage is small (the power dissipated should be about $10-30 \%$ of the maximum power dissipation). The small quiescent current usually lies between $1-5 \%$ of the peak output current. The small quiescent current is limited by the feedback resistor $R_{\mathrm{E}}$. This is important particularly in heating of the transistors and the related drop in the base-emitter voltage. If $R_{\mathrm{E}}$ is too small thermal runaway can occur: The transistors heat up, the base-emitter voltage decreases, the small quiescent current increases, the transistor power dissipation also increases causing the transistors to heat up further, the base-emitter voltage further decreases and so on.

### 7.10.5.1 Biasing for Class AB Operation

Figure 7.167a: The bias voltage is produced by two diode stages. The resistors $R_{\mathrm{q}}$ are chosen so that at maximum-output voltage swing sufficient base current is supplied to the power transistors. This often means that $R_{\mathrm{q}}$ has to be very low, as the voltage drop across them will be very small at maximum-output voltage swing. This also leads in the quiescent case (when $V_{\mathrm{in}}=0 \mathrm{~V}$ ) to a large power loss in the $R_{\mathrm{q}}$ resistors as about $V_{\mathrm{CC}} / 2$ drops across them. The circuits shown in Fig. 7.167d provides some relief by replacing the $R_{\mathrm{q}}$ resistors by current sources.
The $R_{\mathrm{E}}$ feedback resistors prevent the small quiescent current of the power transistors from increasing uncontrollably. The base-emitter voltage of the power transistors drops in the event of heating occurring!. The $R_{\mathrm{E}}$ resistors are chosen so that the small quiescent current is about $1-5 \%$ of the peak output current or, alternatively, when the amplifier is operating at full-output voltage swing that $0.7-2 \mathrm{~V}$ are dropped across them. The feedback resistors can be bypassed with diodes, so that the power dissipated in them at full-output voltage swing is not too high.
Figure 7.167b: The bias voltage diodes are replaced by the transistors $Q_{3}$ and $Q_{4}$. The amplifier input signal power is thus decreased.
Figure 7.167c: The bias voltage diodes are replaced by a transistor circuit $Q_{3}$. The transistor circuit appears like a voltage source. The bias voltage is given by: $2 V_{0}=$ $0.7 \mathrm{~V} \frac{R_{1}+R_{2}}{R_{2}}$. The resistors $R_{1}$ and $R_{2}$ can be a potentiometer for a precise quiescent current adjustment. This is particularly important if the power transistors are Darlingtons. In that case, the bias voltage is chosen as: $2 V_{0} \approx 2.8 \mathrm{~V}$.
Figure 7.167d: The $R_{\mathrm{q}}$ resistors are replaced by current sources. In the quiescent case ( $V_{\text {in }}=0 \mathrm{~V}$ ) the power dissipation is therefore clearly reduced or, alternatively, the maximum amplifier output swing increases. The current source is chosen so that at peakoutput voltage swing the current requirement of the power transistors is guaranteed.
Figure 7.167e: The amplifier input comes from a common-emitter stage for high voltage gain. This common-emitter stage can be driven directly by a differential amplifier.
Figure 7.167f: The $R_{\mathrm{q}}$ resistor is replaced by the resistors $R_{\mathrm{q} 1}$ and $R_{\mathrm{q} 2}$, with $R_{\mathrm{q} 1} \ll R_{\mathrm{q} 2}$. In the quiescent case a voltage of about $V_{\mathrm{CC}}$ drops across the bootstrap capacitor $C$. For the output voltage swing the bootstrap capacitor shifts the positive voltage half-cycle of the voltage between $R_{\mathrm{q} 1}$ and $R_{\mathrm{q} 2}$ to values higher than the supply voltage $V_{\mathrm{CC}}$. Therefore sufficient voltage remains across $R_{\mathrm{q} 2}$, even at full-output voltage swing, to guarantee the base current requirement. $R_{\mathrm{q} 2}$ is chosen so that a little more than the maximum required base current flows under quiescent conditions. The bootstrap-capacitor is chosen so that an approximately steady DC voltage appears across it (it is a short circuit for AC voltages). The critical frequency of the bootstrap circuit is: $f_{\mathrm{c}} \approx 1 / 2 \mathrm{a} R_{\mathrm{q} 1} C$ for $R_{\mathrm{q} 1} \ll R_{\mathrm{q} 2}$.


Fig. 7.167. Bias voltage production for AB amplifiers

### 7.10.5.2 Complementary Emitter Follower with Darlington Transistors

For amplifiers with a large output power or, alternatively, with a large output current, power transistors are created using Darlington or pseudo-Darlington circuits. The transistors $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ are power transistors. The transistors $\mathrm{Q}_{1}^{\prime}$ and $\mathrm{Q}_{2}^{\prime}$ are driver transistors.

Figure 7.168a: The power transistors $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ do not conduct in the quiescent state ( $V_{\text {in }}=0 \mathrm{~V}$ ). The bias voltage $V_{0}$ is chosen so that the drop across the feedback resistors $R_{\mathrm{E}}$ is about 0.4 V in the quiescent state (i.e. $V_{0}=2.2 \mathrm{~V}$ ). A good linearity is therefore achieved in the crossover region. For larger output voltage swing the power transistors take over the output current.
Figure 7.168b: The bias voltage is chosen at about $V_{0}=2.8 \mathrm{~V}$. The quiescent current usually lies around $1-5 \%$ of the peak output current.
Figure 7.168c: The pseudo-Darlington circuit uses identical transistor types as the power transistors. The bias voltage $V_{0}$ is chosen so that the voltage drop across the feedback resistors $R_{\mathrm{E}}$ in the quiescent state is about 0.4 V (i.e. $V_{0}=1.8 \mathrm{~V}$ ).


b)

c)

Fig. 7.168. Complementary emitter follower in $\mathbf{a}$ and $\mathbf{b}$ Darlington pair, $\mathbf{c}$ pseudo-Darlington circuit

### 7.10.5.3 Current-Limiting Complementary Emitter Follower

The current-limiting circuit shown in Fig. 7.169 measures the output current using the resistor $R_{\mathrm{M}}$ (which can be identical to the feedback resistor $R_{\mathrm{E}}$ ). If a critical voltage is exceeded, then the base current flows away through the current-limiter circuit, i.e. the output current cannot increase further.


Fig. 7.169. Current-limiting complementary emitter follower

### 7.10.6 Input Signal Injection to Power Amplifiers

### 7.10.6.1 Input Signal Injection using a Differential Amplifier

A high linearity and a broad independence from the semiconductor parameters can be achieved by using feedback principles. The differential amplifier uses the difference between the output and the input signals to provide the input signal to a power amplifier. The
overall open-loop gain is given by the product of the differential amplifier gain $A_{1}$ and the common-emitter stage gain $A_{2}$. If the open-loop gain is very large, then the closed-loop gain depends only on the feedback (Fig. 7.170).
The feedback also makes the amplifier input impedance very large and the output impedance very small.
For the $\mathbf{A C}$ voltage gain the feedback acts like a voltage divider $\frac{R_{2}}{R_{1}+R_{2}}$, and $C_{2}$ acts like a short circuit. The gain is therefore:

$$
\begin{equation*}
V_{\sim}=\frac{V_{1} V_{2}}{1+V_{1} V_{2} \frac{R_{2}}{R_{1}+R_{2}}} \approx \frac{R_{1}+R_{2}}{R_{2}} \tag{7.203}
\end{equation*}
$$



Fig. 7.170. Input signal injection to a power amplifier using a differential amplifier
The feedback capacitor $C_{2}$ ensures that for DC input voltages the amplifier has complete feedback. This provides a particularly good output voltage zero stability. The DC gain is therefore 1 (Fig. 7.171).


Fig. 7.171. a Block diagram; $\mathbf{b}$ frequency response of the amplifier with feedback
The compensation capacitor $C_{\text {comp }}$ decreases the loop gain at high frequencies (see Sect. 7.6.2) in order to reduce the risk of oscillations. $C_{\text {comp }}$ should be determined experimentally.

### 7.10.6.2 Input Signal Injection Using an Op-Amp



Fig. 7.172. Input signal injection to power amplifiers using operational amplifiers
The power amplifier is included in the op-amp feedback path. The op-amp open-loop gain acts in the feedback loop to produce good linearity.

### 7.10.7 Switched-Mode Amplifiers

In switched-mode amplifiers the transistors $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ work like switches that are alternately switched. The transistor control voltages are created by a pulse-width modulator (PWM). The output voltages of the transistors can only have the values $+V_{\mathrm{CC}}$ or $-V_{\mathrm{CC}}$. This voltage contains, on the one hand, the pulse-width modulator clock frequency and, on the other hand, the input signal (Fig. 7.173). The clock frequency is suppressed by a second-order LC low-pass filter. Therefore the output signal is a true representation of the input signal.

The switching transistors are usually MOSFETs because of their low losses and short switching time. The switching frequencies are usually in a range of some tens to several hundred kilohertz. In theory the switched mode amplifier is loss free. In practice the efficiency lies between 80 and $90 \%$.


Fig. 7.173. Switched-mode amplifier

### 7.11 Notation Index

$a, a_{i} \quad$ filter coefficient, see Tables 7.2 to 7.5
A gain
$A_{\mathrm{CL}} \quad$ closed-loop gain of a feedback system
$A_{\mathrm{d}} \quad$ differential mode gain, open-loop gain of an operational amplifier
$A_{\text {OL }} \quad$ open-loop gain of a feedback system
$b, b_{i} \quad$ filter coefficient, see Tables 7.2 to 7.5
$B \quad$ DC gain of bipolar transistors
$B$ bandwidth
B as index: base
C as index: collector
$C$ capacitance
$C_{\mathrm{th}}, c_{\mathrm{th}} \quad$ thermal capacity ( $\mathrm{Ws} / \mathrm{K}$ ), specific thermal capacity ( $\mathrm{Ws} / \mathrm{kg} \mathrm{K}$ )
CM as index: common mode
$C M R R$ common-mode rejection ratio
d as index: difference
D damping ratio
D as index: drain
E as index: emitter
$f$ frequency
$f_{\text {c }} \quad$ critical frequency
$f_{\mathrm{T}} \quad$ transit frequency
$F \quad$ transfer function (in the Laplace frequency domain)
$g_{\mathrm{m}} \quad$ transconductance
G as index: gate
$i$ time-varying current, AC current
$i_{\mathrm{s} / \mathrm{c}} \quad$ short-circuit current
in as index: input quantity
I DC current, RMS value of an AC current
$I_{\mathrm{F}} \quad$ diode forward current
$L \quad$ inductance
out as index: output quantity
$P$ power
$r$ differential-mode resistance, AC resistance
$r_{\mathrm{BE}} \quad$ differential resistance base-emitter path, $V_{\mathrm{T}} / I_{\mathrm{B}}$
$r_{\mathrm{CE}} \quad$ differential output resistance of the collector current source
$r_{\mathrm{DS}} \quad$ differential output resistance the drain current source
$r_{\text {int }} \quad$ differential source resistance of a current source
$R \quad$ resistance
$R_{\text {int }} \quad$ internal resistance of the source, source resistance
$R_{\mathrm{L}} \quad$ load resistance
$R_{\mathrm{th}} \quad$ thermal resistance (K/W)
$s \quad$ complex frequency

| S | as index: source |
| :--- | :--- |
| $S$ | normalised complex frequency, $S=s / \omega_{\mathrm{g}}$ <br> $t$ |
| $T$ | time |
| $T$ | absolute temperature |
| time constant |  |

### 7.12 Further Reading

Bird, J. O.: Electrical Circuit Theory and Technology
Butterworth/Heinemann (1999)
Boylestad, R. L.; Nashelsky, L.: Electronic Devices and Circuit Theory, 6th Edition Prentice Hall (2000)

Crecraft, D. I.; Gorham, D. A.; Sparkes, J. J.: Electronics
Chapman \& Hall (1993)

Floyd, T. L.: Principles of Electric Circuits, 6th Edition
Prentice Hall (2000)
Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)
Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1999)
Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications Prentice Hall (1997)

Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)
Harper, C. A.: Active Electronic Component Handbook, 2nd Edition McGraw-Hill (1996)

Horowitz, P.; Hill, W.: The Art of Electronics, 2nd Edition Cambridge University Press (1989)

Horowitz, P.; Hayes, T. C.: Student Manual for The Art of Electronics Cambridge University Press (1989)

Singh, J.: Semiconductor Devices: Basic Principles, 1st Edition John Wiley \& Sons (2000)

Zverev, A. I.: Handbook of Filter Synthesis John Wiley \& Sons (1967)

## 8 Digital Electronics

### 8.1 Logic Algebra

### 8.1.1 Logic Variables and Logic Gates

For many signals in electronics only two distinct signal conditions are of interest. For example:

> current flowing / current not flowing
> voltage is positive / voltage is negative
> short circuit / open circuit

A mathematical model for such a system would be a logic variable, which can only have two distinct values: usually either zero or one.

$$
x=0, \quad \text { or } \quad x=1
$$

Logic functions can translate a logic variable into a new logic variable. In mathematics systems of logic variables that are related by logic functions are known as Boolean Algebra.

### 8.1.1.1 Inversion

The inversion of a variable $x$ is written as $\bar{x}$.

$$
q=\bar{x}
$$

The logic variable $q$ assumes the opposite value from $x$. Any logic function can be represented by a truth table.

| $x$ | $\bar{x}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

The following holds

$$
\overline{0}=1, \quad \overline{1}=0
$$

as well as

$$
\overline{\bar{x}}=x
$$

- If a logic variable is inverted twice, then it assumes its original value.


### 8.1.1.2 And Function

The And function combines two logic variables.

$$
q=x \cdot y
$$

Spoken as: $x$ and $y$.

The truth table for the AND function is

| $x$ | $y$ | $x \cdot y$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Two logic variables can each independently assume either of two values. The four possible combinations are represented in the truth table.
The following then holds for the And function

$$
\begin{array}{ll}
x \cdot 0=0, & x \cdot x=x \\
x \cdot 1=x, & x \cdot \bar{x}=0 \tag{8.2}
\end{array}
$$

### 8.1.1.3 Or Function

$$
q=x+y \quad \text { (not to be confused with the arithmetic 'plus') }
$$

Spoken as: $x$ or $y$.
The truth table of the OR function

| $x$ | $y$ | $x+y$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

The following then holds for the $\mathrm{Or}_{\mathrm{R}}$ function

$$
\begin{array}{ll}
x+0=x, & x+x=x \\
x+1=1, & x+\bar{x}=1 \tag{8.4}
\end{array}
$$

### 8.1.2 Logic Functions and their Symbols

Logic variables describe electronic signals, while logic functions explain their relationship. The basic elements used to realise these functions are known as gates. Special symbols are used as standard for logic gates.

Note: The logic symbols used in this chapter are according to EN 60617-12 (formerly IEC 617) and IEEE/ANSI standards. The IEEE standard provides two different types of symbols, distinctive-shape symbols and rectangular-shape symbols. The first distinguishes the function from the form of the symbol, while the latter consists of a rectangle with a label describing the logic function. In this book the rectangular-shape convention is followed.

### 8.1.2.1 Inverter (Not)

$$
q=\bar{x}
$$

An inverter inverts the input signal. The circle at the output side is used to symbolise the inversion (Figs. 8.1 and 8.2).

| $x$ | NOT |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |



Fig. 8.1. Truth table and symbol for the inverter

- The output of the inverter is 1 only if the input variable has the value of zero.


Fig. 8.2. Distinctive-shape symbol for the inverter

### 8.1.2.2 And Gate

$$
q=x \cdot y
$$

| $x$ | $y$ | AND |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



Fig. 8.3. Truth table and symbol for the And gate

- The And function output is 1 only if both input variables have the value of 1 (Fig. 8.3), or:
- The And function output is zero if at least one of the input variables has the value of zero.


Fig. 8.4. Distinctive-shape symbol for the And gate

### 8.1.2.3 Or Gate

$$
q=x+y
$$

- The Or function output is 1 if at least one of the input variables has the value of 1 , or:

| $x$ | $y$ | OR |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



Fig. 8.5. Truth table and symbol of the Or gate

- The Or function output is zero only if both input variables have the value of zero (Fig. 8.5).


Fig. 8.6. Distinctive-shape symbol for the Or gate

### 8.1.2.4 Nand Gate

$$
q=\overline{x \cdot y}
$$



Fig. 8.7. Truth table and symbol of the Nand gate
The NAND gate is an AND gate followed by an inversion. The circle on the output represents the inversion (Figs. 8.7 and 8.8).

- The Nand function is zero if both input variables have the value of 1 .


Fig. 8.8. Distinctive-shape symbol of the Nand gate

### 8.1.2.5 Nor Gate

$$
q=\overline{x+y}
$$

The Nor gate is an Or gate followed by an inversion. The circle on the output represents the inversion (Figs. 8.9 and 8.10).

- The Nor function is 1 if both input variables have the value of zero, or:
- The Nor function is zero if at least one of the input variables has the value of 1.

| $x$ | $y$ | NOR |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |



Fig. 8.9. Truth table and symbol for the Nor gate


Fig. 8.10. Distinctive-shape symbol of the Nor gate

### 8.1.2.6 Xor Gate, Exclusive Or

$$
q=x \cdot \bar{y}+\bar{x} \cdot y
$$

$q=x \oplus y$.

| $x$ | $y$ | XOR |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



Fig. 8.11. Truth table and symbol for the Xor gate

- The Xor function is 1 if exactly one of the two input variables has the value of 1 ,
or:
- The Xor function outputs a 1 only if both input variables are different from each other (Fig. 8.11),
or:
- The Xor function outputs a zero if both input variables are the same.


Fig. 8.12. Distinctive-shape symbol of the Xor gate
An Xor gate can also be regarded as a controlled inverter (Fig. 8.13). If the second input $S$ is used as the controlling input, then for $S=0$ the gate is noninverting, and for $S=1$ it inverts.

### 8.1.3 Logic Transformations

### 8.1.3.1 Commutative Laws

$$
\begin{equation*}
x \cdot y=y \cdot x, x+y=y+x \tag{8.5}
\end{equation*}
$$

| $S$ | $x$ | $q$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |
|  | 1 | 1 |  |$\}$ as $\quad x$.



Fig. 8.13. Xor gate as a controlled inverter
Variables are interchangeable. In circuit terms: the inputs from AND gates or Or gates can be interchanged.

### 8.1.3.2 Associative Laws

$$
\begin{align*}
& (x \cdot y) \cdot z=x \cdot(y \cdot z)=x \cdot y \cdot z  \tag{8.6}\\
& (x+y)+z=x+(y+z)=x+y+z \tag{8.7}
\end{align*}
$$

The evaluation of the expressions is the same in each case. In circuit terms: the order of the combination of any two inputs is arbitrary (Fig. 8.14).


Fig. 8.14. All three circuits are equal according to the associative law; the same is true for Or gates

### 8.1.3.3 Distributive Laws

$$
\begin{align*}
(x \cdot y)+(x \cdot z) & =x \cdot(y+z)  \tag{8.8}\\
(x+y) \cdot(x+z) & =x+(y \cdot z) \tag{8.9}
\end{align*}
$$

Any variable that is common to two logic expressions can be taken out of the parentheses (Fig. 8.15). there is no equivalent rule in algebra to the one expressed in Eq. 8.9.


Fig. 8.15. Both circuits are identical according to the distributive law; swapping the And and OR gates demonstrates an application of the second distributive law

### 8.1.3.4 Inversion Laws (DeMorgan's Rules)

The inversion laws, also known as DeMorgan's rules, are given by Eqs. 8.10 and 8.11 and are shown in Figs. 8.16 and 8.17.

$$
\begin{align*}
\bar{x} \cdot \bar{y} & =\overline{x+y}  \tag{8.10}\\
\bar{x}+\bar{y} & =\overline{x \cdot y} \tag{8.11}
\end{align*}
$$



Fig. 8.16. The inversion can be shifted from the input to the output; the And gate is then changed to Nor



Fig. 8.17. The inversion can be shifted from the input to the output; the Or gate is then changed to NAND

## Evaluation Rules

The inversion of a variable is always carried out first. All other logic expressions are evaluated from left to right. Any deviation from that order must use suitable parentheses to separate the relevant expressions.

Note: When +-signs are used for the Or expression and '. ' for the And expression the same algebra is employed: And expressions take precedence over Or expressions. In this notation the '.' can be also left out.

Example:

$$
(x \cdot \bar{y})+(\bar{x} \cdot y)=x \cdot \bar{y}+\bar{x} \cdot y=x \bar{y}+\bar{x} y
$$

### 8.1.4 Overview: Logic Transformations

Example: The following logic term should be simplified using the rules in Table 8.1:

$$
\begin{aligned}
q & =\overline{(x \cdot \bar{y}) \cdot(x+y)} & & \text { DeMorgan's rule (14) } \\
& =\overline{x \cdot \bar{y}}+\overline{x+y} & & \text { DeMorgan's rules (14) and (15) } \\
& =(\bar{x}+y)+(\bar{x} \cdot \bar{y}) & & \text { Distributive law (27) } \\
& =\underbrace{[\bar{x}+(\bar{x} \cdot \bar{y})]}_{\bar{x}}+\underbrace{[y+(\bar{x} \cdot \bar{y})]}_{y+\bar{x}} & & \text { From rules (19) and (21) } \\
& =\bar{x}+y+\bar{x}=\bar{x}+y & &
\end{aligned}
$$

Table 8.1. Summary of logic transformations

| One variable |  |  |
| :---: | :---: | :---: |
| (1) $\overline{\bar{x}}=x$ |  |  |
| (2) $x \cdot x=x$ | (3) | $x+x=x$ |
| (4) $x \cdot \bar{x}=0$ | (5) | $x+\bar{x}=1$ |
| One variable and constants |  |  |
| (6) $x \cdot 0=0$ | (7) | $x+0=x$ |
| (8) $x \cdot 1=x$ | (9) | $x+1=1$ |
| Two variables |  |  |
| (10) $x \cdot y=y \cdot x$ | (11) | $x+y=y+x$ |
| (12) $\bar{x} \cdot \bar{y}=\overline{x+y}$ | (13) | $\bar{x}+\bar{y}=\bar{x} \cdot y$ |
| (14) $\overline{x \cdot y}=\bar{x}+\bar{y}$ | (15) | $\overline{x+y}=\bar{x} \cdot \bar{y}$ |
| (16) $\overline{\bar{x}} \cdot \bar{y}=x+y$ | (17) | $\overline{\bar{x}+\bar{y}}=x \cdot y$ |
| (18) $x \cdot(x+y)=x$ | (19) | $x+(x \cdot y)=x$ |
| (20) $x \cdot(\bar{x}+y)=x \cdot y$ | (21) | $x+(\bar{x} \cdot y)=x+y$ |
| (22) $(x \cdot y)+(\bar{x} \cdot y)=y$ | (23) | $(x+y) \cdot(\bar{x}+y)=y$ |
| (24) $(\bar{x} \cdot y)+(x \cdot y)=y$ | (25) | $(\bar{x}+y) \cdot(x+y)=y$ |
| Three variables |  |  |
| $\text { (26) } \begin{aligned} & x \cdot(y+z)= \\ & \\ & (x \cdot y)+(x \cdot z) \end{aligned}$ | (27) | $\begin{aligned} & x+(y \cdot z)= \\ & (x+y) \cdot(x+z) \end{aligned}$ |

### 8.1.5 Analysis of Logic Circuits



Fig. 8.18. Analysis of logic circuits by segmentation and introduction of variables
To calculate the truth table of a complex logic circuit, the circuit should be broken up at suitable points and the logic value at that point assigned a new variable name. Therefore in the example shown in Fig. 8.18 the temporary variable $a$ is introduced for $x \cdot \bar{y}$. The circle at the input of the AND gate indicates an inversion. The temporary variable $b$ is introduced for $x+y$. The output variable $q$ is the result of $a$ and $b$ passing through a NAND gate. The following truth table shows each of the variables:

| $x$ | $y$ | $a=x \cdot \bar{y}$ | $b=x+y$ | $q=\overline{a \cdot b}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |

The final column of the table shows that the entire circuit expression can be written as $q=\bar{x}+y$. For circuits with several output variables each variable is represented by its own truth table.

### 8.1.6 Sum of Products and Product of Sums

Solving a problem in digital logic design usually implies using a truth table, which represents the logical relationship between the input and output values. This yields a logical expression for each output variable, and thus the design of the logic circuit. The case where each input variable appears in either inverted or noninverted form in each partial term of the output expression is of particular interest.

### 8.1.6.1 Sum of Products

The sum of products (SOP, also canonical sum of products) may be obtained as follows:

- Only rows in the truth table in which the output variable is a logic 1 are considered as partial terms.
- In each of these rows the input variables are operated on by the And function. A variable in the term is represented by its inverted form if it is 0 in the relevant row, otherwise it is not inverted.
- All partial terms are operated on together by the Or function.

Example: In the example the output variables $Q$ and $R$ result from the input variables $A$, $B, C$.

| $A$ | $B$ | $C$ | $Q$ | $R$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |

The output variable $Q$ in the truth table has the value of 1 in three cases. This yields the following partial terms:

$$
\begin{array}{ll}
\bar{A} \cdot \bar{B} \cdot C & \text { from the second row, } \\
A \cdot \bar{B} \cdot \bar{C} & \text { from the fifth row, } \\
A \cdot B \cdot C & \text { from the last row. }
\end{array}
$$

The output variable $Q$ is then given by:

$$
Q=(\bar{A} \cdot \bar{B} \cdot C)+(A \cdot \bar{B} \cdot \bar{C})+(A \cdot B \cdot C)
$$

The sum of products yields a two-layer combinational circuit as shown in Fig. 8.19.


Fig. 8.19. Two-layer combinational circuit using the sum of products

### 8.1.6.2 Product of Sums

The product of sums (POS, also canonical product of sums) may be obtained as follows:

- Only the rows in the truth table in which the output variable is a logic 0 , are considered for the partial terms.
- In each of these rows the input variables are operated on together by the OR function. A variable in the partial term is inverted if it is 1 in the relevant row, otherwise it is not inverted.
- All partial terms are operated on together by the And function.

Example: The output variable $R$ in the previous truth table has the value 0 in two cases. This yields the following partial terms:

$$
\begin{array}{ll}
\bar{A}+B+C & \text { from the fifth row, } \\
\bar{A}+\bar{B}+\bar{C} & \text { from the last row. }
\end{array}
$$

The output variable $R$ is given by:

$$
R=(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+\bar{C})
$$

The product of sums yields a two-layer combinational circuit as shown in Fig. 8.20.

- Both POS and SOP solutions may still contain redundancies, i.e. they can be further simplified. The sum of products yields short expressions for variables that have the value 1 in a few cases. For the opposite case the product of sums yields the more compact solution.

Note: The sum of products is preferred in TTL design. The product of sums is preferred in the realisation of logic functions using programmable logic devices (PLDs).


Fig. 8.20. Two-layer combinational circuit using the product of sums

### 8.1.7 Systematic Reduction of a Logic Function

Both of the following techniques are methods to find the reduced logic functions of a given truth table. Aim: to have the lowest possible number of logic gates in the electronic realisation.

- Karnaugh map: Graphic technique limited to a few input variables;
- Quine-McCluskey technique: For any number of variables; more sophisticated technique, nevertheless easy to program for computer-aided engineering.


### 8.1.7.1 Karnaugh Map

The Karnaugh map is a representation of the truth table in rows and columns, in a manner that from one entry to the next only one input variable changes. The Karnaugh map for four input variables $A, B, C$ and $D$ is shown in Table 8.2. The configuration used in the sum of products is shown first, followed by the product of sums representation. The input variables are shown in each entry. The number in the upper right of each cell in the table is the decimal value of the combined input bits.
For each table entry the output level is entered that corresponds to that input variable combination. In moving from one table entry to the next in either the horizontal or vertical direction only one input variable changes. Table cells on the edge of the table are not hemmed in, however, as they are considered as also being neighbours of the corresponding extreme cell in the same row or column. Therefore, the far-right cell in the first row is adjacent to the far-left cell in the same row, and also to the far-right cell in the last row. The table can be considered as being overlaid on a toroidal surface. For three input variables the table size is reduced by two rows. It is not possible to visibly represent more than four input variables.
The following steps are taken to arrive at the reduced sum of products:

- Adjacent cells with 1 as an entry are grouped together. The group size can only be in powers of two, that is, $1,2,4$ or 8 cells. The largest possible groupings should be made.
- All cells must be in at least one group. Each cell can ,however, be in more than one group.

Table 8.2. Karnaugh map for four input variables

| SOP | $\bar{A} \cdot \bar{B}$ | $\bar{A} \bar{A} \cdot B$ | $A \cdot B$ | $A \cdot \bar{B}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{C} \cdot \bar{D}$ | 0000 | 0 | 0100 | ${ }^{4}$ | $1100^{12}$ | 1000 |


| POS | $A+B$ | $A+\bar{B}$ |  | $\bar{A}+\bar{B}$ |  | $\bar{A}+B$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C+D$ | 0000 | 0100 | 4 | 1100 | 12 | 1000 | 8 |
| $C+\bar{D}$ | 0001 | 0101 | 5 | 1101 | 13 | 1001 | 9 |
| $\bar{C}+\bar{D}$ | 0011 | 0111 | 7 | 1111 | 15 | 1011 | 11 |
| $\bar{C}+D$ | 0010 | 0110 | 6 | 1110 | 14 | 1010 | 10 |

- An And-ed term should be noted for each group that represents only the variables contained within the group. For groups with two cells one variable can be discarded, for groups with four cells two etc.
- The resultant terms are Or-ed.

Example: The reduced sum of product of the logic variable $Q$ is found using the following truth table (Table 8.3).

Table 8.3. Truth table

|  | $A$ | $B$ | $C$ | $D$ | $Q$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 0 | 0 | 1 |
| 5 | 0 | 1 | 0 | 1 | 1 |
| 6 | 0 | 1 | 1 | 0 | 0 |
| 7 | 0 | 1 | 1 | 1 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 | 0 |
| 10 | 1 | 0 | 1 | 0 | 1 |
| 11 | 1 | 0 | 1 | 1 | 1 |
| 12 | 1 | 1 | 0 | 0 | 0 |
| 13 | 1 | 1 | 0 | 1 | 0 |
| 14 | 1 | 1 | 1 | 0 | 0 |
| 15 | 1 | 1 | 1 | 1 | 1 |


| $Q$ | $\bar{A} \cdot \bar{B}$ | $\bar{A} \cdot B$ | $A \cdot B$ | $A \cdot \bar{B}$ |
| :---: | ---: | ---: | ---: | ---: |
| $\bar{C} \cdot \bar{D}$ | 1 | 0 | 1 | 4 |
| 12 |  | 8 |  |  |
| $\bar{C} \cdot D$ | 1 | 1 | 1 | 5 |
|  | 13 | 9 |  |  |
| $C \cdot D$ |  | 3 | 7 | 1 |
| 15 | 1 | 11 |  |  |
| $C \cdot \bar{D}$ | 1 | 2 |  | 6 |
| 14 | 14 | 14 |  |  |

This results in the Karnaugh map shown above. For clarity only the cells containing a 1 have been represented in the map. In the upper left corner a group of four 1 s can be formed. Two cells can be grouped in the third row. It is pointless
to form a group with 1 in the lower right corner with the 1 directly over it. It is far better to group it with the 1 in the lower left corner. This yields the following terms:

Group ( $0,4,1,5$ ): $\bar{A} \cdot \bar{C}$
Group $(15,11): \quad A \cdot C \cdot D$
Group $(2,10): \quad \bar{B} \cdot C \cdot \bar{D}$
Complete expression:

$$
Q=(\bar{A} \cdot \bar{C})+(A \cdot C \cdot D)+(\bar{B} \cdot C \cdot \bar{D})
$$

Instead of the original eight terms each with four variables, only one term with two and two terms with three variables remain after the reduction.

The following steps are taken to arrive at the reduced products of sums:

- Adjacent cells with 0 as an entry are grouped together. The group size can only be in powers of two, that is, $1,2,4$ or 8 cells. The largest possible groupings should be made.
- All cells must be in at least one group. Each cell can, however, be in more than one group.
- An Or-ed term should be noted for each group, that represents only the variables contained within the group. For groups with two cells one variable can be discarded, and for groups with four cells two, etc.
- The resultant terms are And-ed.

Example: The reduced product of sums of the logic variable $R$ is found using the following truth table (Table 8.4).

Table 8.4. Truth table

|  | $A$ | $B$ | $C$ | $D$ | $R$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 | 1 |
| 5 | 0 | 1 | 0 | 1 | 0 |
| 6 | 0 | 1 | 1 | 0 | 1 |
| 7 | 0 | 1 | 1 | 1 | 1 |
| 8 | 1 | 0 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 | 1 |
| 10 | 1 | 0 | 1 | 0 | 0 |
| 11 | 1 | 0 | 1 | 1 | 1 |
| 12 | 1 | 1 | 0 | 0 | 1 |
| 13 | 1 | 1 | 0 | 1 | 0 |
| 14 | 1 | 1 | 1 | 0 | 1 |
| 15 | 1 | 1 | 1 | 1 | 0 |


| $R$ | $A+B$ | $A+\bar{B}$ | $\bar{A}+\bar{B}$ | $\bar{A}+B$ |
| :---: | :---: | :---: | :---: | :---: |
| $C+D$ | 0 | 0 | 4 | 12 |
| $C+\bar{D}$ | 1 | $00^{5}$ | $0^{13}$ | $0^{8}$ |
| $\bar{C}+\bar{D}$ | 3 | 7 | $0{ }^{15}$ | 11 |
| $\bar{C}+D$ | $00^{2}$ | 6 | 14 | $0^{10}$ |

These results are shown in the Karnaugh map alongside. For clarity only the cells containing a 0 have been represented in the map. The four cells in the corners can form a group together by crossing over the edges. Two cells in the middle form a horizontal group. A further vertical group can be formed in the middle right. This yields the following terms:

Group $(0,8,2,10): \quad B+D$
Group (5, 13): $\quad \bar{B}+C+\bar{D}$
Group (13, 15): $\quad \bar{A}+\bar{B}+C$
The overall expression is then:

$$
R=(B+D) \cdot(\bar{B}+C+\bar{D}) \cdot(\bar{A}+\bar{B}+C)
$$

Instead of the original seven terms each with four variables, only one term with two and two terms with three variables remain after the reduction.

## Consideration of Undefined States

Occasionally, the state of the output variables for a certain combination of input variables is not defined or is not relevant. Such states are denoted by an $\times$. The states are said to be undefined or don't care states. In the Karnaugh map undefined states can be organised into groups at will. The grouping is chosen for the best simplification of the output expression.

Example: The reduced form of the logic variable $S$ is found using the following truth table (Table 8.5).

Table 8.5. Truth table

|  | $A$ | $B$ | $C$ | $D$ | $S$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 | $\times$ |
| 4 | 0 | 1 | 0 | 0 | $\times$ |
| 5 | 0 | 1 | 0 | 1 | $\times$ |
| 6 | 0 | 1 | 1 | 0 | $\times$ |
| 7 | 0 | 1 | 1 | 1 | $\times$ |
| 8 | 1 | 0 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 | 0 |
| 10 | 1 | 0 | 1 | 0 | 0 |
| 11 | 1 | 0 | 1 | 1 | $\times$ |
| 12 | 1 | 1 | 0 | 0 | 1 |
| 13 | 1 | 1 | 0 | 1 | 0 |
| 14 | 1 | 1 | 1 | 0 | 1 |
| 15 | 1 | 1 | 1 | 1 | $\times$ |


| $S$ | $\bar{A} \cdot \bar{B}$ | $\bar{A} \cdot B$ | $A \cdot B$ | $A \cdot \bar{B}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{C} \cdot \bar{D}$ | 1 | 0 | $\times$ | 4 | 1 | 12 |  |

To calculate the sum of products the undefined states in the first and second rows should be defined as 1 . This yields a group of four in the upper left corner of the Karnaugh map. Equally, the two 1 s in the third column can be grouped together by traversing the table boundary. This yields the following terms:

$$
S_{1}=(\bar{A} \cdot \bar{C})+(A \cdot B \cdot \bar{D})
$$

For the product of sums the 0 s in the last column can be grouped together with the undefined states in the third row to form a group of four.
The 0 in lower left corner can be made into another group of four by combining with the three undefined states. The 0 in the third column has not yet been
grouped. The undefined states to the left and below allow it to form another group of four. This yields the following terms:

$$
S_{2}=(\bar{A}+B) \cdot(A+D) \cdot(\bar{B}+C)
$$

Both functions $S_{1}$ and $S_{2}$ correctly represent the truth table, although they lead to different logic expressions.

### 8.1.7.2 The Quine-McCluskey Technique

The Quine-McCluskey minimisation technique proceeds from the sum of products representation of the function to be minimised. For the sum of products, the product terms in which each variable appears are known as minterms.

Example: The first term of the logic variable $Q=A \bar{B} C \bar{D}+A B D$ is a minterm, but the second is not, as it does not contain the variable $C$.

Note: Sum terms in which each variable appears once are known as maxterms.
A product term $P$ is called implicant of $Q$ if for $P=1, \quad Q=1$ holds.
Example: The minterm $A \bar{B} C \bar{D}$ is an implicant of $Q$, since if $A \bar{B} C \bar{D}=1$, then also $Q=1$. The same is true for the product term $A B D$.

A prime implicant is a term that is no longer an implicant if one of the variables is omitted.
Example: For $Q=A \bar{B} C \bar{D}+A B C+\bar{A} \bar{B} C \bar{D}$ the second term is a prime implicant. The first and third terms are not prime implicants, as for $\bar{B} C \bar{D}=1$ it follows that $Q=1$.

The Quine-McCluskey technique works in two steps:

1. Define the prime implicants;
2. Define the minimum overlap.

## Defining the Prime Implicants

For the term

$$
Q=A B \bar{C} D+A B C \bar{D}+\bar{A} B C \bar{D}+A B \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+A \bar{B} \bar{C} \bar{D}
$$

the prime implicants should be defined. To that end all of the product terms are entered into a list. For each variable the value entered is the one required to make it equal to 1 .
$\left.\begin{array}{|lll|l|l|}\hline & A B C D & & A B C D & A B C D \\ \hline \text { (1) } & 1 & 1 & 0 & l^{*} \\ (2) & (14) & 1 & 1 & 0\end{array}\right)$

Terms that differ only in the value of one variable are said to be adjacent. This is true, for example for the terms in the first and fourth row (1101 and 1100). The related product terms are $A B \bar{C} D$ and $A B \bar{C} \bar{D}$. Such terms can be shortened by the variable that appears as its own complement in the expressions.

$$
A B \bar{C} D+A B \bar{C} \bar{D}=A B \bar{C}(D+\bar{D})=A B \bar{C}
$$

Such adjacent terms are searched for in each table entry. These are marked (in this example by a star), and the shortened form is entered into a new table (the second column). The variable to be removed is marked by a dash. The numbers in parentheses refer to rows in the previous column that gave rise to the shortening.
In the new table the search for similar terms is resumed. The process ends when no further terms can be shortened. Identical terms, like the last two in the third column, are only taken into consideration once.

All terms that have no marking in a table could not be shortened, and are therefore prime entries. In the example shown, these are the terms (14), (46) and (2435). The prime entries for the function $Q$ are therefore

$$
A B \bar{C}, \quad A \bar{C} \bar{D} \text { and } B \bar{D}
$$

Some of the prime entries possibly still contain redundancies. These can be minimised as follows.

## Defining the Minimum Overlap

All of the product terms of the original expression that was to be minimised are entered into a table. Then those prime implicants are marked for which the product terms in the row are implicants. (Or all possible prime implicants that are fully contained within a product term mean that that term must be marked.)

|  | $A B \bar{C}$ | $A \bar{C} \bar{D}$ | $B \bar{D}$ |
| :---: | :---: | :---: | :---: |
| $A B \bar{C} D$ | $\times$ |  |  |
| $\bar{A} B C \bar{D}$ |  |  | $\times$ |
| $A B C \bar{D}$ |  |  | $\times$ |
| $A B \bar{C} \bar{D}$ | $\times$ | $\times$ | $\times$ |
| $\bar{A} B \bar{C} \bar{D}$ |  |  | $\times$ |
| $A \bar{B} \bar{C} \bar{D}$ |  | $\times$ |  |

Starting with the longest term, the prime implicants are discard as long as at least one X remains in each row.

In the example, no prime implicant contains redundancy, so the minimum expression is given by

$$
Q=A B \bar{C}+A \bar{C} \bar{D}+B \bar{D}
$$

Computer programmes can easily carry out the searching, ordering and marking of the tables and can also handle larger numbers of variables.

### 8.1.8 Synthesis of Combinational Circuits

A combinational circuit is a logic circuit whose output variable depends only on the values of the applied inputs. Combinational circuits have no internal memory. Opposite: sequential circuit (Sect. 8.3).
The product of sums and sum of products expressions make it possible to build combinational circuits using And, Or and inverter gates. And and Or gates as well as inverters can also be represented by NAND or Nor gates (Fig. 8.21). Each combinational circuit can be realised using various combinations of Nand or Nor gates.


Fig. 8.21. Representation of the basic logic functions using only NAND or Nor gates

### 8.1.8.1 Implementation Using only Nand Gates



Fig. 8.22. Implementation of a combinational circuit using only NAND gates
Starting with the sum of products expression, both AND as well as Or gates can be replaced by Nand gates (Fig. 8.22). The equivalence of both circuits can be seen from DeMorgan's rule:

$$
(A \cdot B)+(C \cdot D)=\overline{\overline{A \cdot B} \cdot \overline{C \cdot D}}
$$

### 8.1.8.2 Implementation Using only Nor Gates

Starting with the products of sums, both And as well as Or gates can be replaced by Nors (Fig. 8.23). The equivalence of both circuits can be seen from DeMorgan's rule:

$$
(A+B) \cdot(C+D)=\overline{\overline{A+B}+\overline{C+D}}
$$

Note: $\quad$ There are two alternatives to this approach: using multiplexers (Sect. 8.4.2) or using programmable logic devices (Sect. 8.6.5).


Fig. 8.23. Implementation of a combinational circuit using only Nor gates

### 8.2 Electronic Realisation of Logic Circuits

### 8.2.1 Electrical Specification

### 8.2.1.1 Voltage Levels

Logic states are represented by voltage levels in digital circuits. There is a defined voltage range for each logic level.

$$
\begin{array}{ll}
\text { Logic high voltage level range (H): } & \text { Range closer to }+\infty \\
\text { Logic low voltage level range (L): } & \text { Range closer to }-\infty
\end{array}
$$

For any logic family the voltage level ranges are standardised. The actual output voltage of a logic gate depends on the loading, on the temperature and on the supply voltage. Moreover, the output voltage level may vary from device to device, for the same operating conditions (sample variations). Typical output voltage levels specify the midvalues of the defined range of voltages. Voltage values in between the ranges for H and L do occur for a short time in logic gates, but they are undefined states.

The mapping of voltage level ranges to logic values is an arbitrary process.

$$
\begin{array}{lll}
\text { Positive logic: } & \mathrm{H} \widehat{=} 1, & \mathrm{~L} \widehat{=} 0 \\
\text { Negative logic: } & \mathrm{L} \widehat{=} 1, & \mathrm{H} \widehat{=} 0
\end{array}
$$

Unless otherwise specified, positive logic is presumed to apply. It is by far the most commonly employed.

### 8.2.1.2 Transfer Characteristic

The transfer characteristic shows the relationship between the output and input voltage of a logic gate. Figure 8.24 shows the transfer characteristic of an inverter. The ideal shape is in the form of a step. The actual shape of the transfer characteristic depends on the temperature.
Any circuit must be suitably designed, in order to connect the outputs of logic gates directly to the inputs of the following logic gates. This is guaranteed within any given logic family.
The threshold voltage is the input voltage for which both input and output voltages are the same. It is at the intersection of the transfer characteristic with the straight line of slope 1 emanating from the origin (note the different scales on the axes).


Fig. 8.24. Transfer characteristic of an inverter

### 8.2.1.3 Loading

For any logic family the loading data can be used to estimate the number of inputs in subsequent logic gates a given logic-circuit output can drive.

Fan-in: is a measure of the input current expressed in multiples of the standard input current of that logic family.
Fan-out: number of standard inputs a given output is able to drive.

- The sum of the fan-ins of all gate inputs driven from the the same output must not exceed its stated fan-out.

Note: Fan-outs may be different for logic high and low voltage levels. The smaller of the two values must be observed for the logic design.

### 8.2.1. $\quad$ Noise Margin

For serially connected logic gates it must be ensured that the output signal of the first gate is recognised correctly by the second gate. Manufacturers give the so-called guaranteed static noise margin for their gates, which hold even for the worst operating conditions (temperature, load, supply voltage).

- The static noise margin of the logic high state is the difference between the lowest output voltage $V_{\text {OHmin }}$ and the lowest allowable input voltage $V_{\mathrm{IH} \min }$ of the following gates that will still be accepted as a logic high voltage level.
- The static noise margin of the logic low state is the difference between the highest output voltage $V_{\text {oLmax }}$ and the highest allowable input voltage $V_{\text {ILmax }}$ of the following gates that will still be accepted as a logic low voltage level.

The noise margin gives the maximum value a noise voltage may have without causing an error to occur at the gates (see Fig. 8.25). In the example these are 0.7 V for the H state and 0.4 V for the L state. This holds for noise signals that last longer than the gates' propagation delay (tens of nanoseconds).


Fig. 8.25. Definition of the noise margin (sample data are examples from TTL-LS Gates)
The behaviour for very short spikes is described by the dynamic noise margin. This depends on the spike duration. For very short spikes a higher voltage is allowed before the device will produce an error.

The typical noise margin is the difference between typical output voltage and the threshold voltage $V_{\mathrm{th}}$.

### 8.2.1.5 Propagation Delay Time

The propagation delay time is the time difference between the edges of the input signal and the resulting change in the output signal. Edges are defined by input or output voltage crossing the threshold voltage, respectively (Fig. 8.26).

$V_{\mathrm{th}}$ : threshold voltage $t_{\text {PHL }}$ : propagation delay time for negative edges $t_{\text {PLH }}$ : propagation delay time for positive edges

Fig. 8.26. Definition of the propagation delay time

- For a state change from H to L the propagation delay time $t_{\mathrm{PHL}}$ applies.
- For a state change from L to H the propagation delay time $t_{\mathrm{PLH}}$ applies.


### 8.2.1. $\quad$ Rise Times

Transition times are defined as follows:
Rise time: $t_{\mathrm{LH}}$ for a (positive) logic low-high transition
Fall time: $t_{\mathrm{HL}}$ for a (negative) logic high-low transition

- The time between $10 \%$ and $90 \%$ of the steady-state value is measured.

Note: In some data sheets other reference points are used.
Note: Rise and fall times for a given logic element can differ significantly. For normal gates they lie in the range of a few nanoseconds. This is why the oscilloscope rise time cannot be neglected when measuring their rise time. The measured time is given by

$$
t_{\mathrm{meas}}=\sqrt{t_{\mathrm{LH}}^{2}+t_{\mathrm{oscil}}^{2}}
$$

and must be corrected accordingly.

- Rise and fall times depend on the load. In particular, the load capacitance is important, because it must be discharged by the output current.


### 8.2.1.7 Power Loss

The power loss in a digital logic circuit is consists of a static component, caused by the quiescent currents, and a dynamic component, which depends on the discharge currents of the internal and external capacitances.
The power loss depends therefore on the load and the frequency. It also depends fundamentally on the fabrication process. See also the sections from 8.2.3.

### 8.2.1.8 Minimum Slew Rate

Logic circuit inputs require input signals with steep slopes, otherwise the output signals will be unstable. The minimum required slew rate is usually given in the data sheets in $\mathrm{V} / \propto \mathrm{s}$.

Output signals from digital logic circuits have the minimum slew rate for the permissible load. External signals with slow transits can be a problem. Application of Schmitt triggers solve this problem (see Sect. 8.2.6.4).

### 8.2.1.9 Integration

Logic gates are nowadays almost exclusively realised by integrated circuits. The integration results in a space savings as well as a reduction of propagation times, power requirements and cost. However, integrated logic circuits for normal use are only produced in standardised function elements. For the design of logic circuits the availability of the desired logic combination must always be checked.
Integrated logic circuits are realised in two completely different processes. This results in two logic families, the TTL and the CMOS families. The former is based on the application of bipolar technology,;the latter on the integrated field effect transistor technology.

### 8.2 2 Overview: Notation in Data Sheets

$f_{\max } \quad$ (maximum clock frequency): Maximum clock frequency at the input of a bistable circuit for which the operation of the device according to the data sheet is still guaranteed.

Note: If such circuits are employed with feedback, then the frequency can be lower. Observe comments in data sheets.
$I_{\mathrm{CC}} \quad$ (supply current): The average current drawn from the voltage supply by the circuit.
$I_{\text {CCPD }}$ (power-down supply current): The current drawn by the circuit when in power-down mode (caused by a power-down signal).
$I_{\mathrm{IH}} \quad$ (high-level input current): The current flowing into the input of a circuit when a logic high voltage level has been applied.
$I_{\text {IL }}$ (low-level input current): The current flowing into the input of a circuit when a logic low voltage level has been applied.
$I_{\mathrm{OH}} \quad$ (high-level output current): The current flowing into the output of a circuit for an output logic high voltage level.
Note: This value is usually negative, as the current flows from the output.
IOL (low-level output current): The current flowing into the output of a circuit for an output logic low voltage level.
$I_{\mathrm{OS}} \quad$ (short-circuit output current): The current flowing into the output of a circuit when the output is connected with ground. This is usually given for the output voltage level H.

Note: This value is negative.
$I_{\mathrm{OZH}} \quad$ (high-impedance state output current with high-level voltage applied): The maximum current that flows into the three-state output of a circuit, where the output is in a high-impedance state, and an external logic high voltage level is applied at the output.
$I_{\mathrm{OzL}}$ (high-impedance state output current with low-level voltage applied): The maximum current that flows into the three-state output of a circuit, where the output is in a high-impedance state, and an external logic low voltage level is applied at the output.

Note: This value is negative.
$V_{\mathrm{IH}} \quad$ (high-level input voltage): The input voltage that corresponds to the voltage level H. Mostly given as the minimum allowable applied voltage that the circuit element will accept as a logic high voltage level.
$V_{\text {IL }} \quad$ (low-level input voltage): The input voltage that corresponds to the logic low voltage level. Mostly given as the maximum allowable applied voltage, that the circuit element will accept as a logic low voltage level.
$V_{\mathrm{OH}} \quad$ (high-level output voltage): The output voltage that appears when the logic device is excited so that a logic high voltage level appears at the output. Mostly given as the minimum guaranteed value.
Note: $\quad \mathrm{V}_{\mathrm{OH}}$ depends strongly on load and temperature.
$V_{\mathrm{OL}} \quad$ (low-level output voltage): The output voltage that appears when the logic device is excited so that a logic low voltage level appears at the output. Mostly given as a maximum guaranteed value.
Note: $\quad V_{\text {OL }}$ depends strongly on load and temperature.
$t_{\text {dis }} \quad$ (disable time): Valid for three-state outputs. This is the propagation delay measured between reference points of the switch-off signal and the output signal, where the output switches from a defined voltage level to a high-impedance state.

Note: $\quad$ Sometimes there are differences between $t_{\mathrm{PLZ}}$ and $t_{\mathrm{PHZ}}$ depending on the active output voltage level.
$t_{\mathrm{h}}$ (hold time): Minimum time necessary for a signal to be applied, to achieve the desired reaction.
$t_{\mathrm{w}} \quad$ (pulse width): Time interval between the defined reference points on the first and the second edges of an impulse.
$t_{\mathrm{pd}}$ (propagation delay time): Propagation delay time of a logic element. Time between the reference points of an input signal and of the resulting output signals.
Note: Sometimes there are differences between $\mathrm{t}_{\mathrm{pLH}}$ and $t_{\mathrm{pHL}}$ depending on the edges chosen.
$t_{\mathrm{r}}$ (rise time): Time interval between the signal passing through $10 \%$ and $90 \%$ of its steady state for a rising edge.
$t_{\mathrm{f}} \quad$ (fall time): Time interval between the signal passing through $90 \%$ and $10 \%$ of its steady state for a falling edge.
$t_{\mathrm{pxz}} \quad$ see $t_{\text {dis }}$ for both logic high and low voltage level.

Table 8.6. Signal representation in data sheets

| Signal | Input | Output |
| :--- | :--- | :--- |
|  | Must be constant | Is constant |
|  | May change from high to <br> low | Changes from high to <br> low |
| high change from low to |  |  | | Changes from low to |
| :--- |
| high |

### 8.2.3 TTL Family

The transistor-transistor logic (TTL) devices are produced in different series. The following holds for each of them:

- +5 V supply voltage;
- arbitrary connection of components because of compatible input and output signals;
- pin compatibility for devices of the same name even if they are different TTL series.


### 8.2.3.1 TTL Devices

The essential qualities of the different devices are given below and in Table 8.7 (in parentheses the notation is given for a four-NAND gate device):


Fig. 8.27. Switching times and power dissipation of different TTL devices
Table 8.7. Electrical specifications for TTL devices

| $\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \\ & \vartheta=25^{\circ} \mathrm{C} \end{aligned}$ |  | TTL devices |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 74LS00 | 74ALS00 | 74F00 |
| Input voltage | $V_{\text {ILmax }}$ | 0.8 V | 0.8 V | 0.8 V |
|  | $V_{\text {IHmin }}$ | 2.0 V | 2.0 V | 2.0 V |
| Output voltage | $V_{\text {OLmax }}$ | 0.5 V | 0.5 V | 0.5 V |
|  | $V_{\text {OHmin }}$ | 2.7 V | 2.7 V | 2.7 V |
| Threshold voltage | $V_{\text {th }}$ | 1.3 V | 1.5 V | 1.5 V |
| Fan-out |  | 20 | 20 | 33 |
| Output current | $I_{\text {OLsink }}$ | 8 mA | 8 mA | 20 mA |
| Propagation delay time typ./max. | $t_{\text {PLH }}$ | $9 / 15 \mathrm{~ns}$ | 4 ns | $4 / 5 \mathrm{~ns}$ |
|  | $t_{\text {PHL }}$ | 10/15 ns | 5 ns | $3 / 4 \mathrm{~ns}$ |
| Rise time | $t_{\text {LH }}$ | 10 ns | 5 ns | 3 ns |
| Fall time | $t_{\text {HL }}$ | 6 ns | 5 ns | 3 ns |
| (for a 15 pF load) |  |  |  |  |
| Minimum slew rate (of the input voltage ) |  | 1V/os | 5V/as |  |
| Power dissipation <br> (per gate) |  |  |  |  |
|  |  | 2 mW | 1.2 mW | 4 mW |

Standard TTL series (7400). Historically the first device; very low-priced; was the industry standard for decades.
High-speed TTL series (74H00). Slightly faster than the standard series because lower resistance in the layout; sales are no longer significant.
Low-power TTL series (74L00). Much slower than the standard series; lower power dissipation; sales are no longer significant.
Schottky TTL series (74S00). Insertion of Schottky transistors and diodes gave rise to much shorter switching times; small number of different types.

Low-power Schottky TTL series (74LS00). Insertion of Schottky transistors; lower power dissipation; device with up to now the greatest number of different types; industry standard.
Advanced low-power Schottky TTL series (74ALS00). Shorter switching times than the LS series; lower power dissipation; great number of different types; very complex circuits for microprocessor applications can occasionally be found exclusively as ALS types.
FAST series (74F00). Fast devices; only a few manufacturers.
Advanced Schottky TTL series (74AS00). Extremely short switching times between 1 and 2 ns , however, moderate power loss; can be used to replace high-speed ECL circuits.

High-speed CMOS series ( $74 \mathrm{HC00}$ ). Not a TTL device, but this CMOS series is pin and function compatible with the TTL series; for qualities and comparison see Sect. 8.2.4.

### 8.2.3.2 Basic TTL Gate Circuit



Fig. 8.28. Basic circuit of a TTL-NAND gate
The basic structure of one (of four) NAND gates in the 7400 device is shown in Fig. 8.28. If one of the emitters ( $I_{1}$ or $I_{2}$ ) is connected to ground, then the transistor $\mathrm{Q}_{1}$ is turned on. This turns $\mathrm{Q}_{2}$ off, and $\mathrm{Q}_{4}$ is then also turned off. The base of $\mathrm{Q}_{3}$ is connected via $R_{2}$ to the supply voltage. $\mathrm{Q}_{3}$ is turned on. The output $Q$ is connected to the logic H potential via $R_{3}$, $\mathrm{Q}_{3}, \mathrm{D}_{1} . R_{3}(150-500 \Omega)$ limits the current.

For a positive input voltage on $I_{1}$ and $I_{2}$ the current no longer flows through $R_{1}$ and out through the emitter, but rather flows over the $\mathrm{Q}_{2}$ base-emitter junction. $\mathrm{Q}_{2}$ turns on and then turns $\mathrm{Q}_{4}$ on. $\mathrm{Q}_{4}$ bypasses the resistance $R_{4}$, which provides feedback for $\mathrm{Q}_{2}$. This rapidly forces the amplification of $\mathrm{Q}_{2}$ upwards. $\mathrm{Q}_{4}$ is completely on and can sink current from the output $Q$.

The characteristic output stage with the three-semiconductor structure of $\mathrm{Q}_{3}, \mathrm{D}_{1}, \mathrm{Q}_{4}$ on top of each other like the faces of a totem pole leads to the notation totem pole.

The basic structure of the TTL circuit has the following characteristics:

- For a logic low voltage level at the input, the driver circuit must sink current.
- For a logic high voltage level at the input, the driver circuit must source a small current.
- The totem pole has a fairly high impedance for the logic high voltage level. The output functions as a current source. The output current is limited by the resistor. The logic high potential drops below the allowable limit if the output current is too large.
- The output stage has a low impedance for the logic low potential when it operates as a current sink. The dynamic resistance of the lower output transistor and thermal loading are the limits on this operation.
- The totem-pole configuration means that TTL outputs cannot be connected in parallel. (For other output stages see Sect. 8.2.6.)

Note: Some manufacturers permit the parallel connection of the outputs of two gates if the same logic signal is applied within the same device.


Fig. 8.29. Input and output currents for TTL gates; the values given apply to LS gates
A fan-out of 20 for logic high and logic low voltage levels can be calculated from the values given.

### 8.2.4 CMOS Family

Complementary metal-oxide semiconductor (CMOS) devices are manufactured in different series. The following holds for each of them:

- $+5 \mathrm{~V}-15 \mathrm{~V}$ supply voltage (also $3 \mathrm{~V}-18 \mathrm{~V}$ );
- extremely low input currents;
- very small power dissipation in static operation and for low frequencies;
- output currents in the logic high and low states are equally large.

The essential qualities of the different series are (the notation for a four-NAND gate device is given in parentheses):

CMOS series A (CD4011A). Historically the first device; has been superseded since then.
CMOS series B (CD4011B). Industry-standard; largest spectrum of different types; standardised, manufacturer-independent static specification data.
LOCMOS series (HEF4011B). Higher switching times than the CMOS series B; transfer characteristic step-like.
High-speed CMOS series ( 74 HC 00 ). Pin and function compatible to the equivalently numbered TTL devices; tenfold faster switching times and higher output currents than the CMOS series B; for frequencies below 20 MHz lower power dissipation than the LS TTL series; differs from the TTL supply voltage $2 \mathrm{~V}-6 \mathrm{~V}$.
High-speed CMOS series ( 74 HCT 00 ). Offshoot of the HC series with a more limited input voltage range $4.5 \mathrm{~V}-5.5 \mathrm{~V}$; the input side is TTL voltage level compatible.
Advanced high-speed CMOS series (74AC00 or 74ACT00). Even faster than the HC series; very high output currents of 24 mA in the logic high and low states; input side is TTL voltage level compatible.

The electrical specification data for the CMOS series, which are dependent on the supply voltage, are given in Table 8.8.

Table 8.8. Electrical specification for CMOS devices

| $\vartheta=25^{\circ} \mathrm{C}$ |  | CMOS device |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | HEF4011B |  |  | 74HC00 | 74AC00 |
| Supply voltage | $V_{\text {CC }}$ | 5 V | 10 V | 15 V | 4.5 V |  |
| Input voltage | $V_{\text {ILmax }}$ | 1.5 V | 3 V | 4 V | 0.9 V | 1.35 V |
|  | $V_{\text {IHmin }}$ | 3.5 V | 7 V | 11 V | 3.2 V | 2.0 V |
| Output voltage | $V_{\text {OLmax }}$ | $\begin{gathered} 50 \mathrm{mV} \\ V_{\mathrm{CC}}-50 \mathrm{mV} \end{gathered}$ |  |  | $\begin{gathered} 100 \mathrm{mV} \\ 4.9 \mathrm{~V} \end{gathered}$ |  |
| (for $I_{\mathrm{O}} \leqq 1 \propto \mathrm{~A}$ ) | $V_{\text {OHmin }}$ |  |  |  |  |  |
| Output current | $I_{\text {OLmax }}$ | 0.4 mA | 1.1 mA | 3.0 mA | 20 mA | 24 mA |
| Propagation delay time | $t_{\text {PLH }}$ | 35 ns | 16 ns | 13 ns | 8 ns | 5 ns |
|  | $t_{\text {PHL }}$ | 16 ns | 13 ns | 12 ns | 8 ns | 4 ns |
| Rise/fall time (with a 15 pF load) | $t_{\text {LH }}$ | 25 ns | 15 ns | 11 ns | 6 ns | 1.5 ns |
| Input current |  |  | $\leqq 0.3 \propto A$ |  | $0.3 \propto A$ | $0.1 \propto \mathrm{~A}$ |

Propagation delay times and the output rise/fall times depend strongly on the load capacitance. For a load of 50 pF the times for the HEF series approximately double.

### 8.2.5 Comparison of TTL and CMOS

Because of the low input currents in the 74HC CMOS series, the number of gates that can be connected is not defined by the resistive load. The maximum allowable load capacitance is much more of a limit (typically, 5 pF per gate input ).

Table 8.9. Fan-outs of TTL and CMOS devices

|  | TTL devices |  |  |  |  |  | CMOS devices |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ Input | 74xx | 74LSxx | 74Sxx | 74ALSxx | 74Fxx | 74HCxx | 74ACxx |
| 74xx | 10 | 5 | 12 | 5 | 12 | 2 | 15 |
| 74LSxx | 20 | 20 | 50 | 20 | 50 | 10 | 60 |
| 74Sxx | 8 | 4 | 10 | 4 | 10 | 2 | 12 |
| 74ALSxx | 20 | 20 | 50 | 20 | 50 | 20 | 120 |
| 74Fxx | 20 | 13 | 33 | 13 | 33 | 6 | 40 |
| 74HCxx | $>50$ |  |  |  |  |  |  |
| 74ACxx | $>50$ |  |  |  |  |  |  |

### 8.2.5.1 Other Logic Families

Other logic families apart from the successful CMOS and TTL logic families are also in use:

ECL (emitter-coupled logic): Achieves switching times below 1 ns , as the transistors are not operated as saturated switches; technical data: high-impedance differential-inputs, low-impedance outputs; high power dissipation of about 50 mW per gate; ECL circuits always offer $Q$ and $\bar{Q}$ outputs; currents are not switched off, but are rerouted, so there

Table 8.10. Comparison of TTL and CMOS data

|  | LS-TTL | CMOS |
| :---: | :---: | :---: |
| Switching speed | 10 ns | $\begin{aligned} & 40 \mathrm{~ns}(5 \mathrm{~V})- \\ & 15 \mathrm{~ns}(15 \mathrm{~V}) \end{aligned}$ |
| Power dissipation | Up to about 3 MHz constant, then rising | Linearly with frequency; above 5 MHz (at 5 V ) higher than LS-TTL |
| Fan-out Output impedance | $\begin{aligned} & 20 \\ & 25 \Omega \text { (for low) } \end{aligned}$ | $\begin{aligned} & \hline>50 \\ & 250 \Omega \text { (high and low) } \end{aligned}$ |
|  |  |  |

Fig. 8.30. Power dissipation for TTL and CMOS devices
are lower noise voltages on the supply lines; operating voltage is -5.2 V , and very fast circuits require an additional supply voltage of -2.0 V .

Application: Computers, high-speed signal processing.
LSL (low speed logic, with high noise immunity): Logic circuits with high immunity can be realised by raising the voltage and increasing the switching times; the switching times can be further increased by using external capacitors; internal Zener diodes at the input lift the threshold voltage up to about 6 V ; for a 12 V supply voltage the noise margin amounts to 5 V ; the switching times are 150 ns and more.

Application: Industrial control in noisy environments.
RTL (resistor-transistor logic): Predecessor of the TTL circuits, which was replaced by DTL; a simplification was achieved using resistors; great limitations due to the influence of adjacent gates.
DTL (diode-transistor logic): Predecessor of TTL; fan-in using diodes.
GaAs : This is not a new logic family, but rather a new kind of transistor manufacturing technology using gallium-arsenide; very short switching times in the range of 10 ps ( $=0.01 \mathrm{~ns}!$ ); optoelectronic components are prepared using the same technology; the development of a combined opto-electronic logic is anticipated (circuits with light or current).

### 8.2.6 Special Circuit Variations

### 8.2.6.1 Outputs with Open Collector



Fig. 8.31. Open collector-output and circuit symbol
Devices with open collector output connect the collector of the output transistor to the output, without connecting it to the supply voltage via a transistor as in the totem-pole output (Fig. 8.31). For CMOS circuits this implies an open drain output.

- An open-collector output must always be connected via a resistor to the positive supply voltage.


## Advantages:

- Open-collector outputs can be connected in parallel without causing problems (see also Sect. 8.2.6.2).
- The load can be connected to a voltage that is higher than the supply voltage of the logic device. The only limit is the maximum allowable breakdown voltage of the output transistor.


### 8.2.6.2 Wired And/Or

A 'wired And' circuit is made by connecting together two outputs with open collectors (Fig. 8.32). It is sufficient that one of the output transistors conducts for a logic low voltage level to be present on the common output. The truth tables show the logic levels at the collectors of the transistors that would be present, if each transistor were present alone:

| $Y$ | $X$ | $Q$ |
| :---: | :---: | :---: |
| Low | Low | Low |
| Low | High | Low |
| High | Low | Low |
| High | High | High |


| $Y$ | $X$ | $Q$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |


| $Y$ | $X$ | $Q$ |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |

For positive logic the circuit behaves like a logic And gate (middle table), and for negative logic like an Or gate (right table). Hence the notation wired And or Or.
In this manner several outputs can be connected together creating a bus.
To make sure valid logic levels appear during operation, the common collector (pull-up) resistor $R_{\mathrm{C}}$ must be suitably selected (Fig. 8.33).


Fig. 8.32. Principle of a wired-And-circuit and related circuit symbol
For a logic high voltage level the currents $I_{\mathrm{QH}}$ the of the output transistors and the input currents $I_{\mathrm{IH}}$ flow through the resistor. It must be sufficiently small so that the output voltage level does not drop below the allowable logic high voltage input level of subsequent circuits.
For a logic low voltage level in the worst case only one transistor is switched on. The resistance must be at least large enough so that the maximum collector current $I_{\text {OLmax }}$ is not exceeded. In addition, the input currents $I_{\mathrm{IL}}$ of the connected inputs flow through it.


Fig. 8.33. Selection of the size of the pull-up resistor

$$
\begin{array}{ll}
R_{\max }=\frac{V_{\mathrm{CC}}-2.4 \mathrm{~V}}{K \cdot I_{\mathrm{QH}}+N \cdot I_{\mathrm{IH}}} \quad K: \quad \begin{array}{l}
\text { Number of outputs connected } \\
\text { in parallel }
\end{array} \\
R_{\min }=\frac{V_{\mathrm{CC}}-0.4 \mathrm{~V}}{I_{\mathrm{OL} \max }-N \cdot\left|I_{\mathrm{IL}}\right|} \quad N: \begin{array}{l}
\text { Number of inputs the paral- } \\
\text { lel connected in parallel (each } \\
\text { fan-in }=1 \text { ) }
\end{array}
\end{array}
$$

Note: In practice the smallest allowable value is chosen, to achieve the maximum switching speed.

Example: For the 74LS TTL family the output leakage current amounts to $I_{\mathrm{QH}}<250 \propto \mathrm{~A}$, the input current $\left|I_{\mathrm{IL}}\right|<0.4 \mathrm{~mA}$ per input and the maximum collector current $I_{\text {OLmax }}=8 \mathrm{~mA}$.

For LS-TTL: $\quad R_{C}=\frac{5 \mathrm{~V}-0.4 \mathrm{~V}}{8 \mathrm{~mA}-N \cdot 0.4 \mathrm{~mA}}=\frac{4.6 \mathrm{~V}}{(20-N) \cdot 0.4 \mathrm{~mA}}$

### 8.2.6.3 Tri-State Outputs

In a circuit with tri-state* output both transistors of the final push-pull stage can be switched into the high-impedance state by an enable signal. Such devices are suitable for bus systems (Fig. 8.34). In the high-impedance state the device acts as if it were not present.

- The three output states are denoted by H, L and Z.


Fig. 8.34. Connection of several tri-state devices to a bus

### 8.2.6.4 Schmitt Trigger Inputs

Devices with Schmitt trigger inputs have two different threshold voltages, depending on whether the output state is high or low. The transfer characteristic of a Schmitt trigger is therefore different for turning on from turning off.


Fig. 8.35. Transfer characteristic of a Schmitt trigger; circuit symbol of gates with Schmitt trigger inputs
The difference between turn-on and turn-off is known as hysteresis (Fig. 8.35). For TTL circuits this typically amounts to about 0.8 V , for CMOS circuits it depends on the applied voltage:
$V_{\mathrm{H}}=0.27 \cdot V_{\mathrm{CC}}-0.55 \mathrm{~V}$

## Application:

- Inputs with very slow edges can be used with the Schmitt trigger, which leads to reduction of transition time.
- In conjunction with RC gates, they can be used for pulse stretching or to build an oscillator (Fig. 8.36).

[^5]

Fig. 8.36. Pulse stretching using Schmitt trigger gates; the falling edges are delayed

### 8.3 Combinational Circuits and Sequential Logic

- A combinational circuit is a logic circuit whose output states only depend on the signal state applied at its inputs. This is known as combinational logic.
- A sequential circuit employs internal memory. The output states depend not only on the present input states but also on previous states. This is known as sequential logic.


### 8.3.1 Dependency Notation

The dependency notation is based on the DIN 40900 Norm (Part 12). It gives a representation of the effects of external signals in complex digital circuits (Fig. 8.37). A distinction is made between controlling and controlled connections. The following rules apply:

- Each input is labelled by an identifying symbol. This is noted within the circuit symbols.
- Inputs affecting other inputs are identified by a letter that denotes the kind of influences. The identifying symbol of the affected input will also be denoted.

The dependency notation is different for the following cases (cited from the DIN 40900 ) and is summarised in Table 8.11:

G-dependency: This represents an And gate with its dependent connections. A Gx-input in state 0 internally drives the connections controlled by it to 0 , otherwise they remain unchanged.

V-dependency: This represents an Or gate with its dependent connections. A Vx-input in state 1 internally drives the connections controlled by it to 1 , otherwise they remain unchanged.
$\mathbf{N}$-dependency: This represents Xor gate with its dependent connections. A controllable inversion is thereby realised. A Nx-connection in state 1 inverts the controlled connections. Otherwise it leaves its state unaffected.

Z-dependency: This function acts like an internal connection. Z-dependent connections copy their logic value. Z-dependency often is combined with other dependencies.

C-dependency: This realises a control function. A Cx-connection in state 0 causes all dependent connections to be ineffective. Else it can exercise its intended function.

S-dependency: Connections that are dependent on an Sx-input assume the state that they would assume for the combination of $S=1, R=0$. This happens independently of the actual state at the $R$-input. In state 0 the controlling connection is ineffective.




| $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | $c_{-1}$ | $\bar{c}_{-1}$ |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

$c_{-1}:$ previous state is stored


| $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | $c_{-1}$ | $\bar{c}_{-1}$ |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 |

?: undefined state

Fig. 8.37. Explanation of the dependency notation
R-dependency: Connections that are dependent on an Rx-input assume the state that they would assume for the combination of $R=1, S=0$. This happens independently of the actual state at the S -input. In state 0 the controlling connection is ineffective.

EN-dependency: This describes an enable dependency (enable). EN-controlled inputs become only effective when they are in the state 1 . The EN-dependency can often be found for open-collector and tri-state outputs. The outputs are set to the high-impedance state by the 0 state of the controlling inputs.

A-dependency: This denotes the choice of an address, in particular for memory. The controlling inputs are weighted to the power of 2 . The Ax-inputs have the same effect as an enable signal on the resulting address.

M-dependency: This denotes a switching in different operating conditions (modes), e.g. up/down counting.

T-dependency: Tx-controlled connections change their state as soon as the controlling input has the value 1.

CT-dependency: Denotes that for a certain counter state or register contents an action will be carried out, e.g. a carry signal.

### 8.3.1.1 Overview: Dependency Notation

Table 8.11. Dependency notation

| Symbol | Dependency | Action for $1 / 0$ |
| :--- | :--- | :--- |
| A | Address | Address selected/not selected |
| C | Clock, control | Allows/inhibits action |
| CT | Contents | Permitted action/inputs blocked |
| EN | Enable | Permitted action/outputs high impedance |
| G | And | Unaltered state/state $=0$ |
| M | Mode | Mode selected/not selected |
| N | Controlled inversion | Inverted state/noninverted state |
| R | Reset | Reaction as for $R=1, S=0 /$ no reaction |
| S | Set | Reaction as for $S=1, R=0 /$ no reaction |
| T | Toggle | State changes/stays the same |
| V | OR | State $=1 /$ unaltered state |
| Z | Connection | State $=1 /$ state $=0$ |

The notation 'action' means that controlled inputs have their normally defined effect on the function of the circuit elements and that controlled outputs assume the internal logic state that is given by the function of the circuit elements.

### 8.3.2 Circuit Symbols for Combinational and Sequential Logic

Figure 8.38 shows some examples of circuits illustrating the the use of the dependency notation. The first example shows a buffer whose output signal can be inverted by choice. Multiple dependencies can be combined, as can be seen in the second example. The logic sequence is given by the numbers on the affected connection. The third example shows a bidirectional buffer whose tri-state outputs can be driven into the high-impedance state, depending on the state of the inputs $c$. Thereby the direction of data transmission is defined.

A 2-to-1-multiplexer is shown in the next example. The variable $c$ is fed into the control block and selects, through the And gate, which of the inputs to connect to the output. This is an additional example for the notation that the controlling signal influences the connection inverted ( $\overline{1}$ ).
A ROM with $32 \times 4$-bit memory capacity is shown in the following example. The five address lines $a_{0} \ldots a_{4}$ select the addresses 0 to 31 . The four outputs of the ROM are controlled by an enable input.
The last example shows a counter that counts from 0 to 7. The edge-triggered clock input influences the counter state, whose binary value in each position is entered in parentheses. The output in the upper right will be active synchronous to the clock only for counter state $7(\mathrm{CT}=7)$.
$a-{ }_{1}^{N 1} \triangleright-c$
$c=a \nleftarrow b$

$d=(c \cdot a) \nleftarrow b$

$a \stackrel{\square}{\frac{\nabla 1 \triangleleft}{\square-\overline{1} \nabla}}-\mathrm{b}$

| For $c=0$ | $a$ | : input | $b$ : output |
| :--- | :--- | :--- | :--- |
| For $c=1$ | $a$ | $a$ : output | $b$ : input |



$$
b=\left(a_{1} \cdot c\right)+\left(a_{2} \cdot \bar{c}\right)
$$



Fig. 8.38. Examples of circuit symbols with the dependency notation

### 8.4 Examples of Combinational Circuits

### 8.4.1 1-to- $n$ Decoder

A decoder activates exactly one of $n$ possible outputs. The selection is made using control signal inputs. The active state is often a logic low state. One-to-ten-decoders are also known as BCD-decimal decoders.

Example: Truth table of a 1-to-4 decoder (Fig. 8.39):

Application: Code conversion, selection of memory elements in microprocessor systems.

### 8.4.2 Multiplexer and Demultiplexer

Multiplexers are electronically controlled selection circuits.

| $A_{1}$ | $A_{0}$ | $Y_{0}$ | $Y_{1}$ | $Y_{2}$ | $Y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |



Fig. 8.39. Truth table and circuit of a 1 -to- 4 decoder


Fig. 8.40. Multiplexer and demultiplexer
A multiplexer connects one of $n$ input signals to $a$ single output line. The selection is carried out using an address (Fig. 8.40). Multiplexers are also known as data selectors.

The opposite operation holds for the demultiplexer, as it connects a signal from a single input to one of $n$ outputs using an address.

The demultiplexer follows from the 1-to- $n$ decoder. The addressed output does not go high, but rather passes on the voltage level of the input signal.

- Multiplexers are also suitable for realising arbitrary logic functions.

Example: The circuit of a logic function with four input variables is to be found. The logic function is described in a truth table. The voltage level of the input variables is fed to the four address lines of a multiplexer with 16 inputs. Each of the 16 inputs is fixed high or low, depending on the truth table. Any logic function with four variables can be realised in this way.


Fig. 8.41. Circuit of a demultiplexer and its circuit symbol

### 8.4.2.1 Overview of Circuits

| Multiplexer |  |  |
| :---: | :---: | :---: |
| CMOS | TTL | Inputs |
| 4515 | 74150 | 16 |
| 4512 | 74151 | 8 |
| 4539 | 74153 | $2 \times 4$ |


| Demultiplexer |  |  |
| :---: | :---: | :---: |
| Outputs | CMOS | TTL |
| 16 | 4514 | 74154 |
| 8 | 74 HCT 138 | 74138 |
| $2 \times 4$ | 74 HCT 139 | 74139 |

### 8.5 Latches and Flip-Flops

Flip-flops are bistable triggered switches. A flip-flop is said to be set when its output is high, otherwise it is said to be reset.

### 8.5.1 Flip-Flop Applications

Flip-flops are used in:

- registers (see Sect. 8.7);
- shift registers (see Sect. 8.7);
- memories (see Sect. 8.6);
- counters (see Sect. 8.8);
- frequency dividers;
- state memories (see Sect. 8.9).


### 8.5.2 SR Flip-Flop



Fig. 8.42. SR flip-flop and its circuit symbol

A feature of this kind of flip-flop are the cross-coupled inverting gates. An SR flip-flop, shown in Fig. 8.42, is composed of Nor gates. The inputs are known as set or reset, respectively. The truth table is given by:

| $S$ | $R$ | $Q$ | $\bar{Q}$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | $Q_{-1}$ | $\bar{Q}_{-1}$ |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |

$Q_{-1}$ : previous state

The output state will not change if the inputs are $S=0, R=0$. For inputs of $S=R=1$ the output is $Q=\bar{Q}=0$, which is logically impossible. By changing both input signals to $S=R=0$ the output state cannot be specified without other information being supplied. This should therefore be avoided.


Fig. 8.43. $\overline{\text { SR }}$-latch with NAND gates and its circuit symbol

A flip-flop that is set or reset by a logic low level is shown in Fig. 8.43. The truth table is then:

| $\bar{S}$ | $\bar{R}$ | $Q$ | $\bar{Q}$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | $Q_{-1}$ | $\bar{Q}_{-1}$ |

$Q_{-1}$ : previous state

### 8.5.2.1 SR Flip-Flop with Clock Input




Fig. 8.44. SR flip-flop with clock input and its circuit symbol
The SR flip-flop can be expanded to become a gated SR flip-flop (Fig. 8.44). Only while $C L K$ is in the high state, can the output states be changed by the RS-inputs. In state $C L K=$ low the previous state remains as it was, independent of the RS inputs. The truth table is:

| $C L K$ | $S$ | $R$ | $Q$ | $\bar{Q}$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 0 | 0 | $Q_{-1}$ | $\bar{Q}_{1}$ |  |
| 1 | 0 | 1 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 0 |  |
| 1 | 1 | 1 | $?$ | $?$ |  |
| 0 | $X$ | $X$ | $Q_{-1}$ | $\bar{Q}_{-1}$ | memory state flip-flop |

### 8.5.3 D Flip-Flop

With a D flip-flop the illegal input combinations are avoided by arranging the circuit elements suitably. The truth table is:

| $C L K$ | $D$ | $Q$ | $\bar{Q}$ |  |
| :---: | ---: | :--- | :--- | :--- |
| 0 | $X$ | $Q_{-1}$ | $\bar{Q}_{-1}$ | memory |
| 1 | 0 | 0 | 1 | $\}$ |
| 1 | 1 | 1 | 0 | $\}$ transparent |



Fig. 8.45. D flip-flop and its circuit symbol

As long as the clock signal $C L K=1$, the flip-flop is transparent for the data signal $D$, i.e. the output signal follows the data signal. If the gate signal assumes the value 0 , then the present state of the data line is stored and is independent of further changes on $D$ (Fig. 8.45). The D flip-flop is also known as the D-latch.

### 8.5.4 Master-Slave Flip-Flop

The transparency of the D flip-flop is lost when two are connected in series. The flipflops are controlled by two complementary clock signals. This configuration is known as a master-slave flip-flop. The $Q^{\prime}$ output of the master follows the $D$-signal as long as $C L K=1$. The slave flip-flop remains locked. If the clock signal drops to 0 , then the master flip-flop locks up, and the subsequent following slave flip-flop copies the logic state of the master's $Q$ output.


Fig. 8.46. Edge-triggered D flip-flop

Figure 8.47 shows a master-slave flip-flop, composed of two SR flip-flops in series.


Fig. 8.47. SR master-slave flip-flop

The two flip-flops are alternatively blocked by the complementary clock signal. When the clock signal $C L K=1$ the state of the first flip-flop is given by the RS input signals. If the clock signal drops to 0 , the master flip-flop is blocked and stores its state that was present before the clock transition. The slave flip-flop receives the complement signal $T=1$ and thus becomes transparent. The state of the first flip-flop appears at the output. This master-slave flip-flop is not transparent at any moment. Input states of $R=S=1$ cause undefined output states as for the simple SR flip-flop.

### 8.5.5 JK Flip-Flop



Fig. 8.48. JK master-slave flip-flop
Undefined output states are avoided by the JK flip-flop by coupling back the complementary output states $Q$ and $\bar{Q}$. The flip-flop inputs are preparatory inputs and are denoted by $J$ and $K$. The information read in on the positive edges appears at the output only on the following negative edges. This is known as delayed outputs. They are denoted by $\neg$ at the output. The truth table for an applied clock signal $C L K=010$ is shown in Fig. 8.49:


Fig. 8.49. Truth table of the JK flip-flop and circuit as a binary divider
The states $J / K=0 / 1$ and $J / K=1 / 0$ set the flip-flop to the respective state of the $J$-input synchronously with the negative edge of the clock signal.
A special case applies for $J=K=1$. The JK flip-flop inverts its previous state. The flip-flop operates as a frequency divider or scaler (Fig. 8.49). This is also known as a toggle flip-flop.
Most flip-flops have additional asynchronous set or reset inputs. These have priority over the JK inputs.

Note: As long as the clock $C L K=1$, the states at the JK inputs may not change. For flip-flops with JK data lockout this limitation is not valid.

### 8.5.6 Flip-Flop Triggering

Different kinds of triggering are used with flip-flops.
Unclocked flip-flops: Their state depends only on the set/reset inputs.
Clocked flip-flops: The actual time when the information is passed on is defined by a clock signal.
Level-triggered flip-flops: The information transfer is defined by the voltage level of the control signal.

Edge-triggered flip-flops: The information transfer is defined by the state transition of the control signal.

### 8.5.7 Notation for Flip-Flop Circuit Symbols

The circuit symbols denoted by DIN 40900 (Part 12) are as follows:


Dynamic input: The (transient) internal 1-state corresponds to the transition from the external 0 -state to the 1 -state. Otherwise the internal logic state is 0 .


Dynamic input with inversion: The (transient) internal 1-state corresponds to the transition from the external 1 -state to the 0 -state. Otherwise the internal logic state is 0 .


Dynamic input with polarity indicator: The (transient) internal 1-state corresponds to the transition from the external high state to the low state. Otherwise the internal logic state is 0 .


Delayed output: The state change at this output is postponed until the triggering signal returns to its original state.

Note: The internal logic state of inputs affecting the output states must not change as long as the input causing the change is still in the internal 1 -state.


D-input: The internal logic state of the D-input is stored by the element.

Note: The internal logic state of this input is always dependent on a gating input or output.


J-input: If this input assumes the internal state 1 , a 1 is stored in the element. In the internal state 0 it has no effect on the element.


K-input: If this input assumes the internal state $1, a 0$ is stored in the element. In the internal state 0 it has no effect on the element.

Note: The combination $J=K=1$ causes a change of the internal logic state into its complementary state.


R-input (reset): If this input assumes the internal state 1 , a 1 is stored in the element. In the internal state 0 it has no effect on the element.

S-input (set): If this input assumes the internal state 1 , a 0 is stored in the element. In the internal state 0 it has no effect on the element.

Note: $\quad$ The effect of the combination $R=S=1$ is not defined by the symbol.


T-input (toggle): If this input assumes the internal state 1 , the internal state of the output changes to its complementary state. In the internal state 0 it has no effect on the element.

### 8.5.8 Overview: Flip-Flops

The most popular flip-flop types are listed in Table 8.12:

Table 8.12. Types of flip-flops

| Circuit symbol | Flip-flop | Triggering |
| :---: | :---: | :---: |
|  | T flip-flop | Edge-triggered, clocked |
| $-{ }_{R}^{S}$ | SR flip-flop | Not clocked, level-triggered |
| 1 s <br> C 1 <br> 1 R |  | Clocked, one-level triggered |
|  |  | Clocked, edge-triggered |
|  | JK flip-flop | Clocked, two-level triggered |
|  |  | Clocked, two-edge triggered |
|  | D flip-flop | Clocked, one-level triggered |
|  |  | Clocked, edge-triggered |

### 8.5.9 Overview: Edge-Triggered Flip-Flops

Edge-triggered flip-flops make the design of sequential circuits very clear and therefore are also frequently used in programmable logic devices (PLD). Figure 8.50 shows the waveform diagram for the four types of edge-triggered flip-flops. All flip-flops shown are positive edge-triggered.
The SR flip-flop is set by the positive edges of the clock signal if the set input is high. Repeated set levels do not change the output state. The flip-flop is reset if the reset input is high at the time of the positive clock edge. $R=S=1$ at the time of the positive clock edge leads to an undefined state. Otherwise the combination is allowed.

The D flip-flop assumes the value at the data input with the positive clock edge. The sloped edges in the waveform diagram indicate that the precise timing of the transients is irrelevant for the circuit's function.
The T flip-flop divides the clock signal by 2 . For an approximately constant clock frequency this is known as a frequency divider.
CLK $\square \square \square \square \square \square$


D-Flip-Flop


Fig. 8.50. Waveform diagram of the four edge-triggered flip-flop types

For the edge-triggered $\mathbf{J K}$ flip-flop the output signals depend on the asynchronous inputs J and K . For the combination $J=K=1$, the flip-flop operates as a T flip-flop, and for the combination $J=K=0$ it stores the previous state.
Flip-flops are storage elements. The truth table descriptions must therefore take into account the state before the triggering clock edge arrived. This is denoted by $Q_{-1}$. The truth table in sequential logic leads to the flip-flop transition table. This is the synthesis table required to define any output state transition from $Q_{-1}$ to $Q$ for a given input signal. The output states after the relevant clock edge can be given as a function of the state before the edges and other control signals. This is known as the characteristic expression for the given logic element.

### 8.5.10 Synthesis of Edge-Triggered Flip-Flops

When building a circuit using programmable logic devices (PLD), it is often necessary to realise various edge-triggered flip-flops from simple logic elements. The following sections show the necessary steps in a successful design.

## SR Flip-Flop (Edge-Triggered)

As there can be several combinations of signals that can cause the same state transition $Q_{-1} \rightarrow Q$, the transition table can contain several entries in a single row.

- Characteristic expression: $Q=S+\left(\bar{R} \cdot Q_{-1}\right)=S+\bar{R} \cdot Q_{-1}$.

The condition $S \cdot R=0$ must be maintained to avoid the undefined state.

| SR flip-flop |  |  |  |  |  | $x$ : don't care <br> ?: undefined state |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R |  | S | $Q_{-1}$ |  | $Q$ |  |
|  |  | 0 | 0 |  | 0 |  |
|  |  | 0 | 1 |  | 1 |  |
| 0 |  | 1 | $\times$ |  | 1 |  |
|  |  | 0 | $\times$ |  | 0 |  |
|  |  | 1 | $\times$ |  | ? |  |



| Synthesis table |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | $R$ | $S$ |
| 0 | 0 | 0 | 0 |
|  |  | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
|  |  | 0 | 1 |


| Compact |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | $R$ | $S$ |
| 0 | 0 | $\times$ | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | $\times$ |

## D Flip-Flop (Edge-Triggered)

| D flip-flop |  |  |
| :---: | :---: | :---: |
| $D$ | $Q_{-1}$ | $Q$ |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |


| Synthesis table |  |  |
| :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | $D$ |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



- Characteristic expression: $Q=D$

| D flip-flop |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Clear | Preset | $D$ | $Q_{-1}$ | $Q$ |
| 0 | 0 | 0 | 0 | 0 |
|  |  | 0 | 1 | 0 |
|  |  | 1 | 0 | 1 |
|  |  | 1 | 1 | 1 |
| 0 | 1 | $\times$ | $\times$ | 1 |
| 1 | 0 | $\times$ | $\times$ | 0 |
| 1 | 1 | $\times$ | $\times$ | $?$ |$\quad$|  |
| :--- |$\quad$| d don't care |
| :--- |
|  |

Sometimes the preset and clear inputs govern the operation of these flip-flops. They have priority over the data inputs. Asynchronous preset and clear inputs operate immediately on the output signal, synchronous only at the next relevant clock edge.

## T Flip-Flop (Edge-Triggered)

A T flip-flop with preset and clear inputs has the following truth table:


| Synthesis table |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | Clr | Pre |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
|  |  | 0 | 1 |
| 1 | 0 | 0 | 0 |
|  |  | 1 | 0 |
| 1 | 1 | 0 | 1 |


| Compact Form |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | Clear | Preset |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | $x$ |
| 1 | 0 | $\times$ | 0 |
| 1 | 1 | 0 | 1 |

- Characteristic expression:

$$
Q=\left(\bar{Q}_{-1} \cdot \overline{\mathrm{Clear}}\right)+\text { Preset }=\bar{Q}_{-1} \cdot \overline{\mathrm{Clear}}+\text { Preset }
$$

with the condition that Clear $\cdot$ Preset $=0$

## JK Flip-Flop (Edge-Triggered)

| JK flip-flop |  |  |  |
| :---: | :---: | :---: | :---: |
| $J$ | $K$ | $Q_{-1}$ | $Q$ |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | $\times$ | 0 |
| 1 | 0 | $\times$ | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |$\quad \times$ don't care



By including the preset and clear inputs the transition table can be expanded to:

| JK flip-flop |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Clear | Preset | $J$ | $K$ | $Q_{-1}$ | $Q$ |
| 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | 0 | 0 | 1 | 1 |
|  |  | 0 | 1 | $\times$ | 0 |
|  |  | 1 | 0 | $\times$ | 1 |
|  |  | 1 | 1 | 0 | 1 |
|  |  | 1 | 1 | 1 | 0 |
| 0 | 1 | $\times$ | $\times$ | $\times$ | 1 |
| 1 | 0 | $\times$ | $\times$ | $\times$ | 0 |
| 1 | 1 | $\times$ | $\times$ | $\times$ | $?$ |


| Synthesis table |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | $J$ | $K$ |
| 0 | 0 | 0 | 0 |
|  |  | 0 | 1 |
| 0 | 1 | 1 | 0 |
|  |  | 1 | 1 |
| 1 | 0 | 0 | 1 |
|  |  | 1 | 1 |
| 1 | 1 | 0 | 0 |
|  |  | 1 | 0 |


| Compact Form |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{-1}$ | $Q$ | $J$ | $K$ |
| 0 | 0 | 0 | $\times$ |
| 0 | 1 | 1 | $\times$ |
| 1 | 0 | $\times$ | 1 |
| 1 | 1 | $\times$ | 0 |

$x$ : don't care
?: undefined state

- Characteristic expression:

$$
Q=\left(J \cdot \bar{Q}_{-1}\right)+\left(\bar{K} \cdot Q_{-1}\right)=J \cdot \bar{Q}_{-1}+\bar{K} \cdot Q_{-1}
$$

### 8.5.11 Overview: Flip-Flop Circuits

| TTL | Function | CMOS |
| :--- | :--- | :---: |
| 74118 | Six SR flip-flops | $4042^{a}$ |
| $7474^{b}$ | Two D flip-flops, edge-triggered | 4013 |
| $7475^{b}$ | Four D flip-flops | 4042 |
| $7473^{b}$ | Two JK flip-flops |  |
| $74107^{b}$ | Two JK flip-flops |  |
| $7476^{b}$ | Two JK master-slave flip-flops |  |
| 74111 | Two JK master-slave flip-flops <br> with data lockout |  |

${ }^{a}$ Only four flip-flops.
${ }^{b}$ Also available as 74 HCxxx or 74 HCTxxx
high-speed CMOS series.

### 8.6 Memory

Strictly speaking, semiconductor memory can be divided into

- addressable memory;
- programmable logic devices.

Addressable memory are used for data, programs, etc. These are what is usually meant when referring to memory. Programmable logic devices memorise logic function connections. These are described in Sect. 8.6.5.
Addressable memory can be categorised according to its access points:

- ROM (read-only memory) permanent memory;
- RAM (random access memory) read-write memory.

ROM-storage is non-volatile, that is, the memory contents are not lost on removal of the supply voltage. Also, the memory contents cannot be altered.
RAM-storage is volatile, that is, the memory contents are lost on removal of the supply voltage. Also, the memory contents can be both written and read.

The notation random access memory (unconstrained memory access) is for historical reasons. Both memory types can be accessed as the user chooses. Semiconductor memories are organised in a way that the memory location is freely accessible for reading or writing if its address has been specified correctly. The memory capacity is always to powers of 2, as the addresses are encoded in binary.

- Bit-oriented memories store a single bit at each address.
- Word-oriented memories store $4,8,16$ or 32 bits at each address.


### 8.6.1 Memory Construction

Memory elements are organised in matrix form. The address is divided internally into row and column addresses. Each is decoded by a row or column decoder. The memory element at the intersection of the selected row and column is selected by And-ing. It is connected to the data bus. The $\mathrm{R} / \overline{\mathrm{W}}$ (read/write) signal selects whether the memory element is to be written to or read from (Fig. 8.51).
In addition to the read/write signal $\mathrm{R} / \overline{\mathrm{W}}$, a CS (chip select) signal is employed. This selects the overall memory device. For $C S=0$ the data output is in a high-impedance state. This permits the use of several memory elements on a bus system.
The CS and $\mathrm{R} / \overline{\mathrm{W}}$ gate signals generate a write enable WE. This enables the D flip-flop in the addressed memory location (Fig. 8.52). For memories that store entire words several of these memory locations are situated in parallel. For any given address an entire memory cell can be accessed. For permanent memory (ROM) the $\mathrm{R} / \overline{\mathrm{W}}$ line can be eliminated. The data lines $D_{\text {in }}$ and $D_{\text {out }}$ are connected internally, the $R / \bar{W}$ signal switches the output gates into a high-impedance state in the write mode.


Fig. 8.51. Principle of construction of a memory element


Fig. 8.52. Equivalent circuit for a memory element

### 8.6.2 Memory Access

All signals must meet certain conditions for proper memory access.

## Reading:

- A certain amount of time $t_{\mathrm{AA}}$ must pass after applying the address, because of the internal propagation delays before the data is valid at the output. This is the address access time $t_{\mathrm{AA}}$ or simply access time.


## Writing:

- A certain amount of time $t_{\mathrm{AS}}$ must pass after applying the address, before the write enable $\mathrm{R} / \overline{\mathrm{W}}$ goes low (address setup time).
- The write enable $\mathrm{R} / \overline{\mathrm{W}}$ must stay low for a minimum amount of time $t_{\mathrm{w}_{\mathrm{p}}}$ (write pulse width).
- The data is read in at the positive edges of the $\mathrm{R} / \overline{\mathrm{W}}$ write-enable signal. Also the data must be applied in a stable manner for a minimum amount of time $t_{\mathrm{DW}}$ (data valid to end of write).
- After the change of the $\mathrm{R} / \overline{\mathrm{W}}$ write-enable signal the data and address lines must maintain their values for a minimum amount of time $t_{\mathrm{H}}$ (hold time).


Fig. 8.53. Waveform diagram of a read and a write operation
The minimum total time for a write operation is

$$
t_{\mathrm{W}}=t_{\mathrm{AS}}+t_{\mathrm{Wp}}+t_{\mathrm{H}}
$$

where $t_{\mathrm{W}}$ is the write cycle time.

### 8.6.3 Static and Dynamic RAMs

- Static RAMs maintain their memory contents in the presence of a supply voltage without requiring extra external circuitry (SRAM).
- Dynamic RAMs have to be periodically refreshed, or else the memory contents are lost (DRAM).

In static RAM each memory element is realised using a flip-flop. For CMOS RAM six transistors are required per bit.

In the effort to use the smallest chip area per bit possible, memory elements have been realised using a single MOSFET transistor. The memorisation is achieved using charge packets in the transistor's gate-source capacitor. The charge is held for a relatively short time, so the memory must be refreshed every few milliseconds.

During a read access the entire memory row is refreshed. If the application does not automatically access each row in the memory to refresh it, this must be realised with separate circuitry. It is worth the extra outlay as DRAM have roughly 4 times higher integration density. For higher memory capacity many address lines are required. This implies a large housing for the IC. Column and row addresses are multiplexed to reduce the number of external pins, as shown in Fig. 8.54. The address conversion occurs in the internal interim memory using the column address strobe (CAS) and row address strobe (RAS) signals.


Fig. 8.54. Address multiplexing and interim memories in a 1 MBit DRAM

### 8.6.3.1 Variations of RAM

Dynamic RAM controller: Logic taking care of automatic refreshing of DRAM memory contents.

Pseudostatic RAMs: Dynamic RAM where the refresh logic is already integrated.
Multiport RAM: Frequent design where one port maybe written to, while the other can only be read.

Example: Video memory: each port has separate address and data lines.
Arbiter: Priority logic that resolves access conflicts in multiport memories. In small memory devices this is integrated in the multiport memory chip.

FIFO: (first in, first out) memory realising a buffer (Fig. 8.55). The memory is equipped with input and output ports. Addressing is automatically performed internally. The data are output in the order in which they were originally input. A FIFO uses two address registers that point to the first and last entries in the buffer queue. Addressing is arranged in cyclic fashion, hence the name ring memory.

ECC memory: (error-correcting code) is memory that stores redundant bits for error control purposes. Individual bit errors can be detected and corrected (EDC error detection and correction). Popular combinations of information/parity bits are $8 / 5,16 / 6$ and $32 / 7$.
EDC controller: Logic circuit realising the ECC memory error detection and correction.


Fig. 8.55. Logic model of a FIFO memory

### 8.6.4 Read-Only Memory

Read-only memory (ROM) is read-only during normal operation. It is nonvolatile, i.e. the memory contents remain intact even after removal of supply voltage. The basic structure is a diode array. Diodes are located at the intersection of row and column conductors. Actually, the memory contents are not realised by the presence of a diode, but by their electrical connection to the column conductor (Fig. 8.56).


Fig. 8.56. Principle of memorisation of a bit in a ROM
There are different types of ROM:

- ROM (read-only memory): Data contents are burnt in during the last step of the manufacturing process in the form of a metallisation mask (mask-programmable ROM). The lead time is high. This is economical only for large production quantities.
- PROM (programmable read-only memory): Can be irreversibly programmed by the user. A precisely specified overcurrent/overvoltage pulse stream either burns through a link (fusible link) or $p n$ junctions of the coupling elements are shorted (avalancheinduced migration).
- EPROM (erasable programmable read-only memory): Can be completely erased by the user using intensive exposure to ultraviolet light. Distinguishing feature: quartz window on the top of the IC housing. Coupling elements are FETs with 'floating gates'. This creates a highly isolated capacitor whose charge, influenced by the FET's threshold voltage, represents the information storage. EPROMs are generally slower than PROMs.
- EEPROM (electrically erasable read-only memory), also EAROM (electrically alterable read-only memory): Memory cells can be selectively electrically programmed and erased. The total number of programme/erase cycles is limited to about $10^{4}$. Because of lower prices EEPROMs replace EPROMs.
EEPROMs are also combined with RAM (known as flash EEPROM) in a single device, to gain the advantages of RAM (fast and frequent access) and of EEPROM (nonvolatile).


### 8.6.5 Programmable Logic Devices

Programmable logic devices (PLD) store logic connections. Their structure is oriented along the normal representation of logic functions. Each has an array of And and Or connections that can be programmed by the user to make or break, i.e. the user can modify the array to achieve the desired function.

### 8.6.5.1 Principle of Operation



Fig. 8.57. Principle of a programmable logic device
Figure 8.57 shows the principle of a PLD. Two input signals are stored/appear on column conductors in both inverted and noninverted form. These are then connected to several And gates whose outputs connect to an Or gate. Programmability here simply means making the proper breaks in the connections. A simpler representation of the configuration in Fig. 8.57 is shown in Fig. 8.58. The crosses represent connections.
The programming process therefore is the same as that of a PROM. Figure 8.59 shows a comparison of three PLD structures.

- PROMs consists of a fixed And array that provides the address decoding. The Or array is programmable and holds the the memory contents.
- PALs on the other hand consist of a programmable And array, whereas the Or array is fixed.


Fig. 8.58. Compact representation of the PLD circuit


Fig. 8.59. Principle structure of PROM, PAL and PLA

- PLAs offer both programmable And as well as Or arrays. They are therefore more flexible than PROMs or PALs; however, the propagation time through the array is higher.


### 8.6.5.2 PLD Types

The basic structure of the PLD architecture means that there are several variations of programmable logic array elements. The differences lie in the method used to program the array (using fuses, diodes or FETs), and in the programmability of the AND and Or arrays as well as in their ability to be subsequently reprogrammed.

PROM: Fixed And array that provides the address decoding and a programmable OR array. The connections are metallic and behave like fuses that can be burnt.
EPROM: (erasable programmable read-only memory) PROM version. Fixed And array. Programmable Or array. The coupling elements are FETs with isolated gates. The information is stored as charge in the gate capacitor. Erasure is achieved by removing the charge.
PAL: (programmable array logic) Fixed OR array. The AND array is programmable.
HAL: (hardware array logic) A mask-programmed version of the PAL produced by the manufacturer.
PLA: (programmable logic array) Both the And as well as the Or array are programmable. PLAs are therefore more flexible, but also require more design effort. Will be replaced by LCA (logic cell array).
EPLD: (erasable programmable logic device) This has the same structure as the PAL. The coupling elements are the same as for EPROMs. In this manner EPLDs are UV-erasable and reusable.

IFL: (integrated fuse logic) General expression for different kinds of programmable logic devices.

FPGA: (field-programmable gate array)
FPLA: (field-programmable logic array)
FPLS: (field-programmable logic sequencer)
LCA: (logic cell array) offers reconfigurable logic blocks. The kind of connection is stored in a nonvolatile memory. This is how the LCA is programmed (trademark of XILINX).
AGA: (alterable gate-array logic) alterable gate array.
GAL: (generic array logic) electrically erasable gate array, with a PAL structure and programmable output configurations. Can replace many PAL types.

Table 8.13 shows an overview of the different kinds of PLD. The ROM is included for comparison:

Table 8.13. Properties of PDAs

| PLD Type | AND array | Or array | Memory |
| :--- | :--- | :--- | :--- |
| ROM | Fixed | Mask | Mask |
| PROM | Fixed | Programmable | Fuse |
| EPROM | Fixed | Programmable | Stored charge |
| PAL | Programmable | Fixed | Fuse |
| HAL | Mask | Fixed | Mask |
| PLA | Programmable | Programmable | Fuse |
| EPLD | Programmable | Fixed | Stored charge |
| LCA | Programmable | Programmable | Stored charge |
| AGA | Programmable | Programmable | Stored charge |
| GAL | Programmable | Fixed | Stored charge |

A characteristic of the PLDs is a 'last fuse'. If these are burnt through then the contents of the programmed array are no longer electrically reachable. Therefore there is a certain amount of security against unauthorised copying of the internal structure.

### 8.6.5.3 Output Circuits

PALs are equipped with various output circuits. These are shown in Fig. 8.60.
The following types are realised:
High-H output: The signal is available after the Or gate.
Low-L output: The signal is inverted.
Complement-C output: The signal and its complement are both output. This is a rare and uneconomical solution since many output pins are required.
Programmable-P output: The polarity of the output can be selected by using an Xor gate as a controlled inverter. The controlling input of the Xor gate is connected to ground by a fuse.
XOR-X output: Two Or outputs are Xor-ed. This structure is applied almost exclusively in arithmetic units.
Sharing-S output: Creates a 'poor man's' FPLA out of a PAL. This version of the PLD offers a small programmable output Or array.

H High
L Low

$\underset{*}{*}-\frac{8}{\&}=\geq 10 \longrightarrow Y$

S Sharing


Bidirectional


R Register


AR Asynch. Reg.


Fig. 8.60. PAL output circuits

Bidirectional-B outputs: Can be programmed as inputs or as feedback of interim results (multiple use of a partial term). The output circuit is tri-state capable. The enable signal can be derived of a logic combination of the input signals.
Register-R outputs: At defined point in time the outputs states are transferred into D flipflops. The clock line is common to all gates. This structure is suitable for the synthesis of sequential logic circuits.
Asynchronously registered AR output: Set, reset and clock signal are obtained as logic terms.
Variable-V output: New variation of PAL (or GAL) are equipped with output macro cells (OLMC: output logic macro cell) that can be programmed using control bits to realise one of the output versions H , L or R .

### 8.7 Registers and Shift Registers

Registers are flip-flop configurations for the interim storage of signal states. The 4-, 8or 16-bit register (latch) is a parallel configuration of D flip-flops, which have a common clock.


Fig. 8.61. 3 bit register using D flip-flops
Shift registers are flip-flops in a ring circuit, i.e. the output of one flip-flop is connected to the input of the next flip-flop.


Fig. 8.62. 3 bit shift register
All flip-flops are clocked by the same clock signal. The delayed input signal appears at the output.

The connection between the inputs and outputs can be separated, and an external signal can be input by using a multiplexer. This is known as loadable shift register with parallel access. The signal load controls the acceptance of the data. Such a shift register is known as a parallel in serial out (PISO) and as a serial in parallel out (SIPO).

Shift registers are available as $4,8,16$ and more flip-flop suites.


Fig. 8.63. Loadable shift register

### 8.8 Counters

Counters are sequential logic that have a defined series of internal flip-flop states dependent on the applied clock signals. The internal states do not necessarily correspond to a common number representation. The type of control is used to differentiate between them:

- Synchronous counters: All flip-flops are clocked in parallel (simultaneously).
- Asynchronous counters: At least one of the flip-flops receives a clock signal that has been generated within the circuit.
- Semisynchronous counters: Synchronous counter elements are connected in series. Such counters are synchronous in sections, but overall are asynchronous.


## Forms of representation of counter states:

- Binary counter: The counter state is represented in binary form.
- BCD counter: Each decimal place of the counter state is individually represented in binary form.
- Others: The counter state represents other codes (1 of 10 , biquinary (e.g. 74393 ), etc.).

Forms of counting direction:

- Up counter,
- Down counter,
- Up/Down counter,
- Counters with separate up and down count inputs.

Forms of flip-flop configuration:

- Walking-ring counter: Consist of a shift register whose contents are cyclically shifted.
- Johnson counter (switch tail ring counter): A special form of the walking-ring counter.

Forms of control options:

- Programmable counter (up counter): This allows a defined counter state to be loaded in parallel and the count to proceed from this new state.


### 8.8.1 Asynchronous Counters

### 8.8.1.1 Binary Counter

The following relationship can be read from the truth table of a binary counter:

- An output variable $z_{i}$ changes value, if the next lowest variable $z_{i-1}$ changes state from 1 to 0 . This rule is highlighted by the horizontal lines in the following table.

| Counter <br> state | $z_{2}$ | $z_{1}$ | $z^{2}$ |
| :---: | :---: | :---: | :---: |
| $2^{2}$ | $2^{1}$ | $2^{0}$ |  |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
|  | 2 | 0 | 1 |
| 3 | 0 | 1 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 1 | 0 | 1 |
|  | 1 | 1 | 0 |
| 7 | 1 | 1 | 1 |

The realisation of an asynchronous binary counter, as shown in Fig. 8.64, follows from this table. The complementary output of the D flip-flop is fed back to its input. In this manner each flip-flop, at each relevant clock edge, takes a complementary signal at its D-input (toggle flip-flop). Each flip-flop functions as a $1: 2$ frequency divider. It can be seen from the waveform diagram that the counter state can be directly read from the output variables.
The counter shown in the diagram returns to the start state of 0 after the counter state 7 . It runs through a total of 8 states. It is therefore called a modulo-8 counter. Each extra flip-flop extends the range of the counter by a power of 2 .
The transition of the counter state 7 to the counter state 0 shows an essential disadvantage of the asynchronous counter: The positive clock edges at the first flip-flop's input cause it to toggle. The complementary output changes from $0 \rightarrow 1$ and changes the following flip-flop and so on. However, each flip-flop can only toggle once the previous flip-flops has toggled. The clock input positive edge is delayed at each flip-flop by the propagation delay time $t_{\mathrm{PH}}$. The counter state is correct only after all flip-flops have settled. In the meantime, incorrect output states are on the output lines. Because of this carryover delay this counter is known as a ripple-through counter.
Figure 8.65 shows an asynchronous binary counter created from JK flip-flops. The flipflops are edge-triggered on the positive edge.
Figure 8.66 shows the circuit symbol for an asynchronous binary counter. The reset input 11 forms part of the control block for all of the flip-flops. The input 10 is negative edgetriggered. The output 9 influences the input 1 internally (Z-dependency). For a transition from 0 to 1 its state changes (T-dependency). The other outputs work in a corresponding manner. The simplified circuit symbol is shown next to it. This is used if the asynchronous operation does not have to be explicitly identified.

### 8.8.1.2 Decimal Counter

Decimal counters are often used in applications where the counter state is shown in decimal form. In order to keep the decoder requirement low, a counter is used for each decimal

$D_{0}$

$\mathrm{Z}_{0}$

$D_{1}$


| $Z_{1}$ | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$D_{2}$

$Z_{2}$


Fig. 8.64. Asynchronous binary counter with D flip-flops


Fig. 8.65. Asynchronous binary counter with JK flip-flops


Fig. 8.66. Circuit symbols for the asynchronous binary counter
place that counts from 0 to 9 . Normally the counter states are represented in binary form so the counters are known as BCD counters (binary coded decimal).

The truth table shows the internal representation of the counter state for a BCD-counter. As each entry has a weighting of $8,4,2$ and 1 , this is known as an 8421-code.
The decimal counter in Fig. 8.67 derives from a 4-bit binary counter. The Nand gate resets all of the flip-flops the moment both $z_{1}$ and $z_{3}$ assume the value 1 . That occurs for the (irregular) counter state 10. This state lasts only for the duration of the signal delays in the counter. The reset signal is therefore a spike.

| Counter <br> state | $z_{3}$ | $2^{3}$ | $2^{2}$ | $z_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $2^{1}$ | $z^{0}$ |  |  |  |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 | 1 |
| 6 | 0 | 1 | 1 | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 1 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 |
| $10^{\dagger}$ | 1 | 0 | 1 | 0 |

${ }^{\dagger}$ transient irregular state


Fig. 8.67. Asynchronous decimal counter
In practice such circuits are avoided, as their correct operation depends critically on the propagation delays. The configuration shown in Fig. 8.68 avoids this problem by blocking the counter stages via preparation inputs. This means that the counter goes directly to state 0 at the following clock edge after counter state 9 .


Fig. 8.68. Asynchronous decimal counter

Figure 8.69 shows the circuit symbol of a decimal counter. The input 1 is negative edgetriggered and causes the counter to count upwards (plus-sign). The counter divides by 10 (CTR DIV 10). The counter state is available at the connections 3, 5, 6, 7 encoded in binary form. The braces gather the outputs their power to the base two is written as [0..3]. Input 2 causes a reset, recognisable by a signal $C T=0$. Resetting is carried out asynchronously, as no C-dependency is given.


Fig. 8.69. Circuit symbol of a decimal counter

Any arbitrary number of digits can be realised by connecting several decade counters serially (Fig. 8.70).


Fig. 8.70. Decimal counter with three decades
The counter state of each decade is transformed through a BCD/7 segment decoder for display purposes. The $Z_{3}$ output signal is carried over to the next-higher decade. This signal has a negative edge only when resetting of the counters occurs, which triggers the following counter. The carryover signal of the highest decade can be used to set an SR flip-flop and thereby indicate the overflow of the count.

### 8.8.1.3 Down Counter

A down counter decreases the counter state at each input pulse.
The following relationship can be seen from the truth table of a down counter:

- An output variable $Z_{i}$ changes its value if the next lowest variable $Z_{i-1}$ changes state from 0 to 1 . This rule is highlighted at the horizontal lines.

| Counter <br> state | $\begin{aligned} & Z_{2} \\ & 2^{2} \end{aligned}$ | $\begin{aligned} & Z_{1} \\ & 2^{1} \end{aligned}$ | $\begin{aligned} & Z_{0} \\ & 2^{0} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 7 | 1 | 1 | 1 |
| 6 | 1 | 1 | 0 |
| 5 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0 |
| 3 | 0 | 1 | 1 |
| 2 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 |



Fig. 8.71. Asynchronous 3-bit down counter
Unlike the up counter, the flip-flop complementary outputs are connected to the subsequent clock inputs.

### 8.8.1.4 Up/Down Counter

A counter with programmable counting direction is obtained if the outputs of the flip-flops are fed into Xor gates (Fig. 8.72). This allows the toggling of the output polarity over a common control line and thus determines either up or down counting.


Fig. 8.72. Asynchronous switchable up/down counter
Note: Changing the count direction should not occur during a count process, as this causes a polarity change at the flip-flop inputs and causes uncontrolled counting. The $Z$-input blocks the $J$ - $K$ inputs during the switch.

### 8.8.1.5 Programmable Counter

Programmable counters can be (pre)loaded with a defined counter state.
Figure 8.73 shows a programmable 4-bit counter. A logic high voltage level at the load input causes all flip-flops to be set or reset, depending on the applied signals at the parallel inputs.
Figure 8.74 shows the circuit symbol for a programmable 4-bit counter on the left. The loading process is triggered by the input marked with load (C-dependency). The value of the individual stages is shown in the parentheses. The output in the control block on the right for counter state $15(C T=15)$ assumes the state 1 . It supplies a carryover signal for further expansion of the counter.
Programmable down counters that stop on reaching the zero state or begin a new loaded count are of particular importance, especially in microprocessor systems. Such counters are called presettable counters. Figure 8.74 shows on the right side a down counter


Fig. 8.73. Programmable 4-bit counter



Fig. 8.74. Circuit symbols for the programmable counter
that loads a new count state when it reaches count state zero. It can be seen from the dependency notation for the load and clock input that the load signal is effective only after the subsequent clock signal. If the counter is also loaded with the number $m$, then it runs through $m+1$ cycles. It then functions as a modulo- $(m+1)$ counter.

APPLICATION: Such counters are employed in programmable frequency dividers or timers.

### 8.8.2 Synchronous Counters

| Up counter |  |  |  |
| :---: | :---: | :---: | :---: |
| counter- <br> state | $z_{2}$ | $2^{2}$ | $z^{2}$ |
| $2^{1}$ | $z_{0}$ |  |  |
| $2^{0}$ |  |  |  |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 1 | 0 | 1 |
| 6 | 1 | 1 | 0 |
| 7 | 1 | 1 | 1 |


| Down counter |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| counter- <br> state | $z_{2}$ | $2^{2}$ | $z_{1}$ |  |
| $2^{1}$ | $2_{0}$ |  |  |  |
| 7 | 1 | 1 | 1 |  |
| 6 | 1 | 1 | 0 |  |
| 5 | 1 | 0 | 1 |  |
| 4 | 1 | 0 | 0 |  |
| 3 | 0 | 1 | 1 |  |
| 2 | 0 | 1 | 0 |  |
| 1 | 0 | 0 | 1 |  |
| 0 | 0 | 0 | 0 |  |

The table shows the count states for a binary counter. The following rule can be derived from the truth table for an up counter:

- An output variable $z_{i}$ changes its value when all lower value variables have a value of 1 and a new count impulse arrives.

This rule holds for counting downwards:

- An output variable $z_{i}$ changes its value when all lower value variables have a value of 0 and a new count impulse arrives.

These rules are taken into consideration in the design of synchronous counters (Fig. 8.75). The characteristic feature of synchronous counters is that the clock signal is simultaneously (synchronously) fed to all flip-flops. In order that the flip-flops toggle only at the permitted states, the set-inputs of the flip-flops must be fed by a suitable combinational preparation circuit.


Fig. 8.75. Principle of a synchronous counter
The nature of the input circuit follows from the rules just mentioned. For an up counter, a flip-flop may only toggle at the clock edge when all lower value stages have the state 1 . It follows that:

$$
S_{0}=1, \quad S_{1}=Z_{0}, \quad S_{2}=Z_{0} \cdot Z_{1}, \quad S_{3}=Z_{0} \cdot Z_{1} \cdot Z_{2}
$$

The And gates in Fig. 8.76 implement these logic expressions.


Fig. 8.76. Synchronous binary counter

### 8.8.2.1 Cascading Synchronous Counters

It is often a problem to design synchronous counters whose count capacity exceeds the capacity of an individual counter device. This is explained with the example of the 71191 4-bit synchronous counter. The 71191 is positive edge-triggered and is equipped with two suitable outputs to extend the count range.

Min/max: The output min/max goes low when either the up counter reaches the maximum counter state (15), or the down counter reaches zero.
RCE (ripple count enable): This output is logic 0 when the enable input and the $\mathrm{min} / \mathrm{max}$ input are low and count input is at logic 0 .
Figure 8.77 shows the obvious circuit to extend the count range. The RCE output of each counter stage is connected to the clock input of the following device. This can be described as being semisynchronous or partially synchronous. The clock is fed in parallel only to the flip-flops in the first counter device. The maximum count speed decreases with the length of the counter.


Fig. 8.77. Semisynchronous binary counter


Fig. 8.78. Synchronous binary counter with serial carryover

In the circuit in Fig. 8.78 the entire multistage counter operates synchronously, but the carryovers are produced serially. Each counter stage is equipped with an enable input that blocks the counter and the carryover generation. The first counter is continuously enabled. The enable input of the next stage is fed with the carryover signal of the preceding counter stage. So, for example, the second counter device can only continue counting as long as the first counter outputs the carryover signal. This is the case for exactly one clock period.

The circuit in Fig. 8.79 permits the fastest operation, as the carryover is output in parallel. The output $\mathrm{min} / \mathrm{max}$ goes low, when the maximum is reached in counting upwards, or zero is reached when counting downwards. All counter stages are supplied with the same clock signal in parallel.

Note: The carryover signal gates are already integrated in some counters (e.g. in the 74 163). Figure 8.80 shows a circuit example (see also the manufacturer's application notes).


RCE: ripple count enable
Fig. 8.79. Synchronous binary counter with parallel carryover


Fig. 8.80. Synchronous binary counter with parallel carryover without external gates

### 8.8.3 Overview: TTL and CMOS Counters

Tables 8.14 and 8.15 give an overview of TTL and CMOS counter properties.
Explanation of table entries:

A - asynchronous counter
S - synchronous counter
$\pm-$ up/down counter
$\uparrow$ - counter triggers on positive edges
$\downarrow$ - counter triggers on negative edges

| BCD | - BCD-counter |
| :--- | :--- |
| B | - binary code |
| $1 / 10$ | -1 -to-10 code |
| 7 -segment- - seven-segment code |  |
| J | - Johnson counter |

The range of the counter is given by the number of bits. If it is not a base 2 number, then the amount of counter states is also given.

AC-asynchronous clear

| SL | - synchronous load |
| :--- | :--- |
| OC | - open collector |

SC - synchronous clear
AS - asynchronous set
AL - asynchronous load
ENT, ENP - inputs for parallel carryover generation without external gates

- programmability

The clock frequencies that are given are guaranteed values. Typical values are around $50 \%$ higher. Many of the listed TTL counters are also available as ALS devices with higher clock frequencies.

### 8.8.3.1 TTL Counters

Table 8.14. Properties of TTL counters

| Type | A/S |  | Range [Bit]/Number | Code |  | Reset | Frequency (guaranteed) [MHz] | Observations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LS 90 | A | $\downarrow$ | 4/10 | BCD | AS | AC | 32 | Can be set to 9 |
| LS 92 | A | $\downarrow$ | 4/12 | B | - | AC | 32 |  |
| LS 93 | A | $\downarrow$ | 4 | B | - | AC | 32 | Succeeded by LS 293 |
| LS 142 | A | $\uparrow$ | 4/10 | 1/10 | - | AC | 20 | With latch, decoder, OC driver 60 V |
| LS 143 | A | $\uparrow$ | 4/10 | 7-Seg | - | AC | 12 | As LS 142 with 7 -segment decoder, LED constant-current outputs |
| LS 144 |  |  |  |  |  |  |  | as LS 143 with 15 V OC driver |
| LS 160 | S | $\uparrow$ | 4/10 | BCD | AL | AC | 25 |  |
| LS 161 | S | $\uparrow$ | 4 | B | SL | AC | 25 | As LS 163 with AC |
| LS 162 | S | $\uparrow$ | 4/10 | BCD | SL | SC | 25 |  |
| LS 163 | S | $\uparrow$ | 4 | B | SL | SC | 25 | As LS 161 with SC |
| LS 168 | $\mathrm{S} \pm$ | $\uparrow$ | 4/10 | BCD | SL | - | 25 | ENT, ENP inputs |
| LS 169 | $\mathrm{S} \pm$ | $\uparrow$ | 4 | B | SL | - | 25 |  |
| LS 176 | A | $\downarrow$ | 4/10 | BCD/5-2 | AL | AC | 35 | Depending on external circuitry: BCD or biquinary code |
| LS 177 | A | $\downarrow$ | 4 | B | AL | AC | 35 |  |
| LS 190 | $\mathrm{S} \pm$ | $\uparrow$ | 4/10 | BCD | AL | - | 20 |  |
| LS 191 | $\mathrm{S} \pm$ | $\uparrow$ | 4 | B | AL | - | 20 |  |
| LS 192 | $\mathrm{S} \pm$ | $\uparrow$ | 4/10 | BCD | AL | AC | 25 | Separate clock inputs for up/down counter |
| LS 193 | $\mathrm{S} \pm$ | $\uparrow$ | 4 | B | AL | AC | 25 | Separate clock inputs for up/down counter |
| LS 196 | A | $\downarrow$ | 4/10 | BCD | AL | AC | 30 |  |
| LS 197 | A | $\downarrow$ | 4 | B | AL | AC | 30 |  |
| LS 290 | A | $\downarrow$ | 4/10 | BCD | AS | AC | 32 |  |
| LS 293 | A | $\downarrow$ | 4 | B | - | AC | 32 | As LS 93 with supply pins at corners |
| LS 390 | A | $\downarrow$ | 8/100 | BCD | - | AC | 25 | Two LS 290 in a single housing |
| LS 393 | A | $\downarrow$ | 8 | B | - | AC | 25 | Two LS 293 in a single housing |

### 8.8.3.2 CMOS Counters

The frequencies given are for a 50 pF load at $5 / 10 / 15 \mathrm{~V}$.

Table 8.15. Properties of CMOS counters
$\left.\begin{array}{lcccccccl}\hline \text { Type } & \text { A/S Edge } & \begin{array}{c}\text { Range } \\ {[\text { Bit] }] \text { /Number }}\end{array} & \text { Code } & \text { P } & \text { Reset } & \begin{array}{c}\text { Frequency } \\ \text { (guaranteed) }\end{array} & \text { Observations } \\ & & & & & & \\ {[M H z]}\end{array}\right]$

Some of the devices are also available as HCT-CMOS devices with significantly higher allowable clock frequencies.

### 8.9 Design and Synthesis of Sequential Logic

Two design methods for sequential logic are presented aiming for different implementations, namely

- Sequential logic realised with programmable logic devices (PLD);
- Sequential logic realised with addressable memory (ROM).


## Example A

Implementation of a programmable 3-bit counter. All data are in positive logic.
Requirements:
Reset: Reset counter states to zero.
Load: Load parallel applied data into counter.
Mode: L counts up, H counts down.

Inputs:
$D_{0} \ldots D_{2}$ : data inputs

Outputs:
$z_{0} \ldots z_{2}$ : counter state encoded in binary

Carry/borrow: not used in this example for clarity reasons.


Fig. 8.81. Circuit symbol of the sequential logic to be realised

The following state transition table describes the operation of the control signals reset, load, mode as well as the data inputs $D_{i}(i=0 \ldots 2)$ and the outputs $z_{i}(i=0 \ldots 2)$. Counter state $z_{-i}^{*}$ means the counter state before the triggering edge.

| reset | load | $D_{i}$ | $z_{i}$ | $\overline{z_{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $\times$ | $z_{i}^{* *}$ | $\overline{z_{i}^{*}}$ |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | $\times$ | $\times$ | 0 | 1 |

The following logic expression holds for any counter output $z_{i}$ :

$$
\begin{equation*}
z_{i}=\overline{\text { reset }} \cdot \overline{\text { load }} \cdot z_{i}^{*}+\overline{\text { reset }} \cdot \text { load } \cdot D_{i} \tag{8.12}
\end{equation*}
$$

Note: For PLDs with inverting outputs an expression for $\overline{z_{i}}$ can be derived. It can be seen from the table that:

$$
\overline{z_{i}}=\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \overline{z_{i}^{*}}+\overline{\text { reset }} \cdot \text { load } \cdot \overline{D_{i}}+\text { reset }
$$

The same applies to the following expressions.
A further state transition table must be created for the actual count process. The count state order is influenced by the count direction or mode signal. $Z S$ is a quantity that gives the counter state. The quantities with an asterisk denote the new states after the triggering clock signal.

| mode | ZS | $z_{2}$ | $z_{1}$ | $z_{0}$ | $Z S^{*}$ | $z_{2}^{*}$ | $z_{1}^{*}$ | $z_{0}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
|  | 1 | 0 | 0 | 1 | 2 | 0 | 1 | 0 |
|  | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 1 |
|  | 3 | 0 | 1 | 1 | 4 | 1 | 0 | 0 |
|  | 4 | 1 | 0 | 0 | 5 | 1 | 0 |  |
|  | 5 | 1 | 0 | 1 | 6 | 1 | 1 | 0 |
|  | 6 | 1 | 1 | 0 | 7 | 1 | 1 | 1 |
|  | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 1 | 1 |
|  | 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
|  | 2 | 0 | 1 | 0 | 1 | 0 | 0 |  |
|  | 3 | 0 | 1 | 1 | 2 | 0 | 1 | 0 |
|  | 4 | 1 | 0 | 0 | 3 | 0 | 1 | 1 |
|  | 5 | 1 | 0 | 1 | 4 |  | 0 |  |
|  | 6 | 1 | 1 | 0 | 5 | 1 | 0 |  |
|  | 7 | 1 | 1 | 1 | 6 | 1 | 1 |  |

Therefore each counter position can be represented by a truth table, in which the only signal combinations that are entered are the ones that lead to $z_{i}^{*}=1$. A synthesis table can be derived from this to describe the transition $z_{i} \rightarrow z_{i}^{*}$.

## Least significant bit (LSB):

| $z_{0}$ | $z_{0}^{*}$ | mode | $z_{2}$ | $z_{1}$ | $z_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | - | - | - | - |
| 0 | 1 | 0 | $\times$ | $\times$ | 0 |
|  |  | 1 | $\times$ | $\times$ | 0 |
| 1 | 0 | 0 | $\times$ | $\times$ | 1 |
|  |  | 1 | $\times$ | $\times$ | 1 |
| 1 | 1 | - | - | - | - |

This yields the expression

$$
\begin{equation*}
z_{0}^{*}=\overline{z_{0}} \tag{8.13}
\end{equation*}
$$

## Middle counter digit:

| $z_{1}^{*}=1$ |  |  | for |
| :---: | :---: | :---: | :---: |
| mode | $z_{2}$ | $z_{1}$ | $z_{0}$ |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |


| $z_{1}^{*}=1$ |  |  | for |
| :---: | :---: | :---: | :---: |
| mode | $z_{2}$ | $z_{1}$ | $z_{0}$ |
| 0 | $\times$ | 0 | 1 |
| 0 | $\times$ | 1 | 0 |
| 1 | $\times$ | 0 | 0 |
| 1 | $\times$ | 1 | 1 |

The table on the right is a summary of the table on the left. This yields the expression for $z_{1}^{*}$

$$
\begin{equation*}
z_{1}^{*}=\overline{\text { mode }} \cdot \overline{z_{1}} \cdot z_{0}+\overline{\text { mode }} \cdot z_{1} \cdot \overline{z_{0}}+\operatorname{mode} \cdot \overline{z_{1}} \cdot \overline{z_{0}}+\operatorname{mode} \cdot z_{1} \cdot z_{0} \tag{8.14}
\end{equation*}
$$

## Most significant bit (MSB):

| $z_{2}^{*}=1$ |  |  | for |
| :---: | :---: | :---: | :---: |
| mode | $z_{2}$ | $z_{1}$ | $z_{0}$ |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |


| $z_{2}^{*}=1$ |  |  | for |
| :---: | :---: | :---: | :---: |
| mode | $z_{2}$ | $z_{1}$ | $z_{0}$ |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | $\times$ |
| $\times$ | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | $\times$ | 1 |

The table on the right is a summary of the table on the left. This yields the expression for $z_{2}^{*}$

$$
\begin{align*}
z_{2}^{*}= & \overline{\text { mode }} \cdot \overline{z_{2}} \cdot z_{1} \cdot z_{0}+\overline{\text { mode }} \cdot z_{2} \cdot \overline{z_{1}}+z_{2} \cdot z_{1} \cdot \overline{z_{0}}+\operatorname{mode} \cdot \overline{z_{2}} \cdot \overline{z_{1}} \cdot \overline{z_{0}} \\
& + \text { mode } \cdot z_{2} \cdot z_{0} \tag{8.15}
\end{align*}
$$

The following expressions for the individual counter bits can be derived by inserting expressions (8.13) to (8.15) into expression (8.12):

$$
\begin{aligned}
z_{0}^{*} & =\overline{\text { reset }} \cdot \text { load } \cdot D_{0}+\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \bar{z}_{0} \\
z_{1}^{*} & =\overline{\text { reset }} \cdot l \text { load } \cdot D_{1} \\
& +\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \overline{\text { mode }} \cdot \bar{z}_{1} \cdot z_{0}+\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \overline{\text { mode }} \cdot z_{1} \cdot \bar{z}_{0} \\
& +\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \text { mode } \cdot \bar{z}_{1} \cdot \bar{z}_{0}+\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \text { mode } \cdot z_{1} \cdot z_{0} \\
z_{2}^{*} & =\overline{\text { reset }} \cdot l \text { load } \cdot D_{2} \\
& +\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \overline{\text { mode }} \cdot \bar{z}_{2} \cdot z_{1} \cdot z_{0}+\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \overline{\text { mode }} \cdot z_{2} \cdot \bar{z}_{1} \\
& +\overline{\text { reset }} \cdot \overline{\text { load }} \cdot z_{2} \cdot z_{1} \cdot \bar{z}_{0}+\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \text { mode } \cdot \bar{z}_{2} \cdot \bar{z}_{1} \cdot \bar{z}_{0} \\
& +\overline{\text { reset }} \cdot \overline{\text { load }} \cdot \text { mode } \cdot z_{2} \cdot z_{0}
\end{aligned}
$$

These expressions in the sum of products or product of sums form can be directly realised in a suitable PLD with output registers. In practice, the logic expressions are produced using computer-aided engineering software, which can generate the required layout (PAL assembler).
A method that is less focussed on the logic expressions for the combinational circuit but more on the states of the circuit to be designed is shown in the next example.

## Example B

A circuit is to be designed that controls a traffic light at a pedestrian crossing. The sequence of the individual traffic lights, to which the circuit states should correspond, are represented
in a state diagram (Fig. 8.82). Each state of the circuit is represented by a circle, and possible transitions from one state to another are represented by arrows. If the transitions can only occur under certain conditions, then the conditions are written beside the arrow.

| State | Car | Pedes- <br> trian | Next <br> state |
| :---: | :---: | :---: | :---: |
| 0 | Green | r | 1 |
| 1 | Amber | r | 2 |
| 2 | Red | r | 3 |
| 3 | Red | g | 4 |
| 4 | Red | r | 5 |
| 5 | Red/Amber | r | 0 |



Fig. 8.82. State diagram of the traffic light control

For synchronous circuits a transition must only happen at the relevant clock edge. An arrow pointing back to the same circle means that the state is unchanged. Systems that can be described by a number of states and their transitions are known as finite state machines.

The table in Fig. 8.82 shows the individual states of the traffic light controller. The traffic light colours are denoted by their capitalised names for cars and by lower case letters for pedestrians.

Figure 8.82 shows the state diagram related to the table. The system should go to state 1 after being powered on. This is shown by the arrow with the notation pon (power on). Although states 2 and 4 activate the same traffic light colour, they are defined by different states as they have different subsequent states. The six states are passed through cyclically. The circuit can be very easily realised using a modulo-6 counter, whose outputs control a small memory element (ROM). This would translate the counter state in the table above into its corresponding traffic light colour (Fig. 8.83).


Fig. 8.83. Circuit realisation with a counter and ROM


Fig. 8.84. Expanded traffic light control state diagram

A real pedestrian crossing traffic light responds to the pressing of a button. The state diagram should therefore be expanded to include a button. In addition, the amber light should flash if an external off signal is received, and the pedestrian signals should deactivate (Fig. 8.84).
The state transition table then becomes:

| State | Car | Pedes- <br> trian | Condition | Next <br> state |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Gr | r | Button $\cdot \overline{\mathrm{off}}$ <br> off | 1 |
|  |  |  | $\overline{\text { ofton }} \cdot \overline{\mathrm{off}}$ | 0 |
| 1 | A | r |  | 2 |
| 2 | R | r |  | 3 |
| 3 | R | g |  | 4 |
| 4 | R | r |  | 5 |
| 5 | $\mathrm{R} / \mathrm{A}$ | r |  | 0 |
| 6 | A | - | off | 7 |
|  |  |  | $\overline{\text { off }}$ | 0 |
| 7 | - | - |  | 6 |

The circuit shown in Fig. 8.85 is suitable to realise the required control.


Fig. 8.85. Circuit with memory states, transition combinational and output circuits
The counter in Fig. 8.83 is replaced by a state memory. It stores the current state that is encoded into the state vector $z\left(t_{n}\right)$ as a series of binary digits. The subsequent state $z\left(t_{n+1}\right)$ is given by the actual state and any possible input quantities, i.e. the input vector $x$ (qualifier). The processing of the input vector $x$ and state vector $z$ is performed in the transition logic (usually a ROM). The state vector $z$ is processed in the output logic. The result is the output vector $y$. In the case of the traffic light controller these are the signals for the traffic light colours. The state memory is also influenced by the clock and the power-on signal pon.
The traffic light controller passes through eight states, for which three flip-flops are sufficient. The state vector width is therefore 3. It is useful to employ a (P)ROM for the transition logic. Part of the address of the ROM consists of the state vector, and the rest is
the input vector. The input signals can modify the next states under certain conditions and are therefore known as qualifiers. The ROM addresses are formed by the off and button qualifiers as well as the state vector.


The ROM contents are therefore:
Table 8.16. Memory content of transition circuit

| ROM <br> address | State | off | Button | Next <br> state |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 |  | 0 | 1 | 1 |
| 2 |  | 1 | 0 | 6 |
| 3 |  | 1 | 1 | 1 |
| 4 |  |  |  | 6 |
| $\vdots$ | 1 |  | $\times$ | $\vdots$ |
| 7 |  |  |  | 2 |
| 8 |  |  |  | 3 |
| $\vdots$ | 2 |  | $\times$ | $\vdots$ |
| 11 |  |  |  | 3 |
| 12 |  |  |  | 4 |
| $\vdots$ | 3 |  | $\times$ | $\vdots$ |
| 15 |  |  |  | 4 |
| 16 |  |  |  | 5 |
| $\vdots$ | 4 |  | $\times$ | $\vdots$ |
| 19 |  |  |  | 5 |
| 20 |  |  |  | 0 |
| $\vdots$ | 5 |  | $\times$ | $\vdots$ |
| 23 |  |  |  | 0 |
| 24 | 6 | 0 | 0 | 0 |
| 25 |  | 0 | 1 | 0 |
| 26 |  | 1 | 0 | 7 |
| 27 |  | 1 | 1 | 7 |
| 28 |  |  |  | 6 |
| $\vdots$ | 7 |  | $\times$ | $\vdots$ |
| 31 |  |  |  | 6 |

For the traffic light controller in the example above a $32 \times 3$-bit ROM s required for the transition logic. The output combinational logic requires an $8 \times 5$-bit ROM. For such a small amount of memory it makes sense to give the combinational logic circuit the structure shown in Fig. 8.86.
The transition logic here unites both functions of the previous combinational logic circuits. A row of this $32 \times 8$-bit memory has the contents shown in Table 8.17. The table shows a section of this memory.

Note: Traffic light colours usually last for different durations. That can be achieved by splitting up one traffic light phase over several states of the circuit or by influencing the clock generator with additional output signals.

Table 8.17. Memory section of the $32 \times 8$-bit memory

| ROM | State | off | Button | Next | Light Colour |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| address |  |  |  | state | R | Ge | Gr | r | g | (dec.) |
| $\vdots$ | $\vdots$ |  |  | $\vdots$ |  |  | $\vdots$ |  |  | $\vdots$ |
| 3 | 0 | 1 | 1 | 6 | 0 | 0 | 1 | 1 | 0 | 198 |
| $\vdots$ | $\vdots$ |  |  | $\vdots$ |  |  | $\vdots$ |  |  | $\vdots$ |



Fig. 8.86. Circuit with memory states and transition logic
For the coding of 9 states, 4 flip-flops are required that can assume in total 16 states. It is good practice to code out all 7 illegal states so that every state yields a defined output state for a transition. Thus it can be avoided that a circuit is left stuck in unreachable states after a noise glitch.

The transition logic in the circuit in Fig. 8.85 contains the transitions from one state to the following, where the input variables can modify the target state. For processors this is known as a conditional jump. For this reason this memory is also known as program ROM. The ROM used to decode the states into output signals is called the output ROM.
Extensive state diagrams with many transition conditions are often more readily realised using microprocessors, which moreover offer a greater amount of flexibility.

### 8.10 Further Reading

Almaini, A. E. A.: Electronic Logic Systems, 3rd Edition
Prentice Hall (1994)
Demassa, T. A.; Ciccone, Z.: Digital Integrated Circuits, 1st Edition John Wiley \& Sons (1995)

Dorf, R. C.: The Electrical Engineering Handbook, Section VIII
CRC press (1993)
Floyd, T. L.: Digital Fundamentals, 7th Edition
Prentice Hall (2000)
Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications, 5th Edition Prentice Hall (2000)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1998)
Katz, R. H.: Contemporary Logic Design
Benjamin/Cummings (1994)
Mano, M. M.: Digital Design, 2nd Edition
Prentice Hall (1995)
Mano, M. M.; Kime, C. R.: Logic and Computer Design Fundamentals, 2nd Edition Prentice Hall (2000)

Wakerly, J. F.: Digital Design, 3rd Edition
Prentice Hall (2000)
Wilkinson, B.: Digital System Design, 2nd Edition
Prentice Hall (1992)
Zwoliński, M.: Digital System Design with VHDL
Prentice Hall (2000)

## 9 Power Supplies

Power supplies are electronic circuits that are designed to supply other electronic circuits or applications in a suitable way with electric energy. For example they can convert the mains voltage into a stabilised DC voltage for a microcontroller. So-called uninterruptable power supplies (UPS) convert the DC voltage of a battery to $230 \mathrm{~V} / 50 \mathrm{~Hz} \mathrm{AC}$ voltage, for instance, to supply a computer.
The most common application is the conversion of mains voltage into a smaller voltage, which is suitable for the connected circuits.

To achieve this it is necessary

- to isolate the mains from the electronics for the protection of the user, and
- to provide a stabilised DC voltage, i.e. the DC voltage has to be independent from variations in the mains voltage and also in the load.

The isolation is always achieved with transformers. These can either be operated at the mains frequency, or at high frequencies in switched-mode power supplies. High frequency allows the use of smaller components at similar ratings.
The stabilisation of the voltage can be done with a transistor operating in its active region. It can also be done by using switched-mode techniques, which optimise the efficiency of the power supply and reduce the physical dimensions.

### 9.1 Power Transformers

Transformers convert the mains voltage to a lower level and realise the electrical isolation between the mains and the low voltage. It is important that transformers are safely constructed components and therefore have to be approved according to national standards. The national signs of approval are printed on transformers (Fig. 9.1).


Fig. 9.1. National approval signs
In the European Community the EU sign of conformity, or in short the CE sign, has replaced the individual approval signs (Fig. 9.2). The CE sign states that for a component (in this case, a transformer) all relevant EU standards have been maintained. The manufacturer is responsible for the tests and has to confirm this in the so-called EU conformity declaration. The tests themselves can be done by a certified tester. The approval of the test only becomes relevant in the case of a dispute.

## ( $\epsilon$

Fig. 9.2. EU sign of conformity

- The primary winding of the transformer is the mains winding, and the secondary winding is the electrically isolated low-voltage winding.
- The rated power is the product of the secondary rated voltage and the RMS value of the maximum secondary current. The value of the rated power is given in VA.
- The rated voltage is the mains voltage for the primary side, and for the secondary side the voltage at the rated current, i.e. the voltage when supplying the rated power.
- The loss factor is the ratio of no-load voltage to the rated voltage. Common values are between 1.35 and 1.15 for transformers with a rated power between 3 and 20 VA .

The internal resistance of the transformer can be calculated from the no-load voltage and the rated voltage.

$$
\begin{equation*}
R_{\mathrm{int}}=\frac{\text { no-load voltage }- \text { rated voltage }}{\text { rated current }} \tag{9.1}
\end{equation*}
$$

Note: Very small transformers are sometimes designed with a high internal resistance in order to make them short-circuit proof. This is done to avoid the need for fuses.

- On the primary side the protection of the transformer against overload is achieved with a fuse. In the case where the load is unevenly distributed between the secondary windings, they each have to be protected additionally.
- In order to make the transformer short-circuit proof, the manufacturer inserts a positive temperature coefficient element (PTC) or a heat-sensitive switch in the primary winding. In this case the use of a fuse is not necessary.


### 9.2 Rectification and Filtering

Usually the secondary voltage is rectified and filtered, i.e. the pulsating DC voltage after the rectifier is smoothed with a capacitor.
The filter capacitor is charged by a pulsating current for a period defined by the angle $\varphi$ (Fig. 9.3). It is dependent on the internal resistance of the transformer and the capacitance of the filtering capacitor. Common values are between $30^{\circ}$ and $50^{\circ}$.
The output current $I_{\text {out }}$ equals the average value of the diode current $I_{\mathrm{F}}$. The RMS value of the diode current can reach values up to twice the output current. The peak value of the diode current lies between 4 and 6 times the output current (Fig. 9.3).

$$
\bar{I}_{\mathrm{F}}=I_{\mathrm{out}}, \quad I_{\mathrm{FRMS}} \approx 1.5 \ldots 2 \cdot I_{\mathrm{out}}, \quad \hat{I}_{\mathrm{F}} \approx 4 \ldots 6 \cdot I_{\mathrm{out}}
$$

The RMS value of the diode current equals the RMS value of the secondary transformer current. This must be considered when choosing the apparent power of the transformer.


Fig. 9.3. Rectification and filtering

- The apparent power of the transformer $S_{\mathrm{N}}$ must be approximately twice the value of the output power $V_{\text {out }} \cdot I_{\text {out }}$.

The filter capacitor is usually chosen so that the peak-to-peak ripple voltage $V_{\mathrm{Rpp}}$ is approximately $20 \%$ of the output voltage $V_{\text {out }}$. The discharge time of the capacitor is approximately half of the periodic time of the mains frequency. Using the capacitor formula $i=C \frac{\mathrm{~d} v}{\mathrm{~d} t}$, the required capacitance can be determined as:

$$
\begin{equation*}
C \approx \frac{I_{\mathrm{out}} \cdot T / 2}{V_{\mathrm{Rpp}}}=\frac{I_{\mathrm{out}} \cdot T / 2}{V_{\mathrm{out}} \cdot 0.2} \tag{9.2}
\end{equation*}
$$

For the 50 Hz mains the capacitor $C$ is chosen thus:

$$
\begin{equation*}
C(\alpha \mathrm{~F}) \approx \frac{I_{\text {out }}(\mathrm{mA})}{V_{\text {out }}(\mathrm{V})} \cdot 50 \tag{9.3}
\end{equation*}
$$

Assuming the mains voltage is $10 \%$ under its rated value, the ripple voltage is $20 \%$. If the diode voltage drops are not considered, then it holds for the minimum output voltage $V_{\text {out min }}$ :

$$
\begin{equation*}
V_{\text {out } \min } \approx 0.9 \cdot V_{\mathrm{N}} \cdot \sqrt{2} \cdot 0.8 \tag{9.4}
\end{equation*}
$$

Therefore for the required transformer rated voltage $V_{N}$ :

$$
\begin{equation*}
V_{\mathrm{N}} \geqq V_{\text {out min }} \tag{9.5}
\end{equation*}
$$

Note: In most power supplies a voltage regulator follows the filtering capacitor. Usually voltage regulators require a voltage drop of approximately 3 V . For this reason the minimum output voltage of the filtering circuit is very important: its value must be approximately 3 V higher than the regulated voltage.

### 9.2.1 Different Rectifier Circuits

## Half-Wave Rectifier



$$
\begin{aligned}
& V_{\text {out max }}=\hat{V}_{\text {in }}-V_{\mathrm{F}} \\
& V_{\mathrm{D} \text { break }}=2 \hat{V}_{\text {in }} \\
& P_{\mathrm{D}} \approx I_{\text {out }} \cdot V_{\mathrm{F}} \\
& C(\propto \mathrm{~F}) \approx \frac{I_{\text {out }}(\mathrm{mA})}{V_{\text {out }}(\mathrm{V})} \cdot 100 \\
& V_{\text {out } \min } \approx 0.7 \hat{V}_{\text {in }}
\end{aligned}
$$

Bridge Rectifier


$$
\begin{aligned}
& V_{\text {out max }}=\hat{V}_{\text {in }}-2 V_{\mathrm{F}} \\
& V_{\mathrm{D} \text { break }}=\hat{V}_{\text {in }} \\
& P_{\mathrm{D} \text { tot }}=2 I_{\text {out }} \cdot V_{\mathrm{F}} \\
& C(\propto \mathrm{~F}) \approx \frac{I_{\text {out }}(\mathrm{mA})}{V_{\text {out }}(\mathrm{V})} \cdot 50 \\
& V_{\text {out } \min } \approx 0.7 \hat{V}_{\text {in }}
\end{aligned}
$$



Full-Wave Rectifier

$V_{\text {out max }}=\hat{V}_{\text {in }}-V_{\mathrm{F}}$
$V_{\text {Dreak }}=2 \hat{V}_{\text {in }}$
$P_{\mathrm{D} \text { tot }} \approx I_{\mathrm{out}} \cdot V_{\mathrm{F}}$
$C(\propto \mathrm{~F}) \approx \frac{I_{\text {out }}(\mathrm{mA})}{V_{\text {out }}(\mathrm{V})} \cdot 50$
$V_{\text {out } \min } \approx 0.7 \hat{V}_{\text {in }}$

Fig. 9.4. A variety of rectifying circuits (value for C is valid for 50 Hz mains frequency)

Full-Wave Dual-Supoly Rectificr


$$
\begin{aligned}
& V_{\text {out max }}=\hat{V}_{\text {in }}-V_{\mathrm{F}} \\
& V_{\mathrm{D} \text { brak }}=2 \hat{V}_{\text {in }} \\
& P_{\mathrm{D} \text { tot }} \approx\left(I_{1 \text { out }}+I_{2 \text { out }}\right) \cdot V_{\mathrm{F}} \\
& C(\circ \mathrm{~F}) \approx \frac{I_{\text {out }}(\mathrm{mA})}{V_{\text {out }}(\mathrm{V})} \cdot 50 \\
& V_{\text {out } \min } \approx 0.7 \hat{V}_{\text {in }}
\end{aligned}
$$

$V_{\text {D break: }}$ : Diode breakdown voltage
$P_{\text {D tot }}$ : Total diode power dissipation

Fig. 9.5. A variety of rectifying circuits (value for C is valid for 50 Hz mains frequency)
Table 9.1. Comparison of the rectifier circuits

|  | Advantages | Disadvantages |
| :--- | :--- | :--- |
| Half-wave rectifier | Simple circuit | Large capacitor, high <br> current RMS value |
| Bridge rectifier | One secondary winding, <br> breakdown voltage <br> $V_{\text {D break }}=\hat{V}_{\text {in }}$ | High diode losses |
| Full-wave rectifier | Low diode losses <br> (suitable for high currents) | Two secondary windings, <br> breakdown voltage <br> $V_{\text {D break }}=2 \hat{V}_{\text {in }}$ |
| Full-wave dual- <br> supply rectifier | One bridge rectifier for two out- <br> put voltages, similar load on both <br> secondary windings | Breakdown voltage <br> $V_{\text {D break }}=2 \hat{V}_{\text {in }}$ |

### 9.3 Analogue Voltage Stabilisation

Voltage regulators are used to maintain a voltage at a constant level, independent of voltage variation in the mains and the load variation.

### 9.3.1 Voltage Stabilisation with Zener Diode



Fig. 9.6. Voltage stabilisation with zener diode

The output voltage is equal to the zener voltage (Fig. 9.6):

$$
\begin{equation*}
V_{\text {out }}=V_{z} \tag{9.6}
\end{equation*}
$$

The maximum power loss $P_{\mathrm{L} z}$ in the zener diode occurs when no load is connected to the circuit ( $I_{\text {out }}=0$ ):

$$
\begin{equation*}
P_{\mathrm{Lz}}=\frac{V_{\text {in } \max }-V_{\mathrm{z}}}{R} \cdot V_{\mathrm{z}} \tag{9.7}
\end{equation*}
$$

The maximum available output current is given by:

$$
\begin{equation*}
I_{\text {out } \max }=\frac{V_{\text {in } \min }-V_{\mathrm{z}}}{R} \tag{9.8}
\end{equation*}
$$

If the output current becomes larger than $I_{\text {out max }}$ no current will flow through the zener diode and $V_{\text {out }}$ drops below $V_{\mathrm{z}}$. The maximum short-circuit current is:

$$
I_{\mathrm{s} / \mathrm{c}}=\frac{V_{\text {in } \max }}{R}
$$

### 9.3.2 Analogue Stabilisation with Transistor

The output voltage is:

$$
\begin{equation*}
V_{\text {out }}=V_{\mathrm{z}}-V_{\mathrm{BE}} \approx V_{\mathrm{z}}-0.7 \mathrm{~V} \tag{9.9}
\end{equation*}
$$

The transistor $\mathrm{Q}_{2}$ is configured as a current source with a current of $I_{\mathrm{s}}=0.7 \mathrm{~V} / R_{1}$. The source current is chosen so that at the rated load the transistor $\mathrm{Q}_{1}$ receives the required base current, and a small current flows through the zener diode(Fig. 9.7). Hence, the output voltage is kept at $V_{\text {out }}=V_{\mathrm{z}}-0.7 \mathrm{~V}$ for all different loads, between no-load and the rated load. If there is an overload the transistor $\mathrm{Q}_{3}$ opens, thus reducing the base current of $\mathrm{Q}_{1}$ so that the maximum output current is limited to $I_{\text {out max }}=0.7 \mathrm{~V} / R_{\mathrm{M}}$.


Fig. 9.7. Analogue regulation with transistors

### 9.3.3 Voltage Regulation

The output voltage is:

$$
\begin{equation*}
V_{\text {out }}=V_{\text {ref }} \cdot \frac{R_{1}+R_{2}}{R_{2}} \tag{9.10}
\end{equation*}
$$



Fig. 9.8. Voltage regulation
The operational amplifier amplifies the difference ( $V_{\text {ref }}-V_{\text {out }}^{\prime}$ ), which is the difference between the desired value and the actual value of the output voltage. With its open collector output it controls the base current of $\mathrm{Q}_{1}$ by sinking more or less of the source current $I_{\mathrm{S}}$. For example, if $V_{\text {out }}$ is too high, the operational amplifier takes the base current from transistor $\mathrm{Q}_{1}$, turning the transistor down and thus lowering the output voltage. The transistor $\mathrm{Q}_{2}$ takes the current $I_{\mathrm{S}}$ in the case of an overload, i.e. when $I_{\text {out }}>\frac{V_{\mathrm{BE}}}{R_{\mathrm{M}}} \approx \frac{0.7 \mathrm{~V}}{R_{\mathrm{M}}}$. If the loop gain was too large causing the circuit to oscillate, then a PI controller may be used as the amplifier ( $R_{3}, C_{3}$ in Fig. 9.8).

To obtain a variable output voltage it is possible to create the reference voltage with a potentiometer and to feed this voltage into the inverting input of the operational amplifier. Then the desired value is adjustable. It is always better to vary the reference value than to change $R_{1}$ and $R_{2}$, since this does not affect the control loop and therefore the stability of the system. The range of the adjustment via $R_{1} / R_{2}$ is only appropriate for fine tuning of output voltage.

### 9.3.3.1 Integrated Voltage Regulators

There is a large variety of integrated voltage regulators available. Usually they are shortcircuit proof, no-load proof and have temperature protection. The 78xx series for positive voltages and the 79xx series for negative voltages are well known for fixed voltages. These fixed voltage regulators are available for different current ratings.

Example: Figure 9.9 shows an example of a $\pm 12 \mathrm{~V}$ voltage supply. In addition to the previously described circuits there are some ceramic capacitors of 100 nF close to the voltage regulator. Their purpose is to reduce possible oscillations in the regulator.


Fig. 9.9. Example: voltage supply with fixed voltage regulators

### 9.4 Switched Mode Power Supplies

Switched-mode power supplies (SMPS) are used in nearly all electronic systems. Every television set and computer is powered by an SMPS, as is most state-of-the-art industrial equipment. Battery-powered equipment also uses SMPS to provide a constant internal supply voltage independent of the charge state of the battery. SMPS are also used to achieve a higher supply voltage than that of the powering battery voltage. This is normally required for tape recorders, CD players, notebooks, mobile phones and cameras. SMPS have remarkable advantages when compared to linear regulated power supplies. Theoretically, SMPS work loss-free, and in practice efficiencies of about $70 \%$ to $95 \%$ are achieved. This results in low-temperature operation and consequently high reliability. The other major advantage is that SMPS operate at high frequencies, which results in small low-weight components. Compared to linear power supplies SMPS are therefore inherently more efficient, smaller, lighter and cheaper to manufacture.
In general, all SMPS have the same principle of operation. Small quantities of energy are taken from an input voltage by an electronic switch (transistor), which switches at high frequency. The switching frequencies are normally in the range of 20 kHz to 300 kHz , depending on the required performance. The ratio between turn-on and turn-off time of the switch determines the average energy flow. A low-pass filter is placed at the output of all SMPS to smooth the discontinuous energy flow. The high efficiency of SMPS is a direct result of the theoretically loss-free switching component and low-pass filter.
There are a number of different types of SMPS, as described below. Although similar in principle, the manner of operation differs greatly between topology types.
SMPS can be configured as secondary or as primary switched power supplies. Secondary power supplies have no isolation between the input and output. They are used in applications where isolation (in respect to mains) already exists or where isolation is not required, for example, in battery-powered devices. Primary switched power supplies offer an isolation between input and output. Their switching transistors operate on the primary side of a transformer. The energy is transferred to the secondary side at a high-frequency via a high frequency transformer. Because of the high operating frequency the transformer can be relatively small.
There are three basic SMPS configurations. These are flyback, forward and resonant converter. Flyback converters transfer their energy during the off-time of the transistors. Forward converters transfer their energy during the on-time of the transistors. Resonant converters use a resonant circuit for switching the transistors when they are at the zero-current or zero-voltage point, resulting in reduced stress on the switching transistors.

A power factor preregulator is also a SMPS, used to ensure that the mains current is substantially sinusoidal.

### 9.4.1 Single-Ended Converters, Secondary Switched SMPS

### 9.4.1.1 Buck Converter

The buck converter converts an input voltage into a lower output voltage. It is also called a step-down converter.


Fig. 9.10. Buck converter
Figure 9.10 shows the circuit diagram of a buck converter. The transistor Q operates as the switch, which is turned on and off by a pulse-width modulated control voltage $V_{\text {PWM }}$ operating at high frequency. The ratio $\frac{t_{1}}{T}$, where $t_{1}$ is the on-time and $T$ the periodic time, is called the duty cycle.


Fig. 9.11. Voltages and currents of the buck converter
In the following analysis it is assumed that the conducting voltage drops of the transistor and the diode are zero.

During the on-time of the transistor the voltage $V_{1}$ is equal to $V_{\text {in }}$. When the transistor switches off (blocking phase), the inductor $L$ continues to drive the current through the load in parallel with $C_{\text {out }}$ and back through the diode. Consequently, the voltage $V_{1}$ is zero. The voltage $V_{1}$ stays at zero during the off-time of the transistor provided that the current $I_{\mathrm{L}}$ does not reduce to zero. This is called continuous-mode operation. In this mode $V_{1}$
is a voltage that changes between $V_{\mathrm{in}}$ and zero, corresponding to the duty cycle of $V_{\mathrm{PWM}}$, (Fig. 9.11). The low-pass filter, formed by $L$ and $C_{\text {out }}$, produces an average value of $V_{1}$, i.e. $V_{\text {out }}=\overline{V_{1}}$. Therefore for continuous mode:

$$
\begin{equation*}
V_{\text {out }}=\frac{t_{1}}{T} V_{\text {in }} \tag{9.11}
\end{equation*}
$$

- For the continuous mode the output voltage is a function of the duty cycle and the input voltage, and is independent of the load.

The inductor current $I_{\mathrm{L}}$ has a triangular shape, and its average value is determined by the load. The peak-to-peak current ripple $\Delta I_{\mathrm{L}}$ is dependent on $L$ and can be calculated with the help of Faraday's law:

$$
\begin{align*}
V=L \frac{\mathrm{~d} i}{\mathrm{~d} t} & \rightarrow \Delta i=\frac{1}{L} \cdot V \cdot \Delta t \\
& \rightarrow \Delta I_{L}=\frac{1}{L}\left(V_{\text {in }}-V_{\text {out }}\right) \cdot t_{1}=\frac{1}{L} V_{\text {out }}\left(T-t_{1}\right) \tag{9.12}
\end{align*}
$$

For $V_{\text {out }}=\frac{t_{1}}{T} V_{\text {in }}$ and a switching frequency $f$ it follows for the continuous mode:

$$
\begin{equation*}
\Delta I_{\mathrm{L}}=\frac{1}{L}\left(V_{\text {in }}-V_{\text {out }}\right) \cdot \frac{V_{\text {out }}}{V_{\text {in }}} \cdot \frac{1}{f} \tag{9.13}
\end{equation*}
$$

- The current ripple $\Delta I_{\mathrm{L}}$ is independent of the load. The average value of the current $I_{\mathrm{L}}$ is equal to the output current $I_{\text {out }}$.

At low load current, where $I_{\text {out }} \leq \frac{\Delta I_{\mathrm{L}}}{2}$, the current $I_{\mathrm{L}}$ reduces to zero during every switching cycle. This is called discontinuous-mode, and for this mode the calculations above are not valid.

## Calculation of $L$ and $C_{\text {out }}$

In order to calculate the value of $L$ a realistic value of $\Delta I_{\mathrm{L}}$ must be selected. The problem is as follows: If $\Delta I_{\mathrm{L}}$ is selected at a very low value, the value of $L$ has to be relatively high, which would require a very heavy and expensive inductor. If $\Delta I_{\mathrm{L}}$ is assigned a high level the switch-off current of the transistor would be very high (this would result in high losses in the transistor). A good compromise is to design for: $\Delta I_{\mathrm{L}} \approx 0.2 I_{\text {out }}$
For $L$ follows:

$$
\begin{equation*}
L=\frac{1}{\Delta I_{\mathrm{L}}}\left(V_{\text {in }}-V_{\text {out }}\right) \cdot \frac{V_{\text {out }}}{V_{\text {in }}} \cdot \frac{1}{f} \tag{9.14}
\end{equation*}
$$

The maximum value of the inductor current is:

$$
\begin{equation*}
\hat{I}_{\mathrm{L}}=I_{\mathrm{out}}+\frac{1}{2} \Delta I_{\mathrm{L}} \tag{9.15}
\end{equation*}
$$

Assuming that the inductor ripple current is small compared to its DC current, the RMS value of the current flowing through the inductor is given by:

$$
\begin{equation*}
I_{\mathrm{L}(\mathrm{RMS})} \approx I_{\text {out }} \tag{9.16}
\end{equation*}
$$

The capacitor $C_{\text {out }}$ is chosen usually for the cutoff frequency of the $L C_{\text {out }}$-low-pass filter, which is approximately 100 to 1000 times lower than the switching frequency. An exact calculation of the capacitor depends on its maximum AC current rating and its serial equivalent impedance $Z_{\text {max }}$. Both values can be verified from the relevant data sheet.

The current ripple $\Delta I_{\mathrm{L}}$ causes a voltage ripple $\Delta V_{\text {out }}$ at the output capacitor $C_{\text {out }}$. For normal switching frequencies this voltage ripple is determined by the equivalent impedance $Z_{\max }$.
The output voltage ripple is given by Ohm's law:

$$
\begin{equation*}
\Delta V_{\text {out }} \approx \Delta I_{\mathrm{L}} \cdot Z_{\max } \tag{9.17}
\end{equation*}
$$

The choice of the output capacitor depends not on its capacitance, but on its series equivalent impedance $Z_{\text {max }}$ at the switching frequency, which can be verified from the capacitor data sheet.

### 9.4.1.2 Boost Converter

The boost converter converts an input voltage to a higher output voltage. The boost converter is also called a step-up converter.

Boost converters are used in battery-powered devices, where the electronic circuit requires a higher operating voltage than that supplied by the battery, e.g. notebooks, mobile phones and camera flashes.


Fig. 9.12. Boost converter
Figure 9.12 shows the basic circuit diagram of the boost converter. The transistor $Q$ operates as a switch, which is turned on and off by a pulse-width modulated control voltage $V_{\text {PWM }}$.
In the following analysis is be assumed that the conducting voltage drops of the transistor and the diode are zero (during switching).
During the on-time of the transistor, the voltage across $L$ is equal to $V_{\text {in }}$ and the current $I_{\mathrm{L}}$ increases linearly. When the transistor is turned off, the current $I_{\mathrm{L}}$ flows through the diode and charges the output capacitor.
The function of the boost converter can also be described in terms of energy balance. During the on-time of the transistor the inductance is charged with energy, and during the off-time of the transistor this energy is transferred from the inductor through the diode to the output capacitor.

If the transistor is not turned on and off by the clock pulse, the output capacitor charges via $L$ and $D$ to the level $V_{\text {out }}=V_{\text {in }}$. When the transistor is switched the output voltage will increase to higher levels than the input voltage.

In a similar manner to the buck converter (Sect. 9.4.1.1) a distinction is made between the discontinuous and continuous mode, depending upon whether the inductor current $I_{\mathrm{L}}$ reduces to zero during the off-time of the transistor.


Fig. 9.13. Voltages and currents of the boost converter
With the help of Faraday's law the continuous mode and steady-state conditions (see also Fig. 9.13) can be established: $\Delta I_{\mathrm{L}}=\frac{1}{L} V_{\text {in }} \cdot t_{1}=\frac{1}{L}\left(V_{\text {out }}-V_{\text {in }}\right) \cdot\left(T-t_{1}\right)$. This yields:

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \frac{T}{T-t_{1}} \tag{9.18}
\end{equation*}
$$

- For the continuous mode the output voltage is a function of the duty cycle and the input voltage, and is independent of the load.
- The boost converter is not short-circuit proof, because there is inherently no switch-off device in the short-circuit path.

Note: If the boost converter is not regulated in a closed loop but is controlled by a fixed duty cycle of a pulse generator (this could be the case for a laboratory set-up), the boost converter is not no-load proof. This is because each switching cycle results in energy in the choking coil being transferred to the output capacitor. This will result in the output voltage continously increasing until the devices are eventually destroyed.

## Calculation of $L$ and $C_{\text {out }}$

As with the buck converter, the starting point for calculating $L$ is to select a value of current ripple $\Delta I_{\mathrm{L}}$ of about $20 \%$ that of the input current: $\Delta I_{\mathrm{L}} \approx 0.2 I_{\text {in }}$. The input current
$I_{\text {in }}$ can be calculated by assuming zero losses (input power $=$ output power), therefore: $V_{\text {in }} \cdot I_{\text {in }}=V_{\text {out }} \cdot I_{\text {out }} \rightarrow I_{\text {in }}=I_{\text {out }} \frac{V_{\text {out }}}{V_{\text {in }}}$
$L$ can be calculated as follows:

$$
\begin{equation*}
L=\frac{1}{\Delta I_{\mathrm{L}}}\left(V_{\text {out }}-V_{\text {in }}\right) \frac{V_{\text {in }}}{V_{\text {out }}} \cdot \frac{1}{f} \tag{9.19}
\end{equation*}
$$

The peak value of the inductor current is (Fig. 9.13):

$$
\begin{equation*}
\hat{I}_{\mathrm{L}}=I_{\mathrm{in}}+\frac{1}{2} \Delta I_{\mathrm{L}} \tag{9.20}
\end{equation*}
$$

Assuming that the inductor ripple current is small compared to its DC current, the RMS value of the current flowing through the inductor is given by:

$$
\begin{equation*}
I_{\mathrm{L}(\mathrm{RMS})} \approx I_{\mathrm{in}} \tag{9.21}
\end{equation*}
$$

The output capacitor is charged by pulses (Fig. 9.13). The ripple $\Delta V_{\text {out }}$ of the output voltage results from the pulsating charge current $I_{\mathrm{D}}$ and is mainly determined by the impedance $Z_{\max }$ at the switching frequency of capacitor $C_{\text {out }}$. The value of $Z_{\max }$ can be verified from the capacitor data sheet.

The output voltage ripple is given by Ohm's law:

$$
\begin{equation*}
\Delta V_{\text {out }} \approx I_{\mathrm{D}} \cdot Z_{\max } \tag{9.22}
\end{equation*}
$$

### 9.4.1.3 Buck-Boost Converter

The buck-boost converter converts a positive input voltage to a negative output voltage.


Fig. 9.14. Buck-boost converter
Figure 9.14 shows the basic circuit of the buck-boost converter. The transistor Q works as a switch, which is turned on and off by the pulse-width-modulated voltage $V_{\text {PWM }}$. During the on-time of the transistor, the inductor current $I_{\mathrm{L}}$ increases linearly. During the off-time the current $I_{\mathrm{L}}$ is continuous and charges the output capacitor $C_{\text {out }}$. Note the polarity of the output voltage in Fig. 9.14.
For the continuous mode and with steady-state conditions the output voltage is given by:

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \frac{t_{1}}{T-t_{1}} \tag{9.23}
\end{equation*}
$$

The inductor current $I_{\mathrm{L}}$ is given by (Fig. 9.15):
$\overline{I_{\mathrm{L}}}=I_{\text {out }} \frac{T}{T-t_{1}}=I_{\text {out }}\left(\frac{V_{\text {out }}}{V_{\text {in }}}+1\right), \quad$ and $\quad \Delta I_{\mathrm{L}}=\frac{1}{L} V_{\text {in }} t_{1}=\frac{1}{L} \cdot \frac{V_{\text {in }} V_{\text {out }}}{V_{\text {in }}+V_{\text {out }}} \cdot \frac{1}{f}$


Fig. 9.15. Voltages and currents of the buck-boost converter

### 9.4.2 Primary Switched SMPS

### 9.4.2.1 Flyback Converter

The flyback converter belongs to the primary switched converter family, which means there is isolation between input and output. Flyback converters are used in nearly all mainssupplied electronic equipment for low power consumption, up to approximately 300 W , examples of which include televisions, personal computers, printers, etc.
Flyback converters have a remarkably low number of components when compared to other SMPS. They also have the advantage that several isolated output voltages can be regulated by one control circuit.


Fig. 9.16. Flyback converter
Figure 9.16 shows the basic circuit of a flyback converter. The transistor works as a switch, which is turned on and off by the pulse-width modulated control voltage $V_{\text {PWM }}$. During the on-time of the transistor the primary voltage of the transformer $V_{1}$ is equal to the input voltage $V_{\mathrm{in}}$, which results in the current $I_{1}$ increasing linearly. During this phase,
energy is stored in the transformer core. During the on-phase the secondary current is zero, because the diode is blocking. When the transistor is turned off the primary current $I_{1}$ is interrupted, and the voltages at the transformer invert (due to Faraday's law $v=L \frac{\mathrm{~d} i}{\mathrm{~d} t}$, the diode conducts and the energy moves from the transformer core via the diode to the output capacitor $C_{\text {out }}$.
During the on-phase of the transistor the drain-source voltage $V_{\mathrm{DS}}$ is equal to zero (Fig. 9.17). During the off-time of the transistor, the output voltage $V_{\text {out }}$ will be transformed back to the primary side, and the drain-source voltage theoretically steps up to $V_{\mathrm{DS}}=V_{\text {in }}+V_{\text {out }} \cdot \frac{N_{1}}{N_{2}}$. If a mains voltage of $230 \mathrm{~V} / 50 \mathrm{~Hz}$ is used, $V_{\mathrm{DS}}$ will jump to approximately 700 V . In practice, this voltage will be even higher due to the self-induction of the leakage inductance of the transformer. To allow for this effect the minimum rated drain-source breakdown voltage of the transistor must be 800 V .
The transformer is not a 'normal' one, in that its function is to store energy during the on-time of the transistor and to deliver this energy during the off-time via the diode to the output capacitor. In fact, the transformer is a storage inductor (often called a choke) with a primary and secondary winding. To store energy the transformer core needs an air gap (normal transformers do not have an air gap). An important consideration for this transformer is that primary and secondary windings are closely coupled in order to achieve a minimum leakage inductance. It should be noted that the energy of leakage inductance cannot be transferred to the secondary side and is therefore dissipated as heat on the primary side.

## Design of the Flyback Converter

Regarding the primary voltage of the transformer $V_{1}$, its average value $\overline{V_{1}}$ must be equal to zero for steady-state conditions (if not, the current would increase to infinity).
This yields: $V_{\text {in }} \cdot t_{1}=V_{\text {out }} \cdot \frac{N_{1}}{N_{2}} \cdot\left(T-t_{1}\right)$, and:

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \cdot \frac{N_{2}}{N_{1}} \cdot \frac{t_{1}}{T-t_{1}} \tag{9.25}
\end{equation*}
$$

The turns ratio of the transformer should be chosen so that for the rated output power the on-time (energy charge time) $t_{1}$ is equal to the off-time (energy discharge time) $T-t_{1}$. This leads to the turns ratio:

$$
\begin{equation*}
\frac{N_{1}}{N_{2}}=\frac{V_{\text {in }}}{V_{\text {out }}} \tag{9.26}
\end{equation*}
$$

In this case, the breakdown voltage of the transistor and the reverse voltage of the diode must be:

$$
\begin{equation*}
\text { Transistor: } \quad V_{\mathrm{DS}}=V_{\mathrm{in}}+V_{\text {out }} \cdot \frac{N_{1}}{N_{2}} \approx 2 V_{\mathrm{in}} \tag{9.27}
\end{equation*}
$$

$$
\begin{equation*}
\text { Diode: } \quad V_{\mathrm{R}}=V_{\text {out }}+V_{\text {in }} \cdot \frac{N_{2}}{N_{1}} \approx 2 V_{\text {out }} \tag{9.28}
\end{equation*}
$$



Fig. 9.17. Voltages and currents at the flyback converter
It should be noted that the rated breakdown voltage of the transistor must be chosen significantly higher, because at the turn-off instant the energy of the leakage inductance $L_{\text {leak }}$ will not be taken over by the secondary winding. To keep the overvoltage within an acceptable range a snubber circuit is required (Fig. 9.18). At the instant of turn-off the current of the leakage inductance $L_{\text {leak }}$ is diverted through the diode $D$ and charges the capacitor $C$. The power is dissipated in resistor $R$.
If $R$ and $C$ are required to operate at 230 V AC , the value of $R$ has to be determined experimentally to ensure that the DC voltage across $C$ falls within the region of 350 V to 400 V .

In order to design the transformer, the primary inductance $L_{1}$ has to be calculated first(Fig. 9.16). $L_{1}$ has to store energy during the on-time of the transistor, which is the energy required at the output. This energy is given by $W=P_{\text {out }} \cdot T$, where $T$ is the period of the switching frequency, and $P_{\text {out }}$ is the rated power. This energy is stored in the primary inductance during the first half of the period time and is transferred to the output capacitor during the second half of the switching period. As before, the switching period is divided into two equal parts, one part to store the energy and the other part to transfer the energy.
During the on-time of the transistor, the voltage across the primary inductance is equal to $V_{\mathrm{in}}$, and the current $I_{1}$ is a ramp waveform (Fig. 9.18). For every cycle of the input energy


Fig. 9.18. Snubber circuit to limit the peak voltage across the transistor
it follows that:

$$
W=V_{\mathrm{in}} \frac{\hat{I}_{1}}{2} \frac{T}{2} \quad \text { (Fig. 9.19) }
$$

This energy is stored in $L_{1}$ and can be calculated as:

$$
W=\frac{1}{2} L_{1} \hat{I}_{1}^{2}
$$

For the size of the primary inductance this leads to:

$$
L_{1} \approx \frac{V_{\mathrm{in}}^{2}}{8 P_{\mathrm{out}} \cdot f} .
$$

The calculation above assumes an efficiency of $100 \%$. If we consider an efficiency of $\eta$, it means that we have to store more energy in $L_{1}$ and not all of this energy is delivered to the output. Then $L_{1}$ can be calculated as follows:

$$
\begin{equation*}
L_{1} \approx \frac{V_{\text {in }}^{2}}{8 P_{\text {out }} \cdot f} \cdot \eta \tag{9.29}
\end{equation*}
$$

Efficiency $\eta$ has to be estimated because its value is not known at this point in time. However, $\eta \approx 0.75$ is normally a good estimate.


Fig. 9.19. Shape of the input current $I_{1}$ for rated power
The peak value of the current $I_{1}$ is: $\hat{I}_{1}=\frac{4 \cdot P_{\text {out }}}{V_{\text {in }} \cdot \eta}$
The RMS-value of the current $I_{1}$ is: $I_{1 \text { RMS }}=\frac{\hat{I}_{1}}{\sqrt{6}}$
The core of the transformer and the windings can now be calculated with the help of Sect. 9.4.5.

Note: The core of the transformer must have a sufficiently large gap, in which the major part of the magnetic energy can be stored (refer to Sect. 9.4.5).

The output capacitor $C_{\text {out }}$ is charged by pulses (refer to Fig. 9.17). The ripple $\Delta V_{\text {out }}$ of the output voltage results from the pulsating charge current $I_{2}$ and is mainly determined by the impedance $Z_{\max }$ of the capacitor. The value of $Z_{\max }$ can be verified from the capacitor data sheet.
The magnitude of the ripple voltage is given as follows:

$$
\Delta V_{\text {out }} \approx \hat{I}_{2} \cdot Z_{\max }
$$

The input capacitor $C_{\text {in }}$ can be calculated for $230 \mathrm{~V} / 50 \mathrm{~Hz}$ as follows:

$$
C_{\mathrm{in}} \approx 1 \frac{{ }^{\circ} \mathrm{F}}{\mathrm{~W}} \cdot P_{\mathrm{in}}
$$

A special feature of the flyback converter is the possibility of controlling several isolated output voltages with only one control circuit (Fig. 9.20).


Fig. 9.20. Flyback converter for several output voltages
One output voltage $V_{\text {out } 3}$ is regulated (Fig. 9.20). Voltage $V_{\text {out } 2}$ is coupled to $V_{\text {out } 3}$ via the turns ratio: $\frac{V_{\text {out }}}{V_{\text {out } 3}}=\frac{N_{2}}{N_{3}}$. The energy that is stored in $L_{1}\left(N_{1}\right)$ during the on-time of the transistor moves during the off-time to the outputs. These output voltages maintain their values in relationship to the turns ratio. The output voltages, when viewed in relation to the turns ratio from the primary side, appear to be in parallel.

### 9.4.2.2 Single-Transistor Forward Converter

The single-transistor forward converter belongs to the primary switched converter family as there is isolation between input and output. It is suitable for output powers of up to 1 kW . The single-transistor forward converter is also called a single-ended forward converter (Fig. 9.21).
The forward converter transfers the energy during the on-time of the transistor. During this time the voltage $V_{1}$ is equal to the input voltage. The winding $N_{2}$ is in the same direction as $N_{1}$. When the transistor is on, the voltage $V_{2}$ at $N_{2}$ is given by $V_{2}=V_{\text {in }} \frac{N_{2}}{N_{1}}$. The voltage $V_{2}$ drives the current $I_{2}$ through the diode $D_{2}$, which during this time is equal to $I_{3}$, through $L$, which charges the output capacitor $C_{\text {out }}$.
During the off-time of the transistor, $N_{1}$ and $N_{2}$ are without current. The inductor $L$ draws its current through diode $D_{3}$. The value of voltage $V_{3}$ is equal to zero (neglecting the forward voltage drop of $D_{3}$ ).


Fig. 9.21. Single transistor forward converter
During the off-time of the transistor, the magnetic flux of the transformer has to decrease to zero. The core is demagnetised with $N_{1}^{\prime}$ via $D_{1}$ to $V_{\text {in }}$. Since $N_{1}^{\prime}$ has the same number of turns as $N_{1}$, the demagnetisation needs an equal time interval as the on-time. For this reason the minimum off-time has to be as long as the on-time. This causes a maximum duty cycle $t_{1} / T$ of 0.5 for the single-transistor forward converter.
During the off-time, the voltage at $N_{1}^{\prime}$ is equal to the input voltage $V_{\text {in }}$. This voltage will be transformed back to the primary winding $N_{1}$ and for $V_{1}$ follows: $V_{1}=-V_{\text {in }}$. Because of this the drain-source voltage steps up to $V_{\mathrm{DS}} \geq 2 V_{\text {in }}$ when the transistor is turned off (Fig. 9.22).
In comparison to the transformer of the flyback converter, the transformer in this forward converter is a 'normal' transformer. Its job is not to store energy but to transfer energy. For this reason the core has no air gap.

- The breakdown voltage of the transistor has to be $V_{\mathrm{DS}}>2 V_{\text {in }}$.
- The windings $N_{1}$ and $N_{1}^{\prime}$ must be closely coupled. However, a snubber circuit (as shown in Fig. 9.18, Sect. 9.4.2.1) is necessary.
- In comparison to the flyback converter, the forward converter can only have one regulated output voltage.
- The maximum duty cycle is $\frac{t_{1}}{T}=0.5$.


## Design of the Single-Transistor Forward Converter

The output voltage $V_{\text {out }}$ is equal to the average value of $V_{3}$. The maximum duty cycle is 0.5 . This leads to (see also Sect. 9.4.1.1):

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \cdot \frac{N_{2}}{N_{1}} \cdot \frac{t_{1}}{T} \tag{9.30}
\end{equation*}
$$

For the turns ratio it follows that:

$$
\begin{equation*}
\frac{N_{2}}{N_{1}}=2 \cdot \frac{V_{\text {out }}}{V_{\text {in }}}, \quad \text { and } \quad N_{1}=N_{1}^{\prime} \tag{9.31}
\end{equation*}
$$

For further calculation of the transformer see Sect. 9.4.5.
To calculate $L$ the method used for the buck converter is appropriate. Initially the current ripple $\Delta I_{3}$ of the inductor current $I_{3}$ has to be selected. A value of $20 \%$ of the output


Fig. 9.22. Voltages and currents at the single transistor forward converter
current is normally acceptable: $\Delta I_{3} \approx 0.2 \cdot I_{\mathrm{out}}$. Assuming a maximum duty cycle of 0.5 , this leads to:

$$
\begin{equation*}
L=\frac{V_{\text {out }} \cdot T / 2}{\Delta I_{3}} \tag{9.32}
\end{equation*}
$$

The value of $C_{\text {out }}$ depends on the acceptable voltage ripple $\Delta V_{\text {out }}$ of the output voltage. This voltage ripple is mainly determined by the impedance $Z_{\max }$ of the output capacitor $C_{\text {out }}$ :

$$
\Delta V_{\text {out }} \approx \Delta I_{\mathrm{L}} \cdot Z_{\mathrm{max}}
$$

The value of $Z_{\text {max }}$ can be verified from the data sheet of $C_{\text {out }}$. The input capacitor $C_{\text {in }}$ for $230 \mathrm{~V} / 50 \mathrm{~Hz}$ should be:

$$
C_{\mathrm{in}} \approx 1 \frac{{ }^{\mathrm{F}}}{\mathrm{~W}} \cdot P_{\mathrm{in}}
$$

## Two-Transistor Forward Converter

The two-transistor forward converter is a variant of the single transistor forward converter (Fig. 9.23).


Fig. 9.23. Two-transistor forward converter
The transistors $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ switch at the same time. During the on-time of the transistors, the voltage at the primary winding is equal to the input voltage $V_{\mathrm{in}}$. During the off-time of the transistors the transformer is demagnetised via the diodes $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ into the input voltage $V_{\text {in }}$. In comparison to the single-transistor forward converter this converter has the advantage that its transistors have to block the input voltage only and the winding $N_{1}^{\prime}$ is not required. In addition, the coupling of the transformer windings is no longer critical. These advantages make this converter type suitable for significantly higher output powers in comparison to the single-transistor converter.
The calculation of the components is equivalent to the single-transistor forward converter.

- For the two-transistor forward converter the breakdown voltage of the transistors is only required to be $V_{\mathrm{DS}}=V_{\text {in }}$.
- The two-transistor forward converter can be used for powers up to a few kilowatts. It is a simple converter, which is not critical with regard to design and operation.


### 9.4.2.3 Push-Pull Converters

The push-pull converter is suitable for high-power design.


Fig. 9.24. Push-pull converter, here: full-bridge type
The push-pull converter drives the high-frequency transformer with an AC voltage, where the negative as well as the positive half swings transfer energy. The primary voltage $V_{1}$ can be $+V_{\text {in }},-V_{\text {in }}$ or zero, depending on which pair of transistors $\left(\mathrm{Q}_{1}, \mathrm{Q}_{4}\right.$ or $\left.\mathrm{Q}_{2}, \mathrm{Q}_{3}\right)$ are turned on or off. At the secondary side the AC voltage is rectified and smoothed by $L$ and $C_{\text {out (Fig. 9.24). }}$
For the continuous mode it follows that (see also Sect. 9.4.1.1):

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \cdot \frac{N_{2}}{N_{1}} \cdot \frac{t_{1}}{T} \tag{9.33}
\end{equation*}
$$



Fig. 9.25. Voltages and currents at the push-pull converter
The duty cycle $\frac{t_{1}}{T}$ may theoretically increase to $100 \%$. This is not possible in practice because the serial connected transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ or $\mathrm{Q}_{3}, \mathrm{Q}_{4}$ have to be switched with a time difference in order to avoid a short-circuit of the input supply. The turns ratio of the transformer must be such that:

$$
\begin{equation*}
\frac{N_{2}}{N_{1}} \geq \frac{V_{\text {out }}}{V_{\text {in }}} \tag{9.34}
\end{equation*}
$$

- The transistors of the push-pull converter can be switched with the maximum duty cycle of 0.5 . This leads to the maximum duty cycle of $\frac{t_{1}}{T}=1$ after rectification.

The calculation of $L$ and $C_{\text {out }}$ follows that of the buck converter (Sect. 9.4.1.1).

## Half-Bridge Push-Pull Converter

A variant of the push-pull converter is the half-bridge push-pull converter. The capacitors $C_{1}$ and $C_{2}$ divide the input voltage $V_{\text {in }}$ into two. Therefore the magnitude of the primary voltage $V_{1}$ is $\pm V_{\text {in }} / 2$. In comparison to the full-bridge push-pull converter, it follows that for the half-bridge type the turns ratio of the transformer $\frac{N_{2}}{N_{1}} \geq 2 \frac{V_{\text {out }}}{V_{\text {in }}}$.


Fig. 9.26. Half-bridge push-pull converter with full-wave rectifier
In Fig. 9.26 a two-diode full-wave rectifier is used instead of a full-wave bridge rectifier. The choice of the rectifier type depends on the output voltage and current. The difference between these two rectifier types is that the current has to pass through two diodes in the bridge type and only one diode in the full-wave type. Consequently, the full-wave type is used for high currents (to reduce the rectifier losses), and the bridge type is used for high-voltage purposes in order to save one secondary winding of the transformer.

### 9.4.2.4 Resonant Converters

Resonant converters use resonant circuits to switch the transistors when they are at the zero-current or zero-voltage point. This reduces the stress on the switching transistors and the radio interference. A distinction is made between between zero-voltge-switching (ZVS) and zero-current-switching (ZCS) resonant converters.
To control the output voltage, resonant converters are driven by a constant pulse duration at a variable frequency. The pulse duration is required to be equal to half of the resonant period time for switching at the zero-crossing points of current or voltage.
There are many different types of resonant converters. For example, the resonant circuit can be placed at either the primary or secondary side of the transformer. Another alternative is that a serial or parallel resonant circuit can be used, depending on whether it is required to turn off the transistor when the current is zero or the voltage is zero.
The technique of resonant converters is described below, with the ZCS push-pull resonant converter offered as an example.

## ZCS Push-Pull Resonant Converter

Figure 9.27 shows the ZCS push-pull resonant converter. The resonant circuit is formed by $L$ and $C$. Assume an initial condition of the voltage $V_{\mathrm{C}}$ across $C$ equal to zero. If the transistor $\mathrm{Q}_{1}$ is now turned on, a sinusoidal current half-swing starts through $\mathrm{Q}_{1}, L, \operatorname{Tr}$, $C$ and $C_{\text {in }}$. This half-swing charges the capacitor $C$ from zero to $V_{\text {in }}$. If this first halfsinusoidal swing is completed, $\mathrm{Q}_{1}$ can be switched off without losses. After a short delay $\mathrm{Q}_{2}$ can be switched and a next half-sinusoidal swing starts, thus discharging $C$ from $V_{\text {in }}$ back to 0 Volts.

Each half-sinusoidal swing transfers a certain amount of energy from the primary to the secondary side of the transformer. The transformer $\operatorname{Tr}$ operates on its primary side as a voltage source. For the duration of the current swing through the primary winding, the output voltage $V_{\text {out }}$ will be transformed to the primary side: $V_{\text {out }}^{\prime}=V_{\text {out }} \frac{N_{2}}{N_{1}}$. The


Fig. 9.27. The ZCS push-pull resonant converter
energy that is transferred by every half-swing is equal to $W=V_{\text {out }}^{\prime} \cdot \int i(t) \mathrm{d} t$. This energy will be transferred twice in each resonant period. This leads to an output power of $P_{\text {out }}=W \cdot 2 f_{\text {switching }}\left(f_{\text {switching }}\right.$ : frequency of the converter). Figure 9.28 shows an equivalent circuit for one half-swing.


Fig. 9.28. Equivalent circuit for one half sinusoidal swing of the ZCS push-pull resonant converter
The resonant frequency is:

$$
\begin{equation*}
f_{0}=\frac{1}{2 \mathbf{a} \sqrt{L C}} \tag{9.35}
\end{equation*}
$$

This leads to the minimum on-time of the transistors. The on-time should be a little higher than half of the resonant period time to ensure that the current reduces to zero. For maximum energy transfer, $V_{\text {out }}^{\prime}$ must be half of $V_{\text {in }}$. This leads to the turns ratio of the transformer:

$$
\begin{equation*}
V_{\text {out }}^{\prime}=\frac{1}{2} V_{\text {in }} \Rightarrow \frac{N_{1}}{N_{2}}=\frac{1}{2} \cdot \frac{V_{\text {in }}}{V_{\text {out }}} \tag{9.36}
\end{equation*}
$$

The maximum output power is achieved if one half-current swing instantly follows the next.

The transferred energy of each half-swing further depends on the value of $C$ and $L$. The higher the value of $C$ and the lower the value of $L$, to maintain a certain resonant frequency, the higher the amount of energy transfer (see also the peak value of the current in Figs. 9.28 and 9.29).

To achieve a certain output power $P_{\text {out }}$, considering $V_{\text {out }}^{\prime}=V_{\text {in }} / 2$, it can be shown that for $L$ and $C$ :

$$
\begin{equation*}
\sqrt{\frac{L}{C}}=\frac{\left(\frac{V_{\text {in }}}{2}\right)^{2} \cdot \frac{2}{\mathbf{a}} \cdot \frac{f_{\text {Switching }}}{f_{0}}}{P_{\text {out }}} \Rightarrow C=\frac{1}{2 \mathbf{a} \cdot \sqrt{\frac{L}{C}} \cdot f_{0}}, \quad \text { and } \quad L=\left(\sqrt{\frac{L}{C}}\right)^{2} \cdot C \tag{9.37}
\end{equation*}
$$



Fig. 9.29. Voltages and currents at the ZCS push-pull resonant converter ( $V_{\mathrm{GS}}$ : Gate-Source control voltage)
In addition to the general advantages of resonant converters, having lower switching losses and lower radio interference, this particular resonant converter has two more additional advantages:

- The ZCS push-pull resonant converter can regulate several output voltages using one control circuit, as for the flyback converter. This is because several output voltages seem to be connected in parallel when viewed from the primary side. Therefore the energy always passes to that output having the lowest voltage value, taking into consideration the turns ratio.
- The ZCS push-pull resonant converter is both no-load and short-circuit proof, without any additional electronic precautions being required. The output voltage cannot reach
more than twice the nominal value, as then $V_{\text {out }}^{\prime}=V_{\text {in }}$. The current cannot reach more than twice the nominal output current, as then $V_{\text {out }}^{\prime}=0$ and $\hat{I}=V_{\text {in }} \sqrt{C / L}$.
- This converter has minor switching losses and EM interference.


### 9.4.3 Overview: Switched-Mode Power Supplies



## Buck converter

- $V_{\text {out }} \leqq V_{\text {in }}$
- Short-circuit and no-load proof simply achievable
- $V_{\mathrm{GS}}$ has to float
- Usage: Replacement for analogue voltage regulators


## Boost converter

- $V_{\text {out }} \geqq V_{\text {in }}$
- Not short-circuit proof
- Not no-load proof if not operating in a closed loop
- Usage: Battery-supplied devices, such as notebooks, mobile phones, camera flashes


## Inverting converter/buck-boost converter

- $V_{\text {out }}<0 \mathrm{~V}$
- Short-circuit proof easily achievable
- Not no-load proof if not operating in a closed loop
- Usage: Generation of an additional negative voltage from a positive supply voltage


## Flyback converter

- Several isolated output voltages can be regulated by one control circuit
- Output power up to several hundred watts
- Wide range of input and output voltages (mains voltage 85-270 VAC achievable)
- Transistor breakdown voltage $V_{\mathrm{DS}} \geqq 2 V_{\text {in }}$
- Very good magnetic coupling required
- Big core with air gap necessary



## Two-transistor forward converter

- One isolated controllable output voltage
- Output power up to several kilowatts
- Transistor breakdown voltage $V_{\mathrm{DS}}=V_{\mathrm{in}}$
- Duty cycle $\frac{t_{\text {on }}}{T} \leqq 0.5$
- No extraordinary magnetic coupling necessary
- Small core without air gap


## Full-bridge push-pull converter

- One isolated controllable output voltage
- Output power up to many kilowatts
- Transistor breakdown voltage $V_{\mathrm{DS}}=V_{\mathrm{in}}$
- No extraordinary magnetic coupling necessary
- Small core without air gap
- Balancing problems


## Half-bridge push-pull converter

- One isolated controllable output voltage
- Output power up to several kilowatts
- Transistor breakdown voltage $V_{\mathrm{DS}}=V_{\mathrm{in}}$
- No extraordinary magnetic coupling necessary
- Small core without air gap
- Balancing problems



## Push-pull converter with common based transistors

- One isolated controllable output voltage
- Output power up to several hundred watts
- Transistor breakdown voltage $V_{\mathrm{DS}} \geqq 2 V_{\text {in }}$
- Small core without air gap
- Very good magnetic coupling between the primary coils required
- Balancing problems


## ZCS push-pull resonant converter

- Several isolated output voltages achievable
- Output power up to several kilowatts

- Transistor breakdown voltage $V_{\mathrm{DS}}=V_{\mathrm{in}}$
- No extraordinary magnetic coupling necessary
- Small core without air gap
- Control with fixed pulse duration and variable frequency
- In case the output power is low compared to the rated power the frequency can be audible


### 9.4.4 Control of Switched-Mode Power Supplies

The output voltage of a switched-mode power supply is kept constant with the help of closed loop control. The value of the output voltage (actual value) is compared with a reference voltage (nominal voltage). The difference between the actual and nominal values controls the duty cycle of the transistor driver. The control loop regulates the variation of the mains and of the output current change. This is called line regulation and load regulation.

There are two different methods of regulation: voltage-mode and current-mode control. The voltage-mode control is the 'traditional' method of regulation. Most modern systems use current-mode control, which is the basis of nearly all IC switched-mode controllers.
Both controller types can be explained using a boost converter as shown in Fig. 9.30:

### 9.4.4.1 Voltage-Mode Control

The output voltage $V_{\text {out }}$ is compared to the reference voltage $V_{\text {ref }}$ via a voltage divider $R_{1}, R_{2}$. Then the difference $V_{\text {ref }}-V_{\text {out }}^{\prime}$ is amplified by the PI-regulator. A pulse width modulator (PWM, see Sect. 7.6.4.16) converts the output voltage of the PI regulator $V_{2}$ into a pulse-width modulated voltage $t_{1} / T$. The output of the PWM controls the transistor of the boost converter (see also Sect. 9.4.1.2).


Fig. 9.30. Voltage-modecontrol for a boost converter
The closed loop operates as follows: if the output voltage $V_{\text {out }}$ is too low, the voltage $V_{\text {out }}^{\prime}$ will be lower than the reference voltage $V_{\text {ref }}$. This will cause the output voltage $V_{2}$ of the PI regulator to increase. In the PWM circuit $V_{2}$ is compared with a sawtooth signal, and as $V_{2}$ increases the duty cycle $t_{1} / T$ also increases. This causes the output voltage to increase until $V_{\text {out }}^{\prime}=V_{\text {ref }}$.

### 9.4.4.2 Current-Mode Control



Fig. 9.31. Current-mode control for a boost converter
The output voltage $V_{\text {out }}$ is compared to a reference voltage $V_{\text {ref }}$ via the voltage divider $R_{1}, R_{2}$ and then amplified by the PI regulator. The output voltage of the PI regulator is compared with the ramp voltage across the current measuring resistor $R_{\mathrm{i}}$. When the voltage across $R_{\mathrm{i}}$ exceeds $V_{2}$ the output of the comparator resets an SR flip-flop and turns the transistor off. The SR flip-flop is preset by the clock. The transistor is turned on by the clock and turned off when the ramp voltage (which means the inductor current) reaches a certain value. In this way the PI regulator directly controls the inductor current.
The closed loop operates as follows: if the output voltage $V_{\text {out }}$ is too low, the voltage $V_{\text {out }}^{\prime}$ will be lower than the reference voltage $V_{\text {ref }}$. This causes the output voltage of the PI
regulator $V_{2}$ to increase. The comparator compares the voltage $V_{2}$ with the ramp voltage across $R_{\mathrm{i}}$. In this way $V_{2}$ determines the value to which the ramp voltage across $R_{\mathrm{i}}$ increases (which means the value to which the inductor current $I_{\mathrm{L}}$ increases) before the transistor is turned off. If $V_{2}$ increases because the $V_{\text {out }}^{\prime}$ is lower than $V_{\text {ref }}$, the inductor current will increase until $V_{\text {out }}^{\prime}$ is exactly equal to the reference voltage.

### 9.4.4.3 Comparison: Voltage-Mode vs. Current-Mode Control

The PI regulator of the current-mode control regulates the inductor current directly. This current feeds the output capacitor $C_{\text {out }}$ and the load resistance $R_{\mathrm{L}}$. Together $C_{\text {out }}$ and $R_{\mathrm{L}}$ form a first-order system and the step response is an exponential function.
The voltage-mode control regulates the duty cycle $t_{1} / T$, which means that the voltage across $L$ is controlled. This voltage operates on a second-order system formed by $L, C_{\text {out }}$ and $R_{\mathrm{L}}$. The step response of such a system is a sinusoidal transient approaching a fixed value.
Current-mode control therefore has a better control response; for this reason most controllers are current-mode types.


Fig. 9.32. Block-diagrams for a current-mode and $\mathbf{b}$ voltage-mode control

### 9.4.4.4 Design of the PI Controller

The PI-controlled system tends to oscillate if the capacitance $C_{1}$ is selected at too small a value and if the resistor $R_{4}$ is too high a value. To alleviate this problem $C_{1}$ should initially be selected high (a $1-\alpha \mathrm{F}$ foil capacitor is a good choice for most control circuits). The value of $R_{4}$ should be selected so that the cutoff frequency of the PI controller stays well below the cutoff frequency of $L$ and $C_{\text {out }}$ :

$$
\begin{equation*}
\frac{1}{2 \mathrm{a} \sqrt{L C_{\text {out }}}} \geqq 10 \frac{1}{2 \mathrm{a} R_{4} C_{1}} \tag{9.38}
\end{equation*}
$$

The controller should now operate in a stable mode (if not, internal interference or a bad board architecture could be a problem). To improve the reaction of the closed loop, $C_{1}$ can be decreased step by step with a corresponding increase of $R_{4}$. If the loop starts to oscillate, $C_{1}$ can be increased by a factor of 10 while $R_{4}$ has to be decreased by the same factor. Using these design guides the loop will operate in a stable mode with sufficient regulation speed for most applications.

Note: In many control circuits the operational amplifier (normally called the error amplifier) is a transconductance amplifier. It supplies an output current (very high output impedance), which is proportional to the input voltage. In this case $R_{4}$ and $C_{1}$ are connected between the output and ground to achieve the PI characteristic of the controller.

### 9.4.5 Design of Inductors and High-Frequency Transformers

Inductors store energy, transformers transfer energy. This is the main difference. The magnetic cores are significantly different for inductors and high-frequency transformers: inductors need an air gap for storing energy, but transformers do not. Transformers for flyback converters have to store energy, which means they are not high-frequency transformers; they are in fact inductors with primary and secondary windings. The material of the cores is normally ferrite. Other materials with high permeability and with a high saturation point are also used.

### 9.4.5.1 Calculation of Inductors

An inductor with a certain inductance $L$ and a certain peak current $\hat{I}$ can be determined by the following calculation:
Inductors should store energy. The stored energy of an inductor is $W=\frac{1}{2} L \hat{I}^{2}$. This energy is stored as magnetic field energy within the ferrite core and within the air gap (Fig. 9.33). The core size increases with increasing requirements for stored energy.

- The size of an inductor increases approximately proportionally to the energy to be stored.


Fig. 9.33. Inductor with its magnetic and mechanical parameters
The field energy in the inductor is given as:

$$
\begin{equation*}
W=\frac{1}{2} \int \vec{H} \cdot \vec{B} \mathrm{~d} V \approx \underbrace{\frac{1}{2} \vec{H}_{\mathrm{Fe}} \cdot \vec{B}_{\mathrm{Fe}} \cdot V_{\mathrm{Fe}}}_{\text {Energy in the ferrite }}+\underbrace{\frac{1}{2} \vec{H}_{\delta} \cdot \vec{B}_{\delta} \cdot V_{\delta}}_{\text {Energy in the air gap }} \tag{9.39}
\end{equation*}
$$

The magnetic field density $\vec{B}$ is continuous and is approximately equal within the air gap and the ferrite, i.e. $\vec{B} \approx \vec{B}_{\mathrm{Fe}} \approx \vec{B}_{\delta}$. The magnetic field strength $\vec{H}$ is not continuous. Within the air gap it is increased by a factor $\propto_{\mathrm{T}}$ with respect to the field strength within the ferrite. If this is substituted into Eq. (9.39) and considering $\vec{B}=\alpha_{0} \propto_{\mathrm{F}} \cdot \vec{H}, \quad V_{\mathrm{Fe}}=l_{\mathrm{Fe}} \cdot A$ and $V_{\delta}=\delta \cdot A$ this leads to:

$$
\begin{equation*}
W \approx \frac{1}{2} \frac{B^{2}}{\alpha_{0}}\left(\frac{l_{\mathrm{Fe}}}{\alpha_{\mathrm{r}}}+\delta\right) \cdot A \tag{9.40}
\end{equation*}
$$

The relative permeability $\alpha_{\mathrm{F}}$ of the ferrite is $1000-4000$. It should be noted that the magnetic length of the ferrite is reduced by $\alpha_{T}$ in the above equation. Therefore it can be seen that the energy is mainly stored within the air gap.

This leads to: $W \approx \frac{1}{2} \frac{B^{2} \cdot A \cdot \delta}{\alpha_{0}}$

- Inductors require an air gap, in which the energy is stored.

Because the energy is stored within the air gap, an inductor requires a certain volume for the air gap to store a certain amount of energy. The energy is given by $\frac{1}{2} L \hat{I}^{2}$. The core material has a limit for the maximum magnetic flux density $B$. This limit is approximately $B_{\max }=0.3 \mathrm{~T}$ for the usual ferrite materials. This leads to a minimum required volume of the air gap:

$$
\begin{equation*}
V_{\delta}=A \cdot \delta \geqq \frac{L \hat{I}^{2} \cdot \propto_{0}}{B_{\max }^{2}}, \quad \text { where } \quad B_{\max }=0.3 \mathrm{~T} \tag{9.41}
\end{equation*}
$$

Knowing the required volume of the air gap, a core can be selected from a data book of ferrite cores.
The number of turns $N$ can be calculated with help of the magnetic conductance $A_{\mathrm{L}}$ (often simply called the $A_{\mathrm{L}}$ value):

$$
\begin{equation*}
N=\sqrt{\frac{L}{A_{\mathrm{L}}}} \quad A_{\mathrm{L}}: \text { magnetic conductance } \tag{9.42}
\end{equation*}
$$

The $A_{\mathrm{L}}$ value can be verified from the data book of the ferrite cores. The maximum flux density within the ferrite can be calculated using the data of the core data sheet. The maximum flux density must usually not exceed 0.3 T .

$$
\begin{equation*}
B=\frac{L \cdot \hat{I}}{N \cdot A_{\min }}=\frac{N \cdot A_{L} \cdot \hat{I}}{A_{\min }} \stackrel{!}{\rightarrow} \leqq 0.3 \mathrm{~T} \tag{9.43}
\end{equation*}
$$

Where $A_{\min }$ is the minimum cross-sectional area of the core. The flux density has its maximum at $A_{\min }$. The value of $A_{\min }$ can be verified from the data sheet.

## Calculation of the Wire

The current density $J$ of the wire can be chosen between 2 and $5 \mathrm{~A} / \mathrm{mm}$ (depending upon the size and the insulation, which determines the heat transport out of the inductor). This leads to the diameter of the wire $d$ :

$$
\begin{equation*}
d=\sqrt{\frac{4 \cdot I_{\mathrm{RMS}}}{\mathrm{a} \cdot J}}, \quad \text { where } \quad J=2 \ldots \underline{3} \ldots 5 \frac{\mathrm{~A}}{\mathrm{~mm}^{2}} \tag{9.44}
\end{equation*}
$$

### 9.4.5.2 Calculation of High-Frequency Transformers

High-frequency transformers transfer electric power. Their physical size depends upon the power to be transferred and upon the operating frequency. The higher the frequency the smaller the physical size. Usually frequencies are between 20 and 100 kHz . The material of the core is ferrite.

Data books for appropriate cores provide information about the possible transfer power for various cores.

Therefore the first step in designing a high-frequency transformer is to choose a suitable core with the help of the data book, since the size of the core is dependent on the transferred power and the frequency. The second step is to calculate the number of primary turns. This number determines the magnetic flux density within the core. The number of secondary turns is the ratio of the primary to secondary voltages. Following this, the diameters of the primary and secondary wires can be calculated, appropriate to the required RMS values of the currents.

## Calculation of the Minimum Number of Primary Turns



Fig. 9.34. Transformer voltages and currents
The voltage $V_{1}$ at the primary side of the transformers has a rectangular shape. This results in an input current $I_{1}$, which is the addition of the back-transformed secondary current $I_{2}$ and the magnetising current $I_{\mathrm{M}}$ (Fig. 9.34). To keep the magnetising current $I_{\mathrm{M}}$ low, a magnetic core without an air gap is used.
The rectangular voltage $V_{1}$ causes a triangular shape for the magnetising current $I_{\mathrm{M}}$. The magnetising current is approximately independent of the secondary current $I_{2}$ (see the simple equivalent circuit in Fig. 9.34). The magnetising current is approximately proportional to the magnetic flux or flux density. The input voltage $V_{1}$ determines the magnetic flux. The physical relationships are given by Faraday's law: $V=N \cdot \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}$.


Fig. 9.35. Transformer input voltage and magnetic flux density

For the transformer shown in Fig. 9.34 it follows that:

$$
\begin{equation*}
\Delta B=\frac{V_{1} \cdot T / 2}{N_{1} \cdot A} \tag{9.45}
\end{equation*}
$$

- The change $\Delta B$ in flux density depends on the frequency $f=1 / T$ and the number of turns $N_{1}$. The higher the frequency and the number of turns, the lower the flux density change.

The minimum number of turns $N_{1 \text { min }}$ can be calculated to ensure that a certain change of flux density $\Delta B$ is not exceeded. The saturation flux density of about $\hat{B} \approx 0.3 \mathrm{~T}$ (which means $\Delta \hat{B} \approx 0.6 \mathrm{~T}$ ) cannot be used in high-frequency transformers. In push-pull converters, traversing the hysteresis loop with every clock cycle would result in unacceptable losses, i.e. heat generation. If no further information on core losses and thermal resistance is available, $\Delta B$ should be limited to $\Delta B \approx 0.3-0.2 \mathrm{~T}$ for operating frequencies from 20 to 100 kHz . The lower the value of $\Delta B$, the lower the core losses.

This leads to a minimum number of turns for $N_{1}$ :

$$
\begin{equation*}
N_{1 \min } \geqq \frac{V_{1} \cdot T / 2}{\Delta B \cdot A_{\min }} \quad \text { where } \quad \Delta B \approx 0.2-0.3 \mathrm{~T} \tag{9.46}
\end{equation*}
$$

where $A_{\min }$ is the minimum cross-sectional area of the core. This is where the flux density is at a maximum. The value of $A_{\text {min }}$ can be checked from the data sheet.

Note: In single-ended forward converters the core is magnetised in a unipolar direction only. In push-pull converters the core is dual-polarity magnetised.


The calculation of the minimum number of turns $N_{1 \text { min }}$ is equal for these different types of switched-mode power supplies.

## Calculation of the Wire Diameter

The diameter of the conductors depends on the RMS value of the current. The current can be calculated from the power.

For the full-bridge push-pull converter:
$I_{1 \text { RMS }} \approx \frac{P_{\text {out }}}{V_{\text {in }}} \quad$ and $\quad I_{2 \text { RMS }}=\frac{P_{\text {out }}}{V_{\text {out }}}$



For the half-bridge push-pull converter:
$I_{1 \text { RMS }} \approx \frac{2 P_{\text {out }}}{V_{\text {in }}} \quad$ and $\quad I_{2 \text { RMS }}=\frac{P_{\text {out }}}{V_{\text {out }}}$


For the single ended forward converter:
$I_{1 \text { RMS }} \approx \frac{\sqrt{2} P_{\text {out }}}{V_{\text {in }}}$ and $I_{2 \text { RMS }}=\frac{\sqrt{2} P_{\text {out }}}{V_{\text {out }}}$



The magnetising current can be neglected in this calculation. The current density can be chosen in a range of 2 to $5 \mathrm{~A} / \mathrm{mm}^{2}$, depending on the thermal resistance of the choke. The cross section $A_{\text {wire }}$ and the diameter $d_{\text {wire }}$ can be calculated as follows:

$$
\begin{equation*}
A_{\text {wire }}=\frac{I}{J} \quad \text { and } \quad d_{\text {wire }}=\sqrt{\frac{I \cdot 4}{J \cdot \square}}, \quad \text { where } \quad J=2 \ldots \underline{3} \ldots 5 \frac{\mathrm{~A}}{\mathrm{~mm}^{2}} \tag{9.47}
\end{equation*}
$$

Normally cores are designed so that the available winding cross-sectional area is sufficient for this calculation. Primary and secondary windings need the same winding cross-sectional area.

Note: If good coupling is important, the primary and secondary windings should be placed on top of each other. Improved coupling is achieved if the windings are interlocked. In the following example the coupling is bad in (a), good in (b) and best in (c).

a)

b)

c)

Note: The primary number of turns should not be chosen significantly higher than $N_{1 \text { min }}$. Otherwise the copper losses of the wire would increase needlessly because of the longer conductor.
Other literature even gives an optimum value $\Delta B_{\mathrm{opt}}$, where the sum of the hysteresis and the copper losses are minimised.

Note: For high frequencies and large diameters of the wire the skin effect must be considered. For operating frequencies of more than 20 kHz and wire diameters of more than $1 \mathrm{~mm}^{2}$, stranded wire or copper foil should be used.

### 9.4.6 Power Factor Control

The European Standards EN61000-3-2 defines limits for the harmonics of line current. This concerns appliances, which are determined for the domestic market and have an input power of $\geqq 75 \mathrm{~W}$ (special regulations; see EN61000-3-2). Some limit values from this standard are given in Table 9.2. In practice, this standard means that for many applications a mains rectifier with smoothing is not allowed because of the amount of harmonics (Fig. 9.36).

Table 9.2. RMS limits for the harmonics of the line current

| Harmonic <br> order <br> $n$ | Input power 75 to 600 W <br> maximum value of <br> harmonic current <br> per watt $(\mathrm{mA} / \mathrm{W}) /$ maximum (A) | Input power $>600 \mathrm{~W}$ <br> maximum value of <br> harmonic current <br> (A) |
| :---: | :---: | :---: |
| 3 | $3.4 / 2.30$ | 2.30 |
| 5 | $1.9 / 1.14$ | 1.14 |
| 7 | $1.0 / 0.77$ | 0.77 |
| 9 | $0.5 / 0.4$ | 0.40 |
| 11 | $0.35 / 0.33$ | 0.33 |

To keep the line current approximately sinusoidal, a boost converter can be used (Fig. 9.37). In this case the boost converter is called a power factor preregulator or power factor correction (PFC). In comparison to the simple boost converter, the PFC is controlled in a different way: the output voltage is higher than the input voltage as for the boost converter, but the transistor is turned on and off in such a way that a sinusoidal input current is achieved instead of a constant output voltage. The transistor is driven in such a way that the inductor current $I_{\text {in(t) }}$ follows the shape of the rectified mains $V_{\text {in }}(t)$. The output voltage of the PFC is controlled to approximately $\overline{V_{\text {out }}} \approx 380 \mathrm{~V}$.


Fig. 9.36. Normal rectifying and smoothing of the mains voltage and the mains current


Fig. 9.37. Boost converter as a power factor preregulator

### 9.4.6.1 Currents, Voltages and Power of the PFC


a)

b)

Fig. 9.38. a Currents, voltages and power of the PFC; and $\mathbf{b}$ the magnified input current with its highfrequency ripple

For the following calculations it is assumed that the output power is constant:

$$
\begin{equation*}
P_{\text {out }}=V_{\text {out }} \cdot I_{\text {out }}=\text { const. } \tag{9.48}
\end{equation*}
$$

The input current should be controlled to a sinusoidal shape and should be in phase with the input voltage. The input power is now pulsating and can be calculated as follows:

$$
\begin{equation*}
P_{\text {in }}(t)=\frac{\hat{V}_{\text {in }} \cdot \hat{I}_{\text {in }}}{2} \cdot(1-\cos 2 \omega t) \tag{9.49}
\end{equation*}
$$

The input power consists of a DC part, $P_{\text {in }}=\frac{\hat{V}_{\text {in }} \cdot \hat{I}_{\text {in }}}{2}$, and an AC part, $P_{\text {in } \sim}=\frac{\hat{V}_{\text {in }} \cdot \hat{I}_{\text {in }}}{2}$. $\cos 2 \omega t$. The DC part is equal to the output power $P_{\text {out }}$, provided the PFC is loss-free.

$$
\begin{equation*}
P_{\text {in }}=\frac{\hat{V}_{\text {in }} \cdot \hat{I}_{\text {in }}}{2}=V_{\text {out }} \cdot I_{\text {out }}=P_{\text {out }} \tag{9.50}
\end{equation*}
$$

In practice, an efficiency of about $\eta=95 \%$ is realistic, which means that $P_{\text {in }} \approx \frac{P_{\text {out }}}{0.95}$.
The output capacitor $C_{\text {out }}$ is charged by the pulsating input power $P_{\text {in }}$ and discharged by the constant output power $P_{\text {out }}$. This causes a voltage ripple $\Delta V_{\text {out }}$ across $C_{\text {out }}$, depending on the value of $C_{\text {out }}$. For $230 \mathrm{~V} / 50 \mathrm{~Hz}$ supply, providing $V_{\text {out }}=380 \mathrm{~V}$ and $\Delta V_{\text {out }} / V_{\text {out }}=10 \%$, $C_{\text {out }}$ can be calculated:

$$
\begin{equation*}
C_{\mathrm{out}} \approx 0.5 \frac{{ }^{\circ \mathrm{F}}}{\mathrm{~W}} \tag{9.51}
\end{equation*}
$$

The choke $L$ determines the high-frequency ripple of the input current $\Delta I_{\mathrm{L}}$ (Fig. 9.38 b). The higher the inductance and the higher the clock frequency $f$, the lower is the current ripple. If $\Delta I_{\mathrm{L}}=20 \%$ of the peak value of the input current $\hat{I}_{\text {in }}$, and assuming that the mains voltage has a minimum value of $V_{\text {in }} \min =200 \mathrm{~V}$, it follows that:

$$
\begin{equation*}
L \approx \frac{50 \cdot 10^{3}}{f \cdot P_{\mathrm{in}}} \quad L(\mathrm{H}), f(\mathrm{~Hz}), P(\mathrm{~W}) \tag{9.52}
\end{equation*}
$$

and for the maximum inductor current:

$$
\begin{equation*}
I_{\mathrm{L} \text { max }}=\hat{I}_{\text {in max }}+\frac{1}{2} \Delta I_{\mathrm{L}}=1.1 \cdot \frac{2 P_{\text {in }}}{\hat{V}_{\text {in } \text { min }}} \tag{9.53}
\end{equation*}
$$

### 9.4.6.2 Controlling the PFC

A variety of integrated PFC controllers are available for the switching transistor. Usually the data sheets and application examples of those ICs are very extensive. Nevertheless, it is very important to understand the working principles of the controller in order to design proper circuits (Fig. 9.39).

In general, two feedback circuits are required:
One controller for the input current in order to keep it sinusoidal (input current control), and one controller to keep the average output voltage constant (output voltage control).


Fig. 9.39. The control loops of the PFC
The input control-loop current is led by the input voltage. In this case, the input current acquires the same shape as the input voltage, and consequently the power factor of the mains current will be unity.
The output voltage is controlled by comparing it to a constant reference voltage.
The multiplier links the two loops. The output of the multiplier is sinusoidal, and its magnitude depends on the output voltage-control loop. If the output voltage decreases from its nominal value, the output voltage of the voltage control amplifier increases, which
causes the magnitude of the multiplier output to increase. Consequently, the RMS value of the input current also increases.
For proper operation:

- The low-pass filter $R_{5}, C_{5}$ should have a cutoff frequency of approximately $10 \%$ of $f_{\text {PWM }}$ in order to suppress the current ripple of $f_{\text {PWM }}$ in the current measurement at $R_{\mathrm{M}}$.
- The cutoff frequency the PI regulator $R_{5}, C_{6}$ should be approximately 10 times higher than the frequency of the mains: $f_{\mathrm{R}_{5} \mathrm{C}_{6}} \approx 500 \mathrm{~Hz}$.
- The cutoff frequency of the output voltage regulator $R_{7}, C_{7}$ should be $10 \%$ of the output voltage ripple ( 100 Hz ): $f_{\mathrm{R}_{7} \mathrm{C}_{7}} \approx 10 \mathrm{~Hz}$.
- The RMS value of the input current is controlled by the output voltage-control loop, while the input current control-loop creates a sinusoidal input current.


### 9.4.7 Radio-Frequency Interference Suppression of SwitchedMode Power Supplies

Switched-mode power supplies generate radio-frequency interference caused by the high frequency switching. This interference propagates through space by means of electromagnetic fields or via the mains supply in the form of currents and voltages. Legislation limits the levels of permitted interference. These limits are published in the European Standards. Table 9.3 gives some of the most important limits for non-stationary high-frequency equipment (interference class B). High-frequency equipment is that which operates at a frequency in excess of 9 kHz .

Table 9.3. Limits for mobile high frequency equipment class B

| Quantity | Frequency range | Limits | Standard |
| :--- | :---: | :---: | :---: |
| Electromagnetic interference | 30 to 230 MHz | $30 \mathrm{~dB}(\propto \mathrm{~V} / \mathrm{m})$ | EN55022 |
| at 10 m distance | 230 to 1000 MHz | $37 \mathrm{~dB}(\propto \mathrm{~V} / \mathrm{m})$ | Class B |
| Current harmonics | 0 to 2 kHz | see Table 9.2 | EN61000 |
| at the mains |  | (PFC) |  |
| Conducted-mode interference | 0.15 to $0.5 \mathrm{MHz}^{* *}$ | 66 to $56 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{Q}^{*}$ | EN55022 |
| voltages at the mains |  | 56 to $46 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{M}^{*}$ | Class B |
| with respect to earth | 0.5 to 5 MHz | $56 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{Q}^{*}$ |  |
|  |  | $46 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{M}^{*}$ |  |
|  | 5 to 30 MHz | $60 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{Q}^{*}$ |  |
|  |  | $50 \mathrm{~dB}(\propto \mathrm{~V}) \mathrm{M}^{*}$ |  |

* Q: Measured with quasi-peak detector

M: Measured with average detector
** Linear decrease to the logarithm of the frequency

### 9.4.7.1 Radio-Frequency Interference Radiation

High-frequency equipment emission of radio-frequency interference is measured as the radio noise field strength $(\propto \mathrm{V} / \mathrm{m})$. The amount of radio-frequency interference radiation depends on the rise time of the switched currents and voltages and significantly on the layout of the printed circuit board. To keep the radio-frequency interference radiation low, three principles should be adhered to:

- Meshes, in which switched currents flow, should be designed as small as possible in the (surrounding) area to keep their electromagnetic field low.
- Nodes whose potential with respect to earth step up and down with switching should be as small as possible in volumetric space, to keep parasitic capacitance to earth low.
- The switched-mode power supply should have a metal housing.

Note: In addition to reduction of the interference radiation, the first two principles are also beneficial in keeping the conducted interference leaving the power supply via the mains low. It should also be noted that a high interference level results in inaccurate switching of the transistors and problems with the closed loop-control circuit. This often causes audible noise.

### 9.4.7.2 Mains Input Conducted-Mode Interference

Switched-mode power supplies take high-frequency currents out of the mains. These currents cause a voltage drop at the source impedance of the mains, which can be measured at the mains terminals. According to the European Standards the interference voltages have to be measured between the mains terminals and earth. For this measurement specific radio interference test equipment is needed, which includes a radio-frequency interference meter and an artificial mains network. This equipment is required to define a specific mains impedance for comparable measurements. To reduce conducted-mode interference special radio-frequency interference filters or electromagnetic interference filters (EMI-filters) are employed.
A distinction is made between three different types of radio interference voltage (Fig. 9.40):

- Unsymmetric radio-frequency interference voltage: This is the high- frequency voltage between earth and each mains terminal. This is the only voltage measured in accordance with standards. The limits in Table 9.3 are valid for this voltage only.
- Common-mode radio-frequency interference voltage (asymmetric radio-interference voltage): This is the sum of all unsymmetric interference voltages with respect to earth.
- Differential-mode radio-frequency interference voltage (symmetric radio-frequency interference voltage): This is the high-frequency voltage between the mains terminals.


Fig. 9.40. Single-phase mains radio-frequency interference voltages
Although the legislation requires only measurement of the unsymmetric radio-frequency interference voltages, the common-mode and differential-mode interferences are decisive
for radio-frequency interference suppression. The respective suppression of common-mode and differential-mode interference requires different designs and components.

### 9.4.7.3 Suppression of Common-Mode Radio-Frequency Interference

Common-mode radio-frequency interference voltages at the mains terminals $L_{1}$ and $N$ (for three-phase mains $L_{1}, L_{2}, L_{3}$ and $N$ ) are common-mode voltages with respect to earth potential $P E$, which means they are equal in magnitude and phase. The interference currents $I_{\approx}$ which are driven by this common-mode voltage, are also common-mode currents. These flow via earth (earth conductor) and back through the parasitic capacitance $C_{\text {earth }}$. $C_{\text {earth }}$ is very low. Therefore the common-mode interference voltage has a very high impedance, which means that this interference source acts like a current source. A lowpass filter to suppress the interference voltages at the mains terminals must therefore be arranged as in Fig. 9.41. Looking from the switched-mode power supply, the required lowpass filter must have a shunt capacitor $\left(C_{\mathrm{y}}\right)$ and a current-compensated choke. Currentcompensated chokes are wound so that no magnetic field is generated by the operating current ( 50 or 60 Hz ), see Fig. 9.42. Therefore the choke only acts against the commonmode interference current and does not affect the operating current.


Fig. 9.41. Suppression of asymmetric (common-mode) radio frequency interference voltages
The capacitors are called y-capacitors. Y-capacitors have to fulfil special safety requirements because they would connect the mains phase to ground in case of a fault. Y-capacitors may not exceed a certain capacitance to ensure that the permitted maximum earth leakage current is not exceeded. The earth leakage current is a 50 Hz current (or 60 Hz in certain countries). The maximum earth leakage current is 3.5 mA (in medical equipment it is a maximum of 0.5 mA ). According to the standards for the measurement of earth leakage current, terminals $L_{1}$ and $N$ have to be connected, and the maximum mains voltage has to be applied between $L_{1} \& N$ and $P E$. This means that the y-capacitors are in parallel. For European $230 \mathrm{~V} / 50 \mathrm{~Hz}$ mains it follows that for the maximum y-capacitor:

$$
C_{\mathrm{y}} \leqq \frac{1}{2} \cdot \frac{230 \mathrm{~V}+10 \%}{2 \mathrm{a} 50 \mathrm{~Hz} \cdot 3.5 \mathrm{~mA}} \approx 22 \mathrm{nF}
$$

### 9.4.7.4 Suppression of Differential-Mode Radio Frequency Interference

Differential-mode radio interference voltages are high-frequency voltages between the mains terminals $L_{1}$ and $N$. To reduce the interference level, an LC low-pass filter has to be inserted between the mains conductors $L_{1}$ and $N$ (Fig. 9.43). The differential-mode interference voltage results mainly from the pulsed current, which is taken by the switchedmode power supply from the mains rectifier smoothing capacitor. Because of the impedance


not current compensated choke

Fig. 9.42. Left: current-compensated choke for common-mode interference, right: not current-compensated choke (in this case, a ring-core double choke with powder core) for differential-mode interferences
of the smoothing capacitor, a high frequency voltage is generated between $L_{1}$ and $N$. This is a low impedance, which means that the interference source acts as a voltage source. Looking from the switched-mode power supply the interference filter must be arranged using a series choke followed by a shunt capacitor (Fig. 9.43). The choke must not be a compensated choke, because differential-mode interference current and 50 Hz -operating current (which is also a differential type) cause a magnetic field within the core (Fig. 9.42). To avoid saturation these EMI suppression chokes require an air gap. In a powder-core choke the air gap is not visible, because the air gap is achieved with iron powder, which is glued together. Air gap size can be fixed by the amount of glue used. Open cores are also used. With this type the magnetic field loop closes through space. Powder choke cores and other ring cores are preferred because they have a lower magnetic field outside the core.


Fig. 9.43. Suppression of differential-mode interference
The capacitors for this purpose are called $\mathbf{x}$-capacitors. They have a lower test-voltage than y-capacitors and are not limited in their value. Foil-type capacitors up to $1 \propto \mathrm{~F}$ are normally used.

Note: Sometimes the impedance of the differential-mode interference source is approximately equal to the mains impedance. In that case a p-low-pass filter using two $x$-capacitors are appropriate (in Fig. 9.43 dotted lined).

### 9.4.7.5 Complete Radio-Frequency Interference Filter

Figure 9.44 shows a complete radio-frequency interference filter. The component values can be found iteratively and with the help of experience. With the radio-interference meter only the unsymmetric interference voltages can be measured. Therefore it is not possible to differentiate between common-mode and differential-mode interference. In practice, the operating frequency and several harmonics are differential-mode interference and all high frequencies, say above 5 MHz , are common-mode. Often a powder core choke is not required.


Fig. 9.44. Radio-frequency interference filter for common-mode and differential-mode filtering

### 9.5 Notation Index

A cross-sectional area
$A_{\mathrm{L}} \quad$ magnetic conductance
$B_{\mathrm{FE}} \quad$ magnetic flux density in iron/ferrite
$B_{\delta} \quad$ magnetic flux density in the air gap
C capacitor
D diode
$f \quad$ frequency
$f_{0} \quad$ resonant frequency
$\Delta V, \Delta I$ voltage ripple, current ripple
in as index: input value
$H_{\mathrm{FE}} \quad$ magnetic field strength in iron/ferrite
$H_{\delta} \quad$ magnetic field strength in the air gap
$I \quad$ DC current, RMS value of a current
$\hat{I} \quad$ peak value of a current
$\bar{I} \quad$ average value of a current
$I_{\mathrm{F}} \quad$ current in a diode in forward direction
$I_{\mathrm{s} / \mathrm{c}} \quad$ short circuit current
$J \quad$ current density
$l_{\mathrm{FE}} \quad$ magnetic length of the iron/ferrite core
$L \quad$ inductivity
out as index: output value
$P$ power
$P_{\mathrm{L}} \quad$ power loss
PWM pulse-width modulated
$\mathrm{R} \quad$ as index: rated value
$R_{\mathrm{M}} \quad$ current measurement resistor
RMS root-mean square
$t_{1} \quad$ on-time of a transistor
$t_{1} / T \quad$ duty cycle
$T$ period time

| $V_{\mathrm{BE}}$ | base-emitter voltage <br> $V_{\mathrm{F}}$ |
| :--- | :--- |
| forward voltage drop at a diode <br> $V_{\mathrm{FE}}$ | magnetic volume of a ferrite core <br> $V_{\max }$ |
| $V_{\min }$ | maximum value of voltage <br> minimum value of voltage |
| $V_{\text {ref }}$ | reference voltage |
| $V_{\mathrm{Rpp}}$ | peak-to-peak voltage ripple |
| $V_{\mathrm{PWM}}$ | pulse width modulated voltage |
| $V_{\mathrm{Z}}$ | zener voltage |
| $V_{\delta}$ | volume of the air gap <br> $Z$ |
| impedance |  |
| $Z_{\mathrm{max}}$ | impedance of a capacitor (in the data sheet usually for 10 kHz$)$ <br> $\delta$ |
| $\mu_{0}$ | length of the air gap <br> permeability of air/vacuum, $1.257 \cdot 10^{-6} \mathrm{Vs} / \mathrm{Am}$ <br> $\mu_{\mathrm{r}}$ |
| relative permeability |  |

### 9.6 Further Reading

Billings, K.: Switchmode Power Supply Handbook McGraw-Hill (1999)

Chryssis, G.: High Frequency Switching Power Supplies McGrawHill (1984)

Rashid, M. H.: Power Electronics: Circuits, Devices, and Applications, 2nd Edition Prentice Hall (1993)

Rashid, M. H.: Spice for Circuits and Elecronics using Pspice, 2nd Edition Prentice Hall (1995)

Tihanyi, L.: Electromagnetic Compatibility in Power Electronics Butterworth/Heinemann (1995)

## A Mathematical Basics

## A. 1 Trigonometric Functions

## A.1.1 Properties



Fig. A.1. Graphs of sine and cosine functions


Fig. A.2. Graphs of tangent and cotangent functions

| Special values |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\alpha=$ | 0 | $\mathbf{\square} / 6$ | $\mathbf{\square} / 4$ | $\mathbf{\square} / 3$ | $\mathbf{\square} / 2$ |
|  | $0^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ |
| $\sin x=$ | 0 | $1 / 2$ | $\sqrt{2} / 2$ | $\sqrt{3} / 2$ | 1 |
| $\cos x=$ | 1 | $\sqrt{3} / 2$ | $\sqrt{2} / 2$ | $1 / 2$ | 0 |
| $\tan x=$ | 0 | $\sqrt{3} / 3$ | 1 | $\sqrt{3}$ | $\infty$ |



Fig. A.3. Signs of the trigonometric functions

$|$| Conversions |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\cos \alpha$ | $\sin \alpha$ | $\tan \alpha$ |
| $\cos \alpha=$ | - | $\pm \sqrt{1-\sin ^{2} \alpha}$ | $\frac{1}{ \pm \sqrt{1+\tan ^{2} \alpha}}$ |
| $\sin \alpha=$ | $\pm \sqrt{1-\cos ^{2} \alpha}$ | - | $\frac{\tan \alpha}{ \pm \sqrt{1+\tan ^{2} \alpha}}$ |
| $\tan \alpha=$ | $\frac{ \pm \sqrt{1-\cos ^{2} \alpha}}{\cos \alpha}$ | $\frac{\sin \alpha}{ \pm \sqrt{1-\sin ^{2} \alpha}}$ | - |
| $\sin ^{2} \alpha+\cos ^{2} \alpha=1 ; \quad \tan \alpha=\frac{\sin \alpha}{\cos \alpha} ; \quad \cot \alpha=\frac{1}{\tan \alpha}$ |  |  |  |


| Squares of trigonometric functions |  |  |  |
| :--- | :---: | :---: | :---: |
|  | $\sin ^{2} \alpha$ | $\cos ^{2} \alpha$ | $\tan ^{2} \alpha$ |
| $\sin ^{2} \alpha=$ | - | $1-\cos ^{2} \alpha$ | $\frac{\tan ^{2} \alpha}{1+\tan ^{2} \alpha}$ |
| $\cos ^{2} \alpha=$ | $1-\sin ^{2} \alpha$ | - | $\frac{1}{1+\tan ^{2} \alpha}$ |
| $\tan ^{2} \alpha=$ | $\frac{\sin ^{2} \alpha}{1-\sin ^{2} \alpha}$ | $\frac{1-\cos ^{2} \alpha}{\cos ^{2} \alpha}$ | - |


| Symmetry properties |  |  |
| :--- | ---: | ---: |
| $\sin (-\alpha)=$ | $-\sin \alpha$ | odd function |
| $\cos (-\alpha)$ | $=$ | $\cos \alpha$ |
| even function |  |  |
| $\tan (-\alpha)$ | $=$ | $-\tan \alpha$ |
|  | odd function |  |


| Sums and differences with $\mathbf{a}$ |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: |
| $x=$ | $(\mathbf{a} / 2-\alpha)$ | $(\mathbf{a}-\alpha)$ | $(\mathbf{a}+\alpha)$ | $(\mathbf{a} / 2+\alpha)$ |
| $\sin x=$ | $\cos \alpha$ | $\sin \alpha$ | $-\sin \alpha$ | $\cos \alpha$ |
| $\cos x=$ | $\sin \alpha$ | $-\cos \alpha$ | $-\cos \alpha$ | $-\sin \alpha$ |
| $\tan x=$ | $\cot \alpha$ | $-\tan \alpha$ | $\tan \alpha$ | $-\cot \alpha$ |

## A.1.2 Sums and Differences of Trigonometric Functions

$$
\begin{align*}
\sin \alpha+\sin \beta & =2 \sin \left(\frac{\alpha+\beta}{2}\right) \cdot \cos \left(\frac{\alpha-\beta}{2}\right)  \tag{A.1}\\
\sin \alpha-\sin \beta & =2 \cos \left(\frac{\alpha+\beta}{2}\right) \cdot \sin \left(\frac{\alpha-\beta}{2}\right)  \tag{A.2}\\
\cos \alpha+\cos \beta & =2 \cos \left(\frac{\alpha+\beta}{2}\right) \cdot \cos \left(\frac{\alpha-\beta}{2}\right) \tag{A.3}
\end{align*}
$$

$$
\begin{align*}
& \cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \cdot \sin \left(\frac{\alpha-\beta}{2}\right)  \tag{A.4}\\
& \tan \alpha \pm \tan \beta=\frac{\sin (\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta} \tag{A.5}
\end{align*}
$$

## A.1.3 Sums and Differences in the Argument

$$
\begin{align*}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta  \tag{A.6}\\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta  \tag{A.7}\\
& \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \tag{A.8}
\end{align*}
$$

## A.1.4 Multiples of the Argument

$$
\begin{align*}
\sin 2 \alpha & =2 \sin \alpha \cos \alpha  \tag{A.9}\\
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha  \tag{A.10}\\
\tan 2 \alpha & =\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}  \tag{A.11}\\
\sin 3 \alpha & =3 \sin \alpha-4 \sin ^{3} \alpha  \tag{A.12}\\
\cos 3 \alpha & =4 \cos ^{3} \alpha-3 \cos \alpha  \tag{A.13}\\
\tan 3 \alpha & =\frac{3 \tan \alpha-\tan ^{3} \alpha}{1-3 \tan ^{2} \alpha}  \tag{A.14}\\
\sin 4 \alpha & =8 \cos ^{3} \alpha \sin ^{2}-4 \cos \alpha \sin \alpha  \tag{A.15}\\
\cos 4 \alpha & =8 \cos ^{4} \alpha-8 \cos ^{2} \alpha+1  \tag{A.16}\\
\tan 4 \alpha & =\frac{4 \tan \alpha-4 \tan ^{3} \alpha}{1-6 \tan \alpha+\tan ^{4} \alpha}  \tag{A.17}\\
\sin \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{2}}  \tag{A.18}\\
\cos \frac{\alpha}{2} & = \pm \sqrt{\frac{1+\cos \alpha}{2}}  \tag{A.19}\\
\tan \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \tag{A.20}
\end{align*}
$$

Note: In Eqs. (A.18)-(A.20) the sign of the square root must be equal to the sign of the function on the left side of the equation.

## A.1.5 Weighted Sums of Trigonometric Functions

$$
\begin{equation*}
a \cdot \cos \alpha+b \cdot \cos \beta=c \cdot \cos \gamma \tag{A.21}
\end{equation*}
$$

with

$$
\begin{gather*}
c=\sqrt{a^{2}+b^{2}+2 a b \cdot \cos (\alpha-\beta)} ; \quad \tan \gamma=\frac{a \cdot \sin \alpha+b \cdot \sin \beta}{a \cdot \cos \alpha+b \cdot \cos \beta}  \tag{A.22}\\
a \cdot \sin \alpha+b \cdot \sin \beta=c \cdot \sin \gamma \tag{A.23}
\end{gather*}
$$

with

$$
c \text { and } \tan \gamma \quad \text { as in Eq. (A.22) }
$$

## A.1.6 Products of Trigonometric Functions

$$
\begin{align*}
\cos \alpha \cdot \cos \beta & =\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]  \tag{A.24}\\
\cos \alpha \cdot \sin \beta & =\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]  \tag{A.25}\\
\sin \alpha \cdot \sin \beta & =\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]  \tag{A.26}\\
\sin \alpha \cdot \cos \beta & =\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]  \tag{A.27}\\
\sin (\alpha+\beta) \cdot \sin (\alpha-\beta) & =\cos ^{2} \beta-\cos ^{2} \alpha  \tag{A.28}\\
\cos (\alpha+\beta) \cdot \cos (\alpha-\beta) & =\cos ^{2} \beta-\sin ^{2} \alpha \tag{A.29}
\end{align*}
$$

## A.1.7 Triple Products

$$
\begin{align*}
& \cos \alpha \cdot \cos \beta \cdot \cos \gamma=\frac{1}{4}[\cos (\alpha+\beta+\gamma)+\cos (-\alpha+\beta+\gamma)  \tag{A.30}\\
& +\cos (\alpha-\beta+\gamma)+\cos (\alpha+\beta-\gamma)] \\
& \cos \alpha \cdot \cos \beta \cdot \sin \gamma=\frac{1}{4}[\sin (\alpha+\beta+\gamma)+\sin (-\alpha+\beta+\gamma)  \tag{A.31}\\
& +\sin (\alpha-\beta+\gamma)-\sin (\alpha+\beta-\gamma)] \\
& \cos \alpha \cdot \sin \beta \cdot \sin \gamma=\frac{1}{4}[-\cos (\alpha+\beta+\gamma)-\cos (-\alpha+\beta+\gamma)  \tag{A.32}\\
& +\cos (\alpha-\beta+\gamma)+\cos (\alpha+\beta-\gamma)] \\
& \sin \alpha \cdot \sin \beta \cdot \sin \gamma=\frac{1}{4}[-\sin (\alpha+\beta+\gamma)+\sin (-\alpha+\beta+\gamma)  \tag{A.33}\\
& +\sin (\alpha-\beta+\gamma)+\sin (\alpha+\beta-\gamma)]
\end{align*}
$$

## A.1.8 Powers of Trigonometric Functions

$$
\begin{align*}
\cos ^{2} \alpha & =\frac{1}{2}(1+\cos 2 \alpha)  \tag{A.34}\\
\sin ^{2} \alpha & =\frac{1}{2}(1-\cos 2 \alpha)  \tag{A.35}\\
\cos ^{3} \alpha & =\frac{1}{4}(\cos 3 \alpha+3 \cos \alpha)  \tag{A.36}\\
\sin ^{3} \alpha & =\frac{1}{4}(3 \sin \alpha-\sin 3 \alpha)  \tag{A.37}\\
\cos ^{4} \alpha & =\frac{1}{8}(\cos 4 \alpha+4 \cos 2 \alpha+3)  \tag{A.38}\\
\sin ^{4} \alpha & =\frac{1}{8}(\cos 4 \alpha-4 \cos 2 \alpha+3) \tag{A.39}
\end{align*}
$$

## A.1.9 Trigonometric Functions with Complex Arguments

$$
\begin{align*}
& \cos z=\frac{1}{2} \mathrm{e}^{\mathrm{j} z}+\frac{1}{2} \mathrm{e}^{-\mathrm{j} z}  \tag{A.40}\\
& \sin z=\frac{1}{2 \mathrm{j}} \mathrm{e}^{\mathrm{j} z}-\frac{1}{2 \mathrm{j}} \mathrm{e}^{-\mathrm{j} z} \tag{A.41}
\end{align*}
$$

## A. 2 Inverse Trigonometric Functions (Arc Functions)

Arc functions are the inverse functions of trigonometric functions.

$$
\begin{array}{ll}
\arcsin (\sin \alpha)=\alpha & \arccos (\cos \alpha)=\alpha \\
\operatorname{arccot}(\cot \alpha)=\alpha & \arctan (\tan \alpha)=\alpha
\end{array}
$$

Note: These functions are designated on calculators as $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$.
Because of the periodicity of the trigonometric functions their inverse functions are ambiguous. Therefore the principal values are defined.

$$
\begin{align*}
& -\mathbf{\square} / 2 \leq \arcsin x \leq+\mathbf{o} / 2  \tag{A.42}\\
& 0 \leq \arccos x \leq \mathbf{\square}  \tag{A.43}\\
& -\mathbf{a} / 2 \leq \arctan x \leq+\mathbf{o} / 2 \tag{A.44}
\end{align*}
$$

Within the range of the principal values it holds that

$$
\begin{align*}
\arcsin x & =\mathbf{q} / 2-\arccos x \tag{A.45}
\end{align*}=\arctan \left(x / \sqrt{1-x^{2}}\right) ~=~=a-\arcsin x=\operatorname{arccot}\left(x / \sqrt{1-x^{2}}\right) .
$$



Fig. A.4. Graphs of the arcsine and arccosine functions within the range of the principal values


Fig. A.5. Graph of the arctan function

## A. 3 Hyperbolic Functions

$$
\begin{align*}
\cosh z & =\frac{1}{2} \mathrm{e}^{z}+\frac{1}{2} \mathrm{e}^{-z}  \tag{A.48}\\
\sinh z & =\frac{1}{2} \mathrm{e}^{z}-\frac{1}{2} \mathrm{e}^{-z}  \tag{A.49}\\
\tanh z & =\frac{\mathrm{e}^{z}-\mathrm{e}^{-z}}{\mathrm{e}^{z}+\mathrm{e}^{-z}} \tag{A.50}
\end{align*}
$$

The addition theorems of the hyperbolic functions are obtained by formally substituting

$$
\sin z \rightarrow \mathrm{j} \sinh z ; \quad \cos z \rightarrow \cosh z
$$

Example: $\cos ^{2} z+\sin ^{2} z \rightarrow \cosh ^{2} z+\mathrm{j}^{2} \sinh ^{2} z=\cosh ^{2} z-\sinh ^{2} z=1$

## A. 4 Differential Calculus

## A.4.1 Basics of Differential Calculus

While $f(x), u(x), v(x)$ are functions with an existing derivative, $a$ is a purely real constant.

$$
\begin{array}{lll}
a^{\prime} & =0 & \\
(a u)^{\prime} & =a u^{\prime} & \\
(u+v)^{\prime} & =u^{\prime}+v^{\prime} & \\
(u \cdot v)^{\prime} & =u v^{\prime}+v u^{\prime} & \text { Product rule } \\
\left(\frac{u}{v}\right)^{\prime} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & \text { Division rule } \\
{[f(u(x))]^{\prime}} & =f^{\prime}(u) \cdot u^{\prime}(x) & \text { Chain rule }
\end{array}
$$

## A.4.2 Derivatives of Elementary Functions

| $f(x)$ | $f^{\prime}(x)$ |
| :--- | :--- |
| $a$ | 0 |
| $x$ | 1 |
| $a x^{n}$ | $a n x^{n-1}$ |
| $a^{x}$ | $a^{x} \ln a$ |
| $\mathrm{e}^{a x}$ | $a \mathrm{e}^{a x}$ |
| $x^{x}$ | $x^{x}(1+\ln x)$ |
|  | $\frac{1}{x} \log _{a} \mathrm{e}$ |
| $\log _{a} x$ | $\frac{1}{x}$ |
| $\ln x$ | $\cos x$ |
| $\sin x$ | $-\sin x$ |
| $\cos x$ | $\cos { }^{-2} x=1+\tan ^{2} x$ |
| $\tan x$ | $-\sin { }^{-2} x=-\left(1+\cot ^{2} x\right)$ |
| $\cot x$ | $\cosh x$ |
| $\sinh x$ | $\sinh x$ |
| $\cosh x$ | $\sin$ |


| $f(x)$ | $f^{\prime}(x)$ |
| :--- | :--- |
| $\tanh x$ | $\cosh ^{-2} x=1-\tanh ^{2} x$ |
| $\operatorname{coth} x$ | $-\sinh ^{-2} x=1-\operatorname{coth}^{2} x$ |
| $\arcsin x$ | $\frac{1}{\sqrt{1-x^{2}}}$ |
| $\arccos x$ | $-\frac{1}{\sqrt{1-x^{2}}}$ |
| $\arctan x$ | $\frac{1}{1+x^{2}}$ |
| $\operatorname{arccot} x$ | $-\frac{1}{1+x^{2}}$ |
| $\operatorname{arsinh} x$ | $\frac{1}{\sqrt{x^{2}+1}}$ |
| $\operatorname{arcosh} x$ | $\frac{1}{\sqrt{x^{2}-1}}$ |
| $\operatorname{artanh} x$ | $\frac{1}{1-x^{2}}, \quad x^{2}<1$ |
| $\operatorname{arcoth} x$ | $\frac{1}{1-x^{2}}, \quad x^{2}>1$ |

## A. 5 Integral Calculus

## A.5.1 Basics of Integral Calculus

$$
\begin{align*}
& \int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x  \tag{A.51}\\
& \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x  \tag{A.52}\\
& \int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{c} f(x) \mathrm{d} x=\int_{c}^{b} f(x) \mathrm{d} x  \tag{A.53}\\
& \int_{a}^{b} f(x) \pm g(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x \pm \int_{a}^{b} g(x) \mathrm{d} x  \tag{A.54}\\
& \int_{a}^{b} u \mathrm{~d} v=u(b) v(b)-u(a) v(a)-\int_{a}^{b} v \mathrm{~d} u \tag{A.55}
\end{align*}
$$

## A.5.1.1 Integrals of Elementary Functions

$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1} \quad$ for $n \neq-1$
$\int \frac{\mathrm{d} x}{x}=\ln x$
$\int f(x) f^{\prime}(x) \mathrm{d} x=\frac{1}{2}(f(x))^{2}$
$\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln (f(x))$
$\int \frac{f^{\prime}(x)}{2 \sqrt{f(x)}} \mathrm{d} x=\sqrt{f(x)}$
$\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}$
$\int \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x}$
$\int \ln x \mathrm{~d} x=x \ln x-x$
$\int a^{x} \ln a \mathrm{~d} x=a^{x}$
$\int \sin x \mathrm{~d} x=-\cos x$
$\int \cos x \mathrm{~d} x=\sin x$
$\int \cot x \mathrm{~d} x=\ln |\sin x|$
$\int \frac{\mathrm{d} x}{\sin ^{2} x}=-\cot x$
$\int \frac{\mathrm{d} x}{\cos ^{2} x}=\tan x$
$\int \sinh x \mathrm{~d} x=\cosh x$
$\int \cosh x \mathrm{~d} x=\sinh x$
$\int \frac{\mathrm{d} x}{\sinh ^{2} x}=-\operatorname{coth} x$
$\int \frac{\mathrm{d} x}{\cosh ^{2} x}=\tanh x$
$\int \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\arcsin x=-\arccos x$
$\int \frac{\mathrm{d} x}{\sqrt{x^{2}-1}}=\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
$\int \frac{\mathrm{d} x}{\sqrt{x^{2}+1}}=\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
$\int \frac{\mathrm{d} x}{1+x^{2}}=\arctan x=-\operatorname{arccot} x$
$\int \frac{\mathrm{d} x}{1-x^{2}}=\operatorname{artanh} x, \quad$ for $x^{2}<1$

$$
\begin{equation*}
=\operatorname{arcoth} x, \quad \text { for } x^{2}>1 \tag{A.78}
\end{equation*}
$$

$\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \left(\frac{x}{a}\right), \quad a \neq 0$
$\int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|$
$\int \frac{\sqrt{1+x}}{\sqrt{1-x}} \mathrm{~d} x=\arcsin x-\sqrt{1-x^{2}}$

## A.5.2 Integrals Involving Trigonometric Functions

$$
\begin{align*}
& \int \sin m x \mathrm{~d} x=-\frac{1}{m} \cos m x  \tag{A.82}\\
& \int \sin ^{2} x \mathrm{~d} x=-\frac{1}{2} \sin x \cos x+\frac{x}{2}=-\frac{1}{4} \sin 2 x+\frac{x}{2}  \tag{A.83}\\
& \int \sin ^{3} x \mathrm{~d} x=-\frac{1}{3}\left(\sin ^{2} x+2\right) \cdot \cos x=-\frac{3 \cos x}{4}+\frac{\cos ^{3} x}{12}  \tag{A.84}\\
& \int \sin ^{n} x \mathrm{~d} x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x \mathrm{~d} x  \tag{A.85}\\
& \int \frac{\mathrm{~d} x}{\sin x}=\ln \left|\frac{1}{\sin x}-\cot x\right|=\ln \left|\tan \frac{x}{2}\right| \\
& \quad=-\frac{1}{2} \ln \left(\frac{1+\cos x}{1-\cos x}\right)=\operatorname{artanh}(\cos x)  \tag{A.86}\\
& \int \frac{\mathrm{d} x}{\sin ^{2} x}=-\cot x  \tag{A.87}\\
& \int \sin (a+b x) \mathrm{d} x=-\frac{1}{b} \cos (a+b x)  \tag{A.88}\\
& \int \cos m x \mathrm{~d} x=\frac{1}{m} \sin m x  \tag{A.89}\\
& \int \cos 2 x \mathrm{~d} x=\frac{1}{2} \sin x \cos x+\frac{x}{2}=\frac{1}{4} \sin 2 x+\frac{x}{2} \tag{A.90}
\end{align*}
$$

$$
\begin{align*}
& \int \cos ^{3} x \mathrm{~d} x=\frac{1}{3} \sin x\left(\cos ^{2} x+2\right)=\frac{3}{4} \sin x+\frac{\sin ^{3} x}{12}  \tag{A.91}\\
& \int \cos ^{n} x \mathrm{~d} x=\frac{1}{n} \sin x \cos ^{n-1} x+\frac{n-1}{n} \int \cos ^{n-2} x \mathrm{~d} x  \tag{A.92}\\
& \int \frac{\mathrm{~d} x}{\cos x}=\ln \left|\frac{1}{\cos x}+\tan x\right|=\ln \tan \left(\frac{\mathrm{a}}{4}+\frac{x}{2}\right) \\
& =\frac{1}{2} \ln \left(\frac{1+\sin x}{1-\sin x}\right)=\operatorname{artanh}(\sin x)  \tag{A.93}\\
& \int \frac{\mathrm{d} x}{\cos ^{2} x}=\tan x  \tag{A.94}\\
& \int \cos (a+b x) \mathrm{d} x=\frac{1}{b}(\sin a+b x)  \tag{A.95}\\
& \int \sin x \cos x \mathrm{~d} x=\frac{\sin ^{2} x}{2}  \tag{A.96}\\
& \int \frac{\mathrm{~d} x}{\sin x \cos x}=\ln (\tan x)  \tag{A.97}\\
& \int \sin m x \sin n x \mathrm{~d} x=\frac{\sin (m-n) x}{2(m-n)}-\frac{\sin (m+n) x}{2(m+n)} \text {, for } m^{2} \neq n^{2}  \tag{A.98}\\
& \int \cos m x \cos n x \mathrm{~d} x=\frac{\sin (m-n) x}{2(m-n)}+\frac{\sin (m+n) x}{2(m+n)} \text {, for } m^{2} \neq n^{2}  \tag{A.99}\\
& \int \sin m x \cos n x \mathrm{~d} x=-\frac{\cos (m-n) x}{2(m-n)}-\frac{\cos (m+n) x}{2(m+n)} \text {, for } m^{2} \neq n^{2}  \tag{A.100}\\
& \int \sin x \cos ^{n} x \mathrm{~d} x=-\frac{1}{n+1} \cos ^{n+1} x  \tag{A.101}\\
& \int \sin ^{n} x \cos x \mathrm{~d} x=\frac{1}{n+1} \sin ^{n+1} x  \tag{A.102}\\
& \int \tan x \mathrm{~d} x=-\ln |\cos x|  \tag{A.103}\\
& \int \cot x \mathrm{~d} x=\ln |\sin x|  \tag{A.104}\\
& \int \tan ^{2} x \mathrm{~d} x=\tan x-x  \tag{A.105}\\
& \int \cot ^{2} x \mathrm{~d} x=-\cot x-x  \tag{A.106}\\
& \int x \sin x \mathrm{~d} x=\sin x-x \cos x  \tag{A.107}\\
& \int x^{2} \sin x \mathrm{~d} x=2 x \sin x-\left(x^{2}-2\right) \cos x \tag{A.108}
\end{align*}
$$

$\int x^{3} \sin x \mathrm{~d} x=\left(3 x^{2}-6\right) \sin x-\left(x^{3}-6 x\right) \cos x$
$\int x^{n} \sin x \mathrm{~d} x=-x^{n} \cos x+n \int x^{n-1} \cos x \mathrm{~d} x$
$\int x \sin ^{2} x \mathrm{~d} x=\frac{x^{2}}{4}-\frac{x}{4} \sin 2 x-\frac{1}{8} \cos 2 x$
$\int x^{2} \sin ^{2} x \mathrm{~d} x=\frac{x^{3}}{6}-\left(\frac{x^{2}}{4}-\frac{1}{8}\right) \sin 2 x-\frac{x}{4} \cos 2 x$
$\int \frac{\sin x}{x} \mathrm{~d} x=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\frac{x^{7}}{7 \cdot 7!}+-\cdots$
$\int \frac{\sin x}{x^{n}} \mathrm{~d} x=-\frac{\sin x}{(n-1) x^{n-1}}+\frac{1}{n-1} \int \frac{\cos x}{x^{n-1}} \mathrm{~d} x, \quad$ for $n \neq 1$
$\int x \cos x \mathrm{~d} x=\cos x+x \sin x$
$\int x^{2} \cos x \mathrm{~d} x=2 x \cos x+\left(x^{2}-2\right) \sin x$
$\int x^{3} \cos x \mathrm{~d} x=\left(3 x^{2}-6\right) \cos x+\left(x^{3}-6 x\right) \sin x$
$\int x^{n} \cos x \mathrm{~d} x=x^{n} \sin x-n \int x^{n-1} \sin x d x$
$\int x \cos ^{2} x \mathrm{~d} x=\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x+\frac{1}{8} \cos 2 x$
$\int x^{2} \cos ^{2} x \mathrm{~d} x=\frac{x^{3}}{6}+\left(\frac{x^{2}}{4}-\frac{1}{8}\right) \sin 2 x+\frac{x}{4} \cos 2 x$
$\int \frac{\cos x}{x} \mathrm{~d} x=\ln |x|-\frac{x^{2}}{2 \cdot 2!}+\frac{x^{4}}{4 \cdot 4!}-\frac{x^{6}}{6 \cdot 6!}+-\cdots$
$\int \frac{\cos x}{x^{n}} \mathrm{~d} x=-\frac{\cos x}{(n-1) x^{n-1}}-\frac{1}{n-1} \int \frac{\sin x}{x^{n-1}} \mathrm{~d} x, \quad$ for $n \neq 1$

## A.5.3 Integrals Involving Exponential Functions

$$
\begin{align*}
& \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}  \tag{A.123}\\
& \int \mathrm{e}^{-x} \mathrm{~d} x=-\mathrm{e}^{-x}  \tag{A.124}\\
& \int \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x}
\end{align*}
$$

$\int \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{x}{0!\cdot 1}-\frac{x^{3}}{1!\cdot 3}+\frac{x^{5}}{2!\cdot 5}-\ldots \quad$ Gaussian error integral (A.126)

$$
\begin{align*}
& \int x \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a^{2}} \mathrm{e}^{a x}(a x-1)  \tag{A.127}\\
& \begin{aligned}
& \int x^{n} \mathrm{e}^{a x} \mathrm{~d} x=\frac{x^{n}}{a} \mathrm{e}^{a x}-\frac{n}{a} \int x^{n-1} \mathrm{e}^{a x} \mathrm{~d} x \\
&=\mathrm{e}^{a x}\left[\frac{x^{n}}{a}-\frac{n x^{n-1}}{a^{2}}+\frac{n(n-1) x^{n-2}}{a^{3}}-+\cdots\right] \\
& \int \frac{\mathrm{e}^{a x}}{x} \mathrm{~d} x=\ln x+a x+\frac{a^{2} x^{2}}{2 \cdot 2!}+\frac{a^{3} x^{3}}{3 \cdot 3!}+\frac{a^{4} x^{4}}{4 \cdot 4!}+\cdots
\end{aligned} \\
& \int \mathrm{e}^{a x+c} \sin (b x+d) \mathrm{d} x=\frac{\mathrm{e}^{a x+c}}{a^{2}+b^{2}}[a \sin (b x+d)-b \cos (b x+d)]  \tag{A.128}\\
& \int \mathrm{e}^{a x+c} \cos (b x+d) \mathrm{d} x=\frac{\mathrm{e}^{a x+c}}{a^{2}+b^{2}}[a \cos (b x+d)+b \sin (b x+d)]
\end{align*}
$$

## A.5.4 Integrals Involving Inverse Trigonometric Functions

$$
\begin{align*}
& \int \arcsin \frac{x}{a} \mathrm{~d} x=x \arcsin \frac{x}{a}+\sqrt{a^{2}-x^{2}}  \tag{A.132}\\
& \int \arccos \frac{x}{a} \mathrm{~d} x=x \arccos \frac{x}{a}-\sqrt{a^{2}-x^{2}}  \tag{A.133}\\
& \int \arctan \frac{x}{a} \mathrm{~d} x=x \arctan \frac{x}{a}-a \ln \left(\sqrt{a^{2}+x^{2}}\right)  \tag{A.134}\\
& \int \operatorname{arccot} \frac{x}{a} \mathrm{~d} x=x \operatorname{arccot} \frac{x}{a}+a \ln \left(\sqrt{a^{2}+x^{2}}\right)  \tag{A.135}\\
& \int x \arctan \frac{x}{a} \mathrm{~d} x=-\frac{a x}{2}+\frac{x^{2}+a^{2}}{2} \arctan \frac{x}{a} \tag{A.136}
\end{align*}
$$

## A.5.5 Definite Integrals

$$
\begin{align*}
\int_{0}^{\frac{a}{2}} \sin ^{n} x \mathrm{~d} x & =\int_{0}^{\frac{\square}{2}} \cos ^{n} x \mathrm{~d} x \\
& =\frac{1 \cdot 3 \cdot 5 \cdots(n-1) \frac{\mathrm{a}}{2}}{2 \cdot 4 \cdot 6 \cdots n}, \quad \text { for even } n \\
& =\frac{2 \cdot 4 \cdot 6 \cdots(n-1)}{1 \cdot 3 \cdot 5 \cdots n}, \quad \text { for odd } n \\
& =\frac{\sqrt{\square}}{2} \frac{\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, \quad \text { for } n>-1 \tag{A.137}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\sin a x}{x} \mathrm{~d} x=\frac{\square}{2}, \quad \text { for } a>0 \\
& =0, \quad \text { for } a=0 \\
& =-\frac{\square}{2}, \quad \text { for } a<0  \tag{A.138}\\
& \int_{0}^{\infty} \frac{\cos a x}{x} \mathrm{~d} x=\infty  \tag{A.139}\\
& \int_{-\infty}^{\infty} \frac{\cos a x}{x} \mathrm{~d} x=0  \tag{A.140}\\
& \int_{0}^{\mathrm{a}} \sin ^{2}(a x) \mathrm{d} x=\frac{\mathrm{a}}{2}, \quad \text { for } a \neq 0  \tag{A.141}\\
& \int_{0}^{\mathrm{D}} \cos ^{2}(a x) \mathrm{d} x=\frac{\mathrm{a}}{2}, \quad \text { for } a \neq 0  \tag{A.142}\\
& \int_{0}^{\mathrm{p}} \sin m x \cdot \sin n x \mathrm{~d} x=\int_{0}^{\mathrm{p}} \cos m x \cdot \cos n x \mathrm{~d} x  \tag{A.143}\\
& =0, \quad \text { for } m \neq n, \quad \text { with } m, n=1,2,3, \ldots \\
& =\frac{\square}{2}, \quad \text { for } m=n, \quad \text { with } m, n=1,2,3, \ldots \\
& \int_{-a}^{+a} \sin \frac{m \mathbf{\square} x}{a} \cdot \sin \frac{n \mathbf{\square} x}{a} \mathrm{~d} x=\int_{-a}^{+a} \cos \frac{m \mathbf{\square} x}{a} \cdot \cos \frac{n \mathbf{\square} x}{a} d x  \tag{A.144}\\
& =0, \quad \text { for } m \neq n \quad \text { with } m, n=1,2,3, \ldots \\
& =a, \quad \text { for } m=n \quad \text { with } m, n=1,2,3, \ldots \\
& \int_{-a}^{+a} \sin \frac{m \mathbf{\square} x}{a} \cdot \cos \frac{n \mathbf{\square} x}{a} \mathrm{~d} x=0, \quad \text { with } m, n=1,2,3, \ldots  \tag{A.145}\\
& \int_{0}^{\infty} \frac{\sin m x \cdot \sin n x}{x} \mathrm{~d} x=\frac{1}{2} \ln \frac{m+n}{m-n}, \quad \text { with } m>n>0 \tag{A.146}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\sin m x \cdot \cos n x}{x} \mathrm{~d} x=\frac{\square}{2}, \quad \text { for } m>n \geq 0  \tag{A.147}\\
& =\frac{\square}{4}, \quad \text { for } m=n>0 \\
& =0, \quad \text { for } n>m \geq 0 \\
& \int_{0}^{\infty} \mathrm{e}^{-a^{2} x^{2}} \mathrm{~d} x=\frac{1}{2 a} \sqrt{\mathbf{\square}}, \quad \text { with } a>0 \\
& \int_{0}^{\infty} x \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{1}{2} \\
& \int_{0}^{\infty} x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{1}{4} \sqrt{\square} \\
& \int_{0}^{\infty} x^{2} \mathrm{e}^{-a^{2} x^{2}} \mathrm{~d} x=\frac{\sqrt{\square}}{4 a^{3}}, \quad a>0 \\
& \int_{0}^{\infty} \mathrm{e}^{-a x} \sin (n x) \mathrm{d} x=\frac{n}{a^{2}+n^{2}}, \quad \text { with } a>0 \\
& \int_{0}^{\infty} \mathrm{e}^{-a x} \cos (n x) \mathrm{d} x=\frac{a}{a^{2}+n^{2}}, \quad \text { with } a>0  \tag{A.155}\\
& \int_{0}^{\infty} \mathrm{e}^{-a^{2} x^{2}} \cos b x \mathrm{~d} x=\frac{\sqrt{\square}}{2 a} \mathrm{e}^{-b / 4 a^{2}}, \quad a>0  \tag{A.156}\\
& \int_{0}^{\infty} x^{n} \mathrm{e}^{-a x} \mathrm{~d} x=\frac{n!}{a^{n+1}}, \quad a>0, n>0, \text { integer } \tag{A.157}
\end{align*}
$$

## A. 6 The Integral of the Standard Normal Distribution

For a normally distributed quantity $x$ with a mean value $\mu$ and a standard deviation $\sigma$ the normalised random quantity $z=(x-\mu) / \sigma$ is distributed according to a normalised standard (Gaussian) distribution. The following pages show tables of the integral of this distribution.


$$
\Phi(z)=\frac{1}{\sqrt{2 \mathbf{a}}} \int_{0}^{z} \mathrm{e}^{\frac{-x^{2}}{2}} \mathrm{~d} x
$$

| Application |  | Problem statement |
| :---: | :---: | :---: |
|  | $p=2 \cdot \Phi(z)$ | Probability $p$ that the value does not deviate more than $\|z\|$ from the average value (higher or lower). |
|  |  | Example: Given a set of $100 \Omega \pm 5 \%$ resistors. What is the portion of the components deviating not more than $\pm 15 \Omega$ from the nominal value? $\begin{aligned} & z=(115-100) / 5=3.0 \Rightarrow p= \\ & 2 \cdot \Phi(z)=99.7 \% \end{aligned}$ |
|  | $p=1-2 \cdot \Phi(z)$ | Probability that the value does deviate more than $\|z\|$ from the average value (higher or lower). |
|  |  | Example: What part of the components have an actual resistance value below $90 \Omega$ or above $110 \Omega$ ? $z=2.0 \Rightarrow p=1-2 \cdot \Phi(z)=4.55 \%$ |
|  | $p=0.5-\Phi(z)$ | Probability that the average is exceeded by more than $z$. |
|  |  | Example: What percentage of the components have an actual value exceeding $110 \Omega$ ? $z=2.0 \Rightarrow p=0.5-\Phi(z)=2.275 \%$ |
|  | $p=\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right)$ | Probability that the value is between $z_{1}$ and $z_{2}$. |
|  |  | Example: What is the probability that a resistance value of the set is between $114.5 \Omega$ and $115 \Omega$ ? $\begin{aligned} z_{1} & =(114.5-100) / 5=2.9 \\ z_{2} & =3.0 \Rightarrow \\ p & =\Phi(3.0)-\Phi(2.9) \\ & =0.4986500-0.4981341=0.05 \% \end{aligned}$ |

Note: For these kinds of problems it is reasonable to include many digits in the calculations, since many digits will cancel out each other calculating differences of almost equal numbers.

## Confidence Intervals

|  |  |  | $z$ |
| :---: | :---: | :---: | :---: |
| 90.0 \% | 10.0 \% | 5.0 \% | 1.645 |
| 95.0 \% | 5.0 \% | 2.5 \% | 1.960 |
| 98.0 \% | 2.0 \% | 1.0 \% | 2.326 |
| 99.0 \% | 1.0 \% | 0.5 \% | 2.576 |
| 99.5 \% | 0.5 \% | 0.25 \% | 2.807 |
| 99.8 \% | 0.2 \% | 0.1 \% | 3.091 |
| 99.9 \% | 0.1 \% | 0.05 \% | 3.293 |
| 99.95\% | 0.05\% | 0.025\% | 3.483 |

Integral of the Standard Normal Distribution

| $z$ |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0 | 000 | 040 | 080 | 120 | 160 | 199 | 239 | 279 | 319 | 359 |
| 0.1 |  | 398 | 438 | 478 | 517 | 557 | 596 | 636 | 675 | 714 | 753 |
| 0.2 |  | 793 | 832 | 871 | 910 | 948 | 987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| 0.3 | 0.1 | 179 | 217 | 255 | 293 | 331 | 368 | 406 | 443 | 480 | 517 |
| 0.4 |  | 554 | 591 | 628 | 664 | 700 | 736 | 772 | 808 | 844 | 879 |
| 0.5 |  | 915 | 950 | 985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2 | 257 | 291 | 324 | 357 | 389 | 422 | 454 | 486 | 517 | 549 |
| 0.7 |  | 580 | 611 | 642 | 673 | 704 | 734 | 764 | 794 | 823 | 852 |
| 0.8 |  | 881 | 910 | 939 | 967 | 995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
| 0.9 | 0.3 | 159 | 186 | 212 | 238 | 264 | 289 | 315 | 340 | 365 | 389 |
| 1.0 |  | 413 | 438 | 461 | 485 | 508 | 531 | 554 | 577 | 599 | 621 |
| 1.1 |  | 643 | 665 | 686 | 708 | 729 | 749 | 770 | 790 | 810 | 830 |
| 1.2 |  | 849 | 869 | 888 | 907 | 925 | 944 | 962 | 980 | 997 | 0.4015 |
| 1.3 | 0.4 | 032 | 049 | 066 | 082 | 099 | 115 | 131 | 147 | 162 | 177 |
| 1.4 |  | 192 | 207 | 222 | 236 | 251 | 265 | 279 | 292 | 306 | 319 |
| 1.5 |  | 332 | 345 | 357 | 370 | 382 | 394 | 406 | 418 | 429 | 441 |
| 1.6 |  | 452 | 463 | 474 | 484 | 495 | 505 | 515 | 525 | 535 | 545 |
| 1.7 |  | 554 | 564 | 573 | 582 | 591 | 599 | 608 | 616 | 625 | 633 |
| 1.8 |  | 641 | 649 | 656 | 664 | 671 | 678 | 686 | 693 | 699 | 706 |
| 1.9 |  | 713 | 719 | 726 | 732 | 738 | 744 | 750 | 756 | 761 | 767 |
| 2.0 | 0.4 | 772499 | 777845 | 783084 | 788218 | 793249 | 798179 | 803008 | 807739 | 812373 | 816912 |
| 2.1 |  | 821356 | 825709 | 829970 | 834143 | 838227 | 842224 | 846137 | 849966 | 853713 | 857379 |
| 2.2 |  | 860966 | 864475 | 867907 | 871263 | 874546 | 877756 | 880894 | 883962 | 886962 | 889894 |
| 2.3 |  | 892759 | 895559 | 898296 | 900969 | 903582 | 906133 | 908625 | 911060 | 913437 | 915758 |
| 2.4 |  | 918025 | 920237 | 922397 | 924506 | 926564 | 928572 | 930531 | 932443 | 934309 | 936128 |
| 2.5 |  | 937903 | 939634 | 941322 | 942969 | 944574 | 946138 | 947664 | 949150 | 950600 | 952012 |
| 2.6 |  | 953388 | 954729 | 956035 | 957307 | 958547 | 959754 | 960929 | 962074 | 963188 | 964274 |
| 2.7 |  | 965330 | 966358 | 967359 | 968332 | 969280 | 970202 | 971099 | 971971 | 972820 | 973645 |
| 2.8 |  | 974448 | 975229 | 975988 | 976725 | 977443 | 978140 | 978817 | 979476 | 980116 | 980737 |
| 2.9 |  | 981341 | 981928 | 982498 | 983051 | 983589 | 984111 | 984617 | 985109 | 985587 | 986050 |
| 3.0 | 0.4 | 986500 | 986937 | 987361 | 987772 | 988170 | 988557 | 988932 | 989296 | 989649 | 989991 |
| 3.1 |  | 990323 | 990645 | 990957 | 991259 | 991552 | 991836 | 992111 | 992377 | 992636 | 992886 |
| 3.2 |  | 993128 | 993363 | 993590 | 993810 | 994023 | 994229 | 994429 | 994622 | 994809 | 994990 |
| 3.3 |  | 995165 | 995335 | 995499 | 995657 | 995811 | 995959 | 996102 | 996241 | 996375 | 996505 |
| 3.4 |  | 996630 | 996751 | 996868 | 996982 | 997091 | 997197 | 997299 | 997397 | 997492 | 997584 |
| 3.5 |  | 997673 | 997759 | 997842 | 997922 | 997999 | 998073 | 998145 | 998215 | 998282 | 998346 |
| 3.6 |  | 998409 | 998469 | 998527 | 998583 | 998636 | 998688 | 998739 | 998787 | 998834 | 998878 |
| 3.7 |  | 998922 | 998963 | 999004 | 999042 | 999080 | 999116 | 999150 | 999184 | 999216 | 999247 |
| 3.8 |  | 999276 | 999305 | 999333 | 999359 | 999385 | 999409 | 999433 | 999456 | 999478 | 999499 |
| 3.9 |  | 999519 | 999538 | 999557 | 999575 | 999592 | 999609 | 999625 | 999640 | 999655 | 999669 |
| 4.0 | 0.4999 | 683 | 696 | 709 | 721 | 733 | 744 | 755 | 765 | 775 | 784 |
| 4.1 |  | 793 | 802 | 810 | 819 | 826 | 834 | 841 | 848 | 854 | 860 |
| 4.2 |  | 866 | 872 | 878 | 883 | 888 | 893 | 898 | 902 | 906 | 911 |
| 4.3 |  | 915 | 918 | 922 | 925 | 929 | 932 | 935 | 938 | 941 | 943 |
| 4.4 |  | 946 | 948 | 951 | 953 | 955 | 957 | 959 | 961 | 963 | 964 |
| 4.5 |  | 966 | 968 | 969 | 970 | 972 | 973 | 974 | 976 | 977 | 978 |
| 5.0 |  | 997129 | 997274 | 997412 | 997544 | 997669 | 997787 | 997900 | 998008 | 998110 | 998207 |

## B Tables

B. 1 The International System of Units (SI)

| SI Base Units |  |  |  |
| :---: | :---: | :---: | :---: |
| Quantity | Name | Symbol | Definition |
| Length | Meter | m | 1 m is the length that light passes in 1/299792 458 seconds. |
| Time | Second |  | 1 s is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the ${ }^{133} \mathrm{Cs}$ atom. |
| Mass | Kilogram | kg | 1 kg is the mass of the international kilogram prototype (a platinum-iridium cylinder). |
| Electric current | Ampere | A | 1 A is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 m apart in vacuum, would produce a force equal to $2 \cdot 10^{-7} \mathrm{~N}$ per meter of length. |
| Temperature | Kelvin | K | 1 K is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water. |
| Amount of substance | Mole | mol | 1 mol is the amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kg of carbon ${ }^{12} \mathrm{C}$. |
| Luminous intensity | Candela | cd | 1 cd is the luminous intensity, in a defined direction, of a source that emits monochromatic radiation of frequency 540 THz and that has a radiant intensity in that direction of $1 / 683 \mathrm{~W} / \mathrm{sr}$. |

The SI system (French: Système International d'Unités) consists of

- seven base units (e.g. the ampere),
- derived coherent units (e.g. the Watt second),
- additional noncoherent accepted units (e.g. the hour).

The speed of light is defined as $c_{0}=299792458 \mathrm{~m} / \mathrm{s}$ and thus combines the two basic units length and time. The coherent derived units are products or quotients of the basic units. The noncoherent units include various proportional factors (apart from powers of ten), such as, for example, 3600 for seconds and hours.

## B.1. 1 Decimal Prefixes

A quantity consists of a value and a unit. One (and only one) decimal prefix may be used before the unit symbol, e.g. $\mathrm{k} \Omega$ for $10^{3} \Omega$. Usually only powers of 1000 are used for this, e.g. kilo, mega, milli. Some (for historical reasons) exceptions are cm, hPa, decibel and some others.

| Decimal prefixes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Prefix | Factor | Symbol | Prefix | Factor |
| d | deci- | $10^{-1}$ | D | deca- | $10^{1}$ |
| c | centi- | $10^{-2}$ | H | hecto- | $10^{2}$ |
| m | milli- | $10^{-3}$ | k | kilo- | $10^{3}$ |
| $\propto$ | micro- | $10^{-6}$ | M | mega- | $10^{6}$ |
| n | nano- | $10^{-9}$ | G | giga- | $10^{9}$ |
| p | pico- | $10^{-12}$ | T | tera- | $10^{12}$ |
| f | femto- | $10^{-15}$ | P | peta- | $10^{15}$ |
| a | atto- | $10^{-18}$ | E | exa- | $10^{18}$ |

Expressions in the USA: $10^{9}$, billion; $10^{12}$, trillion; $10^{15}$, quadrillion; $10^{18}$, quintillion. In France and Germany a billion is actually defined as 1000 times the American billion.
In circuit diagrams the capacitance and resistance values are often noted in a short form. The decimal prefix then replaces the decimal point.

| 3 k 3 | is $3.3 \mathrm{k} \Omega$ |
| :--- | :--- |
| 3 p 3 | is 3.3 pF |
| 6 M 8 | is $6.8 \mathrm{M} \Omega$ |
| 2 n 7 | is 2.7 nF |
| 2 R 2 | is $2.2 \Omega$ |
| $4 \propto 7$ or 4 u 7 | is $4.7 \propto \mathrm{~F}$ |

## B.1.2 SI Units in Electrical Engineering

The units used in Electrical Engineering are derived from the SI basic units. The most common units are listed in the table below.

| Units in Electrical Engineering |  |  |  |
| :--- | :--- | :---: | :--- |
| Symbol | Unit | Relationship | Unit for |
| A | Ampere | Base unit | Electric current |
| C | Coulomb | As | Electric charge |
| cd | Candela | Base unit | Luminous intensity |
| F | Farad | As $/ \mathrm{V}$ | Capacitance |
| H | Henry | Vs/A | Inductance |
| $\mathrm{Hz}^{*}$ | Hertz | $1 / \mathrm{s}$ | Frequency |
| J | Joule | Ws | Energy, work |
| K | Kelvin | Base unit | Temperature |
| kg | Kilogram | Base unit | Mass |
| kWh | Kilowatthour | 3.6 MJ | Work |
| lm | Lumen | cd sr | Luminous flux |
| lx | Lux | lm $/ \mathrm{m}^{2}$ | Illumination |
| m | Meter | Base unit | Length |
| N | Newton | $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$ | Force |
| $\Omega$ | Ohm | V/A | Resistance |
| S | Siemens | $1 / \Omega$ | Admittance |
| s | Second | Base unit | Time |
| T | Tesla | Vs $/ \mathrm{m}^{2}$ | Magnetic flux density |
| V | Volt | $\mathrm{J} / \mathrm{C}=\mathrm{Ws} / \mathrm{As}$ | Voltage |
| W | Watt | AV | Power |
| Wb | Weber | Vs | Magnetic flux |

*The unit hertz $(\mathrm{Hz})$ is only used for frequencies. The unit of angular frequency is $\mathrm{s}^{-1}$.
${ }^{\dagger}$ Noncoherent permitted unit.
The units cancel each other out for quantities that are defined as the ratio of two similar quantities. These are described as relative quantities. These could be, for example, the solid angle (in steradians), the efficiency and logarithmic power ratios (decibel).

## B. 2 Naturally Occurring Constants

| Physical Constants |  |
| :--- | :---: |
| Permeability of free space | $\mu_{0}=4 \cdot \mathbf{a} \cdot 10^{-7} \mathrm{H} / \mathrm{m}$ |
| (Permeability constant) | $=1.25663706 \cdot 10^{-6} \mathrm{Vs} / \mathrm{Am}$ |
| Absolute dielectric constant | $\epsilon_{0}=1 /\left(\mu_{0} \cdot c^{2}\right)$ |
| (Permittivity constant) | $=8.85418782 \cdot 10^{-12} \mathrm{As} / \mathrm{Vm}$ |
| Speed of light in vacuum | $c=2.99792458 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ |
| Elementary charge of the electron | $e=1.60217733 \cdot 10^{-19} \mathrm{C}$ |
| Boltzmann-constant | $k=1.380658 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ |
| Electron rest mass | $m_{\mathrm{e}}=9.1093897 \cdot 10^{-31} \mathrm{~kg}$ |

Note: For most calculations it is sufficient to consider four digits of the constants.

## B. 3 Symbols of the Greek Alphabet

| Letters of the Greek alphabet |  |  |  |
| :---: | :---: | :---: | :---: |
| Letter | Name | Letter | Name |
| $\alpha$ | Alpha | $\nu$ | Nu |
| $\beta$ | Beta | $\xi, \Xi$ | Xi |
| $\gamma, \Gamma$ | Gamma | $o$ | Omicron |
| $\delta, \Delta$ | Delta | п, П | Pi |
| $\varepsilon$ | Epsilon | $\varrho$ | Rho |
| $\zeta$ | Zeta | $\sigma, \Sigma$ | Sigma |
| $\eta$ | Eta | $\tau$ | Tau |
| $\theta, \vartheta, \Theta$ | Theta | $v, \Upsilon$ | Upsilon |
| し | Iota | $\phi, \varphi, \Phi$ | Phi |
| $\kappa$ | Kappa | $\chi$ | Chi |
| $\lambda, \Lambda$ | Lambda | $\psi, \Psi$ | Psi |
| $\mu$ | Mu | $\omega, \Omega$ | Omega |

## B. 4 Units and Definitions of Technical-Physical Quantities

| Quantity | Symbol | Definition | Unit | Name |
| :--- | :---: | :--- | :--- | :--- |
| Length | $l, r, s$ | Base unit | m | Meter |
| Area | $A$ | $=l^{2}$ | $\mathrm{~m}^{2}$ |  |
| Volume | $V$ | $=l^{3}$ | $\mathrm{~m}^{3}$ |  |
| Time | $t, \tau, \tau$ | Base unit | s | Second |
| Velocity | $v$ | $=\mathrm{d} s / \mathrm{d} t$ | $\mathrm{~m} / \mathrm{s}$ |  |
| Acceleration | $a$ | $=\mathrm{d} v / \mathrm{d} t$ | $\mathrm{~m} / \mathrm{s}^{2}$ |  |
| Frequency | $f$ | $=1 / T$ | $1 / \mathrm{s}=\mathrm{Hz}$ | Hertz |
| Angular frequency | $\omega$ | $=2 \mathrm{a} / T$ | $1 / \mathrm{s}$ |  |
| Mass | $m$ | Base unit | kg | Kilogram |
| Mass density | $\rho$ | $=m / V$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |  |
| Force | $F$ | $=m \cdot a$ | $\mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=\mathrm{N}$ | Newton |
| Pressure | $p$ | $=F / A$ | $\mathrm{~N} / \mathrm{m}^{2}=\mathrm{Pa}$ | Pascal |
| Momentum | $p$ | $=m \cdot v=\int F \mathrm{~d} t$ | $\mathrm{~kg} \mathrm{~m} / \mathrm{s}$ |  |
| Angular momentum | $L$ | $=J \cdot \omega$ | $\mathrm{~kg} \mathrm{~m} / \mathrm{s}$ |  |
| Torque | $M$ | $=r \cdot F$ | N m |  |
| Moment of inertia | $J$ | $=\int r^{2} \mathrm{~d} m$ | kg m |  |
| Current | $I$ | Base unit | A | Ampere |
| Current density | $J$ | $=\mathrm{d} I / \mathrm{d} A$ | $\mathrm{~A} / \mathrm{m}^{2}$ |  |
| Charge | $Q$ | $=\int I \mathrm{~d} t$ | $\mathrm{As}=\mathrm{C}$ | Coloumb |
| Voltage | $V$ | $=W / Q$ | V | Volt |
| Electric field strength | $E$ | $=F / Q$ | $\mathrm{~V} / \mathrm{m}$ |  |
| Energy, work | $W$ | $=\int P \mathrm{~d} t$ | $\mathrm{~W} \mathrm{~s}=\mathrm{J}$ | Joule |
| Power | $P$ | $=V \cdot I$ | W | Watt |
| Apparent power | $S$ |  | VA |  |
| Reactive power | $Q$ |  | var |  |
| Resistance | $R$ | $=V / I$ | $\Omega$ | Ohm |
| Specific resistance | $\rho$ | $=R \cdot A / l$ | $\Omega ~ m$ |  |
| Admittance | $G$ | $=1 / R$ | S | Siemens, $\Omega^{-1} \mathrm{or} \mho$ |
| Conductivity | $\sigma$ | $=1 / \rho$ | $\mathrm{S} / \mathrm{m}^{2}$ |  |
| Electric displacement | $D$ | $=\mathrm{d} Q / \mathrm{d} A$ | $\mathrm{As} / \mathrm{m}^{2}$ |  |
| Capacitance | $C$ | $=Q / U$ | F | Farad |
| Magnetic flux density | $B$ | $=F / Q \cdot v$ | $\mathrm{Vs} / \mathrm{m}^{2}=\mathrm{T}$ | Tesla |
| Magnetic field strength | $H$ |  | $\mathrm{~A} / \mathrm{m}$ |  |
| Magnetic flux | $\Phi$ | $=\int B \mathrm{~d} A$ | $\mathrm{Vs}=\mathrm{Wb}$ | Weber |
| Inductance | $L$ | $=V /(\mathrm{d} \Psi / \mathrm{d} t)$ | $\mathrm{Vs} / \mathrm{A}=\mathrm{H}$ | Henry |
|  |  |  |  |  |

## B. 5 Imperial and American Units

| Unit | Symbol | In SI Units | Conversion factor |
| :---: | :---: | :---: | :---: |
| ```Length inch \(\mathrm{mil}=1 / 1000 \mathrm{in}\) foot \(=12\) in yard \(=3 \mathrm{ft}\) (statute) mile \(=1760 \mathrm{yd}\)``` | in <br> mil <br> ft <br> yd <br> mi | $\begin{gathered} 25.4 \mathrm{~mm} \\ 25.4 \mathrm{~cm} \\ 0.30468 \mathrm{~m} \\ 0.9144 \mathrm{~m} \\ 1.60934 \mathrm{~km} \end{gathered}$ | $0.0393701 \mathrm{in} / \mathrm{mm}$ $0.0393701 \mathrm{mil} / \curvearrowright \mathrm{cm}$ <br> $3.28084 \mathrm{ft} / \mathrm{m}$ <br> $1.09361 \mathrm{yd} / \mathrm{m}$ <br> $0.62137 \mathrm{mi} / \mathrm{km}$ |
| Area square inch square mil circular mil M circular mil | sq in <br> sq mil <br> CM <br> MCM | $\begin{gathered} 6.4516 \mathrm{~cm}^{2} \\ 6.4516 \cdot 10^{-4} \mathrm{~mm}^{2} \\ 0.5067 \cdot 10^{-3} \mathrm{~mm}^{2} \\ 0.5067 \mathrm{~mm}^{2} \end{gathered}$ | $0.155 \mathrm{sq} \mathrm{in} / \mathrm{mm}^{2}$ $1550 \mathrm{sq} \mathrm{mil} / \mathrm{mm}^{2}$ $1.974 \mathrm{CM} / \mathrm{mm}^{2}$ $1.974 \mathrm{MCM} / \mathrm{mm}^{2}$ |
| Volume <br> cubic inch <br> cubic foot $=1728 \mathrm{cu}$ in <br> cubic yard $=27 \mathrm{cu} \mathrm{ft}$ <br> fluid ounce (UK) <br> fluid ounce (US) <br> gallon (US) $=128 \mathrm{ff} \mathrm{oz}$ | cu in <br> cu ft <br> cu yd <br> floz <br> fl oz <br> gal | $\begin{gathered} 16.387 \mathrm{~cm}^{3} \\ 28.317 \mathrm{dm}^{3} \\ 0.76455 \mathrm{~m}^{3} \\ 28.413 \mathrm{~cm}^{3} \\ 29.574 \mathrm{~cm}^{3} \\ 3.78543 \mathrm{dm}^{3} \end{gathered}$ | $0.061024 \mathrm{cu} \mathrm{in} / \mathrm{cm}^{3}$ $0.035315 \mathrm{cu} \mathrm{ft} / \mathrm{dm}^{3}$ $1.30795 \mathrm{cu} \mathrm{yd} / \mathrm{m}^{3}$ $0.035195 \mathrm{floz} / \mathrm{cm}^{3}$ $0.033813 \mathrm{fl} \mathrm{oz} / \mathrm{cm}^{3}$ $0.264170 \mathrm{gal} / \mathrm{dm}^{3}$ |
| Mass <br> ounce <br> pound = 16 oz | $\begin{aligned} & \mathrm{oz} \\ & \mathrm{lb} \end{aligned}$ | $\begin{gathered} 28.3459 \mathrm{~g} \\ 0.453592 \mathrm{~kg} \\ \hline \end{gathered}$ | $\begin{aligned} & 0.0352739 \mathrm{oz} / \mathrm{g} \\ & 2.204622 \mathrm{lb} / \mathrm{kg} \end{aligned}$ |
| Force pound force poundal $=1 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}^{2}$ | lbf <br> pdl | $\begin{gathered} 4.445 \mathrm{~N} \\ 0.1383 \mathrm{~N} \end{gathered}$ | $\begin{aligned} & 0.225 \mathrm{lbf} / \mathrm{N} \\ & 7.23 \mathrm{pdl} / \mathrm{N} \\ & \hline \end{aligned}$ |
| Density pound per cubic foot | $\mathrm{lb} / \mathrm{ft}^{3}$ | $16.02 \mathrm{~kg} / \mathrm{m}^{3}$ | $0.0624 \frac{\mathrm{lb} \cdot \mathrm{~m}^{3}}{\mathrm{ft}^{3} \cdot \mathrm{~kg}}$ |
| Work <br> British thermal unit horsepower hour | BTU HPhr | $\begin{gathered} 1.055056 \mathrm{~kJ} \\ 2.6845 \mathrm{MJ} \\ \hline \end{gathered}$ | 0.947817 BTU/kJ 0.37251 HPhr/MJ |
| Power BTU per second BTU per hour horse power | BTU/s BTU/h HP | $\begin{gathered} 1.055056 \mathrm{~kW} \\ 0.293071 \mathrm{~W} \\ 0.74570 \mathrm{~kW} \\ \hline \end{gathered}$ | $\begin{gathered} 0.947817 \mathrm{BTU} / \mathrm{kWs} \\ 3.41214 \mathrm{BTU} / \mathrm{Wh} \\ 1.34102 \mathrm{HP} / \mathrm{kW} \end{gathered}$ |
| Wire weights (Mass p pound per foot pound per yard pound per mile | lb/ft <br> lb/yd <br> lb/mi | $\begin{gathered} 1.488 \mathrm{~kg} / \mathrm{m} \\ 0.496 \mathrm{~kg} / \mathrm{m} \\ 0.2818 \mathrm{~kg} / \mathrm{km} \end{gathered}$ | $\begin{aligned} & 0.672 \frac{\mathrm{lb} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{ft}} \\ & 2.016 \frac{\mathrm{lb} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{yd}} \\ & 3.548 \frac{\mathrm{lb} \cdot \mathrm{~km}}{\mathrm{~kg} \cdot \mathrm{mi}} \\ & \hline \end{aligned}$ |


| Unit | Symbol | In SI Units | Conversion factor |
| :---: | :---: | :---: | :---: |
| Electrical conductors (electrical quantities with respect to conductor length) |  |  |  |
| ohms per 1000 feet | $\Omega / 1000 \mathrm{ft}$ | $3.28 \Omega / \mathrm{km}$ | $0.3047 \mathrm{~m} / \mathrm{ft}$ |
| ohms per 1000 yards | $\Omega / 1000 \mathrm{yd}$ | $1.0936 \Omega / \mathrm{km}$ | $0.9144 \mathrm{~m} / \mathrm{yd}$ |
| megohms per mile | $\mathrm{M} \Omega / \mathrm{mi}$ | $0.6214 \Omega / \mathrm{km}$ | $1.6093 \mathrm{~m} / \mathrm{mi}$ |
| microfarads per mile | ${ }_{\alpha} \mathrm{F} / \mathrm{mi}$ | $0.6214 \propto \mathrm{~F} / \mathrm{km}$ | $1.6093 \mathrm{~km} / \mathrm{mi}$ |
| micromicrofarads per foot | $\infty$ ock/ft | $3.2808 \mathrm{pF} / \mathrm{m}$ | $0.30468 \mathrm{~m} / \mathrm{ft}$ |
| decibel per 100 ft | $\mathrm{dB} / 100 \mathrm{ft}$ | $32.75 \mathrm{~dB} / \mathrm{km}$ | $0.305 \mathrm{~m} / \mathrm{ft}$ |
|  |  | $3.77 \mathrm{~Np} / \mathrm{km}$ | $0.2653 \frac{\mathrm{~dB} \cdot \mathrm{~km}}{\mathrm{~Np} \cdot \mathrm{ft}}$ |
| decibel per 1000 yd | $\mathrm{dB} / 1000 \mathrm{yd}$ | $1.094 \mathrm{~dB} / \mathrm{km}$ | $0.9144 \mathrm{~m} / \mathrm{yd}$ |
|  | $\mathrm{dB} / \mathrm{mi}$ | $0.126 \mathrm{~Np} / \mathrm{km}$ $0.621 \mathrm{~dB} / \mathrm{km}$ | $\begin{gathered} 7.943 \frac{\mathrm{~dB} \cdot \mathrm{~m}}{\mathrm{~Np} \cdot \mathrm{yd}} \\ 1.609 \mathrm{~m} / \mathrm{mi} \end{gathered}$ |
| decibel per mile |  | $0.0715 \mathrm{~Np} / \mathrm{km}$ | $13.98 \frac{\mathrm{~dB} \cdot \mathrm{~km}}{\mathrm{~Np} \cdot \mathrm{mi}}$ |
| Optical units |  |  |  |
| lambert | L | $3183 \mathrm{~cd} / \mathrm{m}^{2}$ | 口. $10^{-4} \mathrm{lam}^{2} / \mathrm{cd}$ |
| foot-lambert | fL | $3.42626 \mathrm{~cd} / \mathrm{m}^{2}$ | $0.291864 \mathrm{ft} \mathrm{la} \mathrm{m}^{2} / \mathrm{cd}$ |
| candela per square inch | $\mathrm{cd} / \mathrm{sq}$ in | $1555.0 \mathrm{~cd} / \mathrm{m}^{2}$ | $64.308 \cdot 10^{-3} \mathrm{~m}^{2} / \mathrm{sq}$ in |
| candela per square foot | $\mathrm{cd} / \mathrm{sqft}$ | $10.7639 \mathrm{~cd} / \mathrm{m}^{2}$ | $0.092903 \mathrm{~m}^{2} / \mathrm{sq} \text { in }$ |
| foot-candle | fc | 10.7639 lx | $0.092903 \mathrm{ft} \mathrm{cd} / \mathrm{lx}$ |
| Temperature degree Fahrenheit | ${ }^{\circ} \mathrm{F}$ | 5/9 K | $9 / 5^{\circ} \mathrm{F} / \mathrm{K}$ |
|  | ${ }^{\circ} \mathrm{F}$ | $\begin{array}{r} \text { for temp } \\ 5 / 9\left(x^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)^{\circ} \end{array}$ <br> for abso | ure differences $\left(9 / 5 \cdot x^{\circ} \mathrm{C}+32^{\circ} \mathrm{C}\right)^{\circ} \mathrm{F}$ <br> temperatures |

Example: A width of $3 / 8 \mathrm{in}$ is equivalent to $3 / 8 \cdot 25.4 \mathrm{~mm} \approx 9.5 \mathrm{~mm}$. On the other hand 10 mm is equal to $10 \cdot 0.0393701 \mathrm{in} \approx 0.4 \mathrm{in}$.

## B. 6 Other Units

Many of these units are rarely used.

| Symbol | Name | In SI units |
| :---: | :---: | :---: |
| , | arc minute | 1/60 ${ }^{\circ}$ |
| , | foot | 0.30468 m |
| " | arc second | $1 / 3600^{\circ}$ |
| " | inch | 25.4 mm |
| a, yr | year |  |
| A | Angstroem | 0.1 nm |
| asb | Apostilb | $1 / \mathrm{acd} / \mathrm{m}^{2}$ |
| at | atmosphere, technical | 98.0665 kPa |
| atm | atmosphere | 101.325 kPa |
| bar | bar | 100 kPa |
| bbl | barrel (US) | 1.59 hl |
| Bi | biot | 10 A |
| Bq | becquerel | 1/s |
| bu (UK) | bushel | 36.371 |
| bu (US) | bushel | 35.241 |
| c | Neuminute | - $/ 2 \cdot 10^{4} \mathrm{rad}$ |
| cal | calorie | 4.1868 J |
| cbm | cubic meter | $1 \mathrm{~m}^{3}$ |
| cc | Neusekunde | $\mathrm{a} / 2 \cdot 10^{6} \mathrm{rad}$ |
| ccm | cubic centimeter | $1 \mathrm{~cm}^{3}$ |
| Ci | curie | $3.7 \cdot 10^{10} \mathrm{~Bq}$ |
| Cic | cicero | $12 \mathrm{p} \approx 4.5 \mathrm{~mm}$ |
| CM | circular mil | $5.06707 \cdot 10^{-4} \mathrm{~mm}^{2}$ |
| cmm | cubic millimeter | $1 \mathrm{~mm}^{3}$ |
| cwt (UK) | hundred weight | 50.80 kg |
| cwt (US) | long hundred weight | 50.80 kg |
| d | day | 86400 s |
| Dez | dez | -/18 rad |
| dr av | dram | 1.772 g |
| dry pt (US) | dry pint | 0.55061 |
| dyn | dyne | $10^{-5} \mathrm{~N}$ |
| erg | erg | $10^{-7} \mathrm{~J}$ |
| eV | electron volt | $1.602 \cdot 10^{-19} \mathrm{~J}$ |
| fL | foot-lambert | $3.426 \mathrm{~cd} / \mathrm{m}^{2}$ |
| F | Fermi | 1 fm |
| Fr | franklin | $\approx 1 / 3 \cdot 10^{-9} \mathrm{C}$ |


| Other Units |  |  |
| :---: | :---: | :---: |
| Symbol | Name | In SI units |
| G | gauss | $10^{-4} \mathrm{~T}$ |
| g | gon | $1.1111^{\circ}$ |
| $\gamma$ | gamma | $1 \propto \mathrm{~g}$ |
| gal (UK) | gallon | 4.54661 |
| gal (US) | gallon | 3.78541 |
| Gb | Gilbert | 10/4a A |
| Gon | gon | $1.1111^{\circ}$ |
| gr | grain | 64.8 mg |
| grd | grad | 1 K |
| Gy | gray | $1 \mathrm{~J} / \mathrm{kg}$ |
| h | hour | 3600 s |
| hl | hectoliter | 1001 |
| hp | horsepower | 745.7 W |
| k | karat (metric) | 0.200 g |
| Kal | kilocalorie | 4.1868 kJ |
| kcal | kilocalorie | 4.1868 kJ |
| kp | kilopound | 9.80665 N |
| kWh | kilowatt hour | $3.6 \cdot 10^{6} \mathrm{~J}$ |
| L | lambert | $1 / \mathrm{n} \cdot 10^{4} \mathrm{~cd} / \mathrm{m}^{2}$ |
| lbf | pound-force | 4.448 N |
| lb wt | pound weight | 4.48 N |
| M | maxwell | $10^{-8} \mathrm{~Wb}$ |
| $\propto$ | micron | $1 \propto \mathrm{~m}$ |
| MCM | 1000 circular mils | $0.5067 \mathrm{~mm}^{2}$ |
| ml | milliliter | $1 \mathrm{~cm}^{3}$ |
| mm Hg | millimeter of mercury | 133.322 Pa |
| mm Q | see mmHg |  |
| mrad | millirad | 1/1000 rad |
| Np | neper | 8.686 dB |
| nt | nit | $1 \mathrm{~cd} / \mathrm{m}^{2}$ |
| nx | nox | $10^{-3} \mathrm{~lx}$ |
| Oe | oersted | 1000/4a A/m |
| p | pond | $9.80665 \cdot 10^{-3} \mathrm{~N}$ |
| p | point, typographic | 0.376065 mm |
| pdl | poundal | 0.1383 N |
| ph | phot | $10^{4} \mathrm{~lm} / \mathrm{m}^{2}$ |
| PS (German) | horsepower | 735.49875 W |
| psf | pound (weight) per square foot | 47.88 Pa |
| psi | pound (weight) per square inch | 6895 Pa |
| pt (UK) | pint | 0.56831 |
| pt (US) | pint | 0.47311 |


| Other Units |  |  |
| :--- | :---: | :---: |
| Symbol | Name | In SI units |
| q | quarter (mass) | 12.7 kg |
| qmm | square millimetre | $1 \mathrm{~mm}^{2}$ |
| qt (US) | quart | 0.94631 |
| R | roentgen | $258 \cdot 10^{-6} \mathrm{C} / \mathrm{kg}$ |
| rad | radian | $57.29578^{\circ}$ |
| rem | rem | $0.01 \mathrm{~J} / \mathrm{kg}$ |
| sb | stilb | $10^{4} \mathrm{~cd} / \mathrm{m}^{2}$ |
| sh cwt | short hundredweight | 45.36 kg |
| sh tn | short ton | 907.2 kg |
| sm | nautical mile | 1852 m |
| sr | steradian | solid angle |
| Sv | sievert | $1 \mathrm{~J} / \mathrm{kg}$ |
| t | metric ton | 1000 kg |
| t (UK) | ton | 1016 kg |
| Torr, torr | torr | 133.322 Pa |

## B. 7 Charge and Discharge Curves

| Function $\mathrm{e}^{-t / \tau}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t / \tau$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| 0 | 1.0000 | 0.9048 | .8187 | .7408 | .6703 | .6065 | .5488 | .4966 | .4493 | .4066 |  |  |  |  |
| 1 | .3679 | .3329 | .3012 | .2725 | .2466 | .2231 | .2019 | .1827 | .1653 | .1496 |  |  |  |  |
| 2 | .1353 | .1225 | .1108 | .1003 | .0907 | .0821 | .0743 | .0672 | .0608 | .0550 |  |  |  |  |
| 3 | .0498 | .0450 | .0408 | .0369 | .0334 | .0302 | .0273 | .0247 | .0224 | .0202 |  |  |  |  |
| 4 | .0183 | .0166 | .0150 | .0136 | .0123 | .0111 | .0101 | .0091 | .0082 | .0074 |  |  |  |  |
| 5 | .0067 | .0061 | .0055 | .0050 | .0045 | .0041 | .0037 | .0033 | .0030 | .0027 |  |  |  |  |

Example: A $4.7 \propto \mathrm{~F}$ capacitor is discharged via a $1 \mathrm{k} \Omega$ resistor. What is the voltage across the capacitor after 10 ms ?
The time constant of the RC combination is 4.7 ms , therefore 10 ms is equivalent to approximately 2.3 time constants $\tau$. For this value the table yields 0.1003 . This means that the voltage across the capacitor has decreased to $10 \%$.


Fig. B.1. Discharge and charge characteristics of an RC combination

| Function $1-\mathrm{e}^{-t / \tau}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t / \tau$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
| 0 | 0.0000 | .0952 | .1813 | .2592 | .3297 | .3935 | .4512 | .5034 | .5507 | .5934 |  |
| 1 | .6321 | .6671 | .6988 | .7275 | .7534 | .7769 | .7981 | .8173 | .8347 | .8504 |  |
| 2 | .8647 | .8775 | .8892 | .8997 | .9093 | .9179 | .9257 | .9328 | .9392 | .9450 |  |
| 3 | .9502 | .9550 | .9592 | .9631 | .9666 | .9698 | .9727 | .9753 | .9776 | .9798 |  |
| 4 | .9817 | .9834 | .9850 | .9864 | .9877 | .9889 | .9899 | .9909 | .9918 | .9926 |  |
| 5 | .9933 | .9939 | .9945 | .9950 | .9955 | .9959 | .9963 | .9967 | .9970 | .9973 |  |

Example: A discharged $4.7 \propto \mathrm{~F}$ capacitor is charged from a 5 Vvoltage source via a $1 \mathrm{k} \Omega$ resistor. What is the voltage across the capacitor after 10 ms ?
The time constant of the RC combination is 4.7 ms , therefore 10 ms is equivalent to approximately 2.3 time constants $\tau$. For this value the table yields 0.8997 . The voltage across the capacitor is therefore $5 \mathrm{~V} \cdot 0.8997 \approx 4.5 \mathrm{~V}$.

## B. 8 IEC Standard Series

| E96 | E48 | E24 | E12 | E6 |
| :---: | :---: | :---: | :---: | :---: |
| $\pm 1 \%$ | $\pm 2 \%$ | $\pm 5 \%$ | $\pm 10 \%$ | $\pm 20 \%$ |
| 1.00 | 1.00 | $1.0 \uparrow$ | $1.0 \uparrow$ | $1.0 \uparrow$ |
| 1.02 |  |  |  |  |
| 1.05 | 1.05 |  |  |  |
| 1.07 |  |  |  |  |
| 1.10 | 1.10 | 1.1 |  |  |
| 1.13 |  |  |  |  |
| 1.15 | 1.15 |  |  |  |
| 1.18 |  |  |  |  |
| 1.21 | 1.21 | 1.2 | 1.2 |  |
| 1.24 |  |  |  |  |
| 1.27 | 1.27 |  |  |  |
| 1.30 |  |  |  |  |
| 1.33 | 1.33 | 1.3 |  |  |
| 1.37 |  |  |  |  |
| 1.40 | 1.40 |  |  |  |
| 1.43 |  |  |  |  |
| 1.47 | 1.47 | 1.5 | 1.5 | 1.5 |
| 1.50 |  |  |  |  |
| 1.54 | 1.54 |  |  |  |
| 1.58 |  |  |  |  |
| 1.62 | 1.62 | 1.6 |  |  |
| 1.65 |  |  |  |  |
| 1.69 | 1.69 |  |  |  |
| 1.74 |  |  |  |  |
| 1.78 | 1.78 | 1.8 | 1.8 |  |
| 1.82 |  |  |  |  |
| 1.87 | 1.87 |  |  |  |
| 1.91 |  |  |  |  |
| 1.96 | 1.96 | 2.0 |  |  |
| 2.00 |  |  |  |  |
| 2.05 | 2.05 |  |  |  |
| 2.10 |  |  |  |  |
| 2.15 | 2.15 | 2.2 | 2.2 | 2.2 |
| 2.21 |  |  |  |  |
| 2.26 | 2.26 |  |  |  |
| 2.32 |  |  |  |  |
| 2.37 | 2.37 | 2.4 |  |  |
| 2.49 | 2.49 |  |  |  |
| 2.55 |  |  |  |  |
| 2.61 | 2.61 |  |  |  |
| 2.67 |  |  |  |  |
| 2.74 | 2.74 | 2.7 | 2.7 |  |
| 2.80 |  |  |  |  |
| 2.87 | 2.87 |  |  |  |
| 2.94 |  |  |  |  |
| 3.01 | 3.01 | $3.0 \downarrow$ |  |  |
| 3.09 |  |  |  |  |
| 3.16 | $3.16 \downarrow$ |  | $3.3 \downarrow$ | $3.3 \downarrow$ |


| $\begin{aligned} & \text { E96 } \\ & \pm 1 \% \end{aligned}$ | $\left\|\begin{array}{c} \mathbf{E 4 8} \\ \pm 2 \% \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \mathbf{E 2 4} \\ \pm 5 \% \end{gathered}\right.$ | $\begin{gathered} \mathbf{E 1 2} \\ \pm 10 \% \end{gathered}$ | $\begin{array}{\|c\|} \text { E6 } \\ \pm 20 \% \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3.24 |  |  |  |  |
| 3.32 | 3.32 | $3.3 \uparrow$ | $3.3 \uparrow$ | $3.3 \uparrow$ |
| 3.40 |  |  |  |  |
| 3.48 | 3.48 |  |  |  |
| 3.57 |  |  |  |  |
| 3.65 | 3.65 | 3.6 |  |  |
| 3.74 |  |  |  |  |
| 3.83 | 3.83 |  |  |  |
| 3.92 |  |  |  |  |
| 4.02 | 4.02 | 3.9 | 3.9 |  |
| 4.12 |  |  |  |  |
| 4.22 | 4.22 |  |  |  |
| 4.32 |  | 4.3 |  |  |
| 4.42 | 4.42 |  |  |  |
| 4.53 |  |  |  |  |
| 4.64 | 4.64 | 4.7 | 4.7 | 4.7 |
| 4.75 |  |  |  |  |
| 4.87 | 4.87 |  |  |  |
| 4.99 |  |  |  |  |
| 5.11 | 5.11 | 5.1 |  |  |
| 5.23 |  |  |  |  |
| 5.36 | 5.36 |  |  |  |
| 5.49 |  |  |  |  |
| 5.62 | 5.62 | 5.6 | 5.6 |  |
| 5.76 |  |  |  |  |
| 5.90 | 5.90 |  |  |  |
| 6.04 |  |  |  |  |
| 6.19 | 6.19 | 6.2 |  |  |
| 6.34 |  |  |  |  |
| 6.49 | 6.49 |  |  |  |
| 6.65 |  |  |  |  |
| 6.81 | 6.81 | 6.8 | 6.8 | 6.8 |
| 6.98 |  |  |  |  |
| 7.15 | 7.15 |  |  |  |
| 7.32 |  |  |  |  |
| 7.50 7.68 | 7.50 | 7.5 |  |  |
| 7.87 | 7.87 |  |  |  |
| 8.06 |  |  |  |  |
| 8.25 | 8.25 | 8.2 | 8.2 |  |
| 8.45 |  |  |  |  |
| 8.66 | 8.66 |  |  |  |
| 8.87 |  |  |  |  |
| 9.09 | 9.09 | 9.1 |  |  |
| 9.31 |  |  |  |  |
| 9.53 | 9.53 |  |  |  |
| 9.76 10.0 | $10.0 \downarrow$ | $10 \downarrow$ | $10 \downarrow$ | $10 \downarrow$ |

The horizontal lines mark the approximate intervals that are covered by the given tolerances.

Example: For a calculated resistance value of $1.17 \mathrm{k} \Omega$ a resistance of $1.15 \mathrm{k} \Omega$ is chosen from the E48 series or a $1.2 \mathrm{k} \Omega$ from the E24 series. If only E6 series resisitors are available, then a $1.0 \mathrm{k} \Omega$ resistance is chosen.

The values of the IEC series form a harmonic series. Each value has the same ratio to its preceding value. This ratio is $\sqrt[6]{10}$ for the E6 series, $\sqrt[12]{10}$ for the E12 series, etc. The values are chosen so that for the given tolerances a minimum number of resistors have to be kept in stock.

## B. 9 Resistor Colour Code

| E96, E48, E24 |  |  |  |  |  |  |
| :--- | :---: | :---: | ---: | :---: | ---: | :---: |
|  | 1. Ring | 2./3. Ring | 4. Ring | 5. Ring | 6. Ring |  |
| Colour | 1. Digit | 2./3. Digit | Factor | Tolerance | Temp.coeff. |  |
| Silver |  |  | $0.01 \Omega$ | $\pm 10 \%$ |  |  |
| Gold |  |  | $0.1 \Omega$ | $\pm 5 \%$ |  |  |
| Black |  | 0 | $1.0 \Omega$ |  | $\pm 250 \cdot 10^{-6} / \mathrm{K}$ |  |
| Brown | 1 | 1 | $10 \Omega$ | $\pm 1 \%$ | $\pm 100 \cdot 10^{-6} / \mathrm{K}$ |  |
| Red | 2 | 2 | $100 \Omega$ | $\pm 2 \%$ | $\pm 50 \cdot 10^{-6} / \mathrm{K}$ |  |
| Orange | 3 | 3 | $1 \mathrm{k} \Omega$ |  | $\pm 15 \cdot 10^{-6} / \mathrm{K}$ |  |
| Yellow | 4 | 4 | $10 \mathrm{k} \Omega$ |  | $\pm 25 \cdot 10^{-6} / \mathrm{K}$ |  |
| Green | 5 | 5 | $100 \mathrm{k} \Omega$ | $\pm 5 \%^{*}$ | $\pm 20 \cdot 10^{-6} / \mathrm{K}$ |  |
| Blue | 6 | 6 | $1 \mathrm{M} \Omega$ |  | $\pm 10 \cdot 10^{-6} / \mathrm{K}$ |  |
| Purple | 7 | 7 | $10 \mathrm{M} \Omega$ |  | $\pm 5 \cdot 10^{-6} / \mathrm{K}$ |  |
| Grey | 8 | 8 | $100 \mathrm{M} \Omega^{*}$ |  | $\pm 1 \cdot 10^{-6} / \mathrm{K}$ |  |
| White | 9 | 9 | $0.1 \Omega^{*}$ | $\pm 10 \%^{*}$ |  |  |
| Colour | 1. Digit | 2. Digit | Factor | Tolerance | - |  |
| 1. Ring |  |  |  |  |  |  |
| 2. Ring |  |  |  |  |  |  |
| E6, E12, E24 |  |  |  |  |  |  |

*In case the conductivity of gold and silver varnish cannot be tolerated, the following replacements can be made:
Gold is replaced by white for $0.1 \Omega$, and by green for $\pm 5 \%$.
Silver is replaced by grey for $0.01 \Omega$, and by white for $\pm 10 \%$.
Example: A resistor with the colour rings grey, red, red, gold has a resistance of $8.2 \mathrm{k} \Omega$ with a tolerance $\pm 5 \%$.

Tolerances and temperature coefficients may be marked by letters.

| Tolerance |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Letter | B | C | D | F | G | J | K | M |
| $\%$ | $\pm 0.1$ | $\pm 0.25$ | $\pm 0.5$ | $\pm 1$ | $\pm 2$ | $\pm 5$ | $\pm 10$ | $\pm 20$ |


| Temperature coefficient |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Letter | T | E | C | K | J | L | D |
| $10^{-6} / \mathrm{K}$ | $\pm 10$ | $\pm 25$ | $\pm 50$ | $\pm 100$ | $\pm 150$ | $\pm 200$ | $+200 /-500$ |

Example: A reference resistor with the five colour rings green, blue, red, brown, red and with the letter E has a resistance value of $5620 \Omega$ with a tolerance of $\pm 2 \%$ and a temperature coefficient of $\pm 25 \cdot 10^{-6} \mathrm{~K}$.

## B. 10 Parallel Combination of Resistors

High-precision resistors are not always available in all 96 or 192 values per decade of the E series. Many manufacturers produce the values of the E12 series with a tolerance of $1 \%$ or better. The values of the finer series can be approximated with parallel combinations of those resistors. The following table lists those values that are closest to the values of E96.

| Value | $R_{1}\| \| R_{2}$ |
| :---: | :--- |
| 100 | 100 |
| 102 | $120\|\mid 680$ |
| 105 | $120\|\mid 820$ |
| 107 | $120\|\mid 1000$ |
| 110 | $220\|\mid 220$ |
| 112 | $120\|\mid 1800$ |
| 115 | $120\|\mid 2700$ |
| 118 | $120\|\mid 6800$ |
| 120 | 120 |
| 121 | $220\|\mid 270$ |
| 123 | $180\|\mid 390$ |
| 127 | $150\|\mid 820$ |
| 130 | $180\|\mid 470$ |
| 133 | $150\|\mid 1200$ |
| 136 | $150\|\mid 1500$ |
| 140 | $150\|\mid 2200$ |
| 143 | $150\|\mid 3300$ |
| 147 | $150\|\mid 6800$ |
| 150 | 150 |
| 153 | $180\|\mid 1000$ |
| 158 | $220\|\mid 560$ |
| 161 | $180\|\mid 1500$ |
| 165 | $330\|\mid 330$ |
| 169 | $180\|\mid 2700$ |
| 174 | $180\|\mid 5600$ |
| 179 | $330\|\mid 390$ |
| 180 | 180 |
| 182 | $270\|\mid 560$ |
| 186 | $220\|\mid 1200$ |
| 192 | $220\|\mid 1500$ |
| 196 | $220\|\mid 1800$ |
| 200 | $220\|\mid 2200$ |
| 206 | $220\|\mid 3300$ |


| Value | $R_{1}\| \| R_{2}$ |
| :---: | :--- |
| 210 | $220\|\mid 4700$ |
| 214 | $220\|\mid 8200$ |
| 220 | $270\|\mid 1200$ |
| 229 | $270\|\mid 1500$ |
| 230 | $390\|\mid 560$ |
| 235 | $330\|\mid 820$ |
| 245 | $270\|\mid 2700$ |
| 250 | $270\|\mid 3300$ |
| 253 | $270\|\mid 3900$ |
| 261 | $270\|\mid 8200$ |
| 264 | $390\|\mid 820$ |
| 270 | 270 |
| 280 | $560\|\mid 560$ |
| 287 | $330\|\mid 2200$ |
| 294 | $330\|\mid 2700$ |
| 300 | $330\|\mid 3300$ |
| 310 | $390\|\mid 1500$ |
| 317 | $330\|\mid 8200$ |
| 321 | $390\|\mid 1800$ |
| 331 | $390\|\mid 2200$ |
| 340 | $680\|\mid 680$ |
| 349 | $390\|\mid 3300$ |
| 358 | $470\|\mid 1500$ |
| 365 | $390\|\mid 5600$ |
| 373 | $470\|\mid 1800$ |
| 382 | $560\|\mid 1200$ |
| 390 | 390 |
| 400 | $470\|\mid 2700$ |
| 411 | $470\|\mid 3300$ |
| 419 | $470\|\mid 3900$ |
| 434 | $470\|\mid 5600$ |
| 440 | $470\|\mid 6800$ |
| 451 | $820\|\mid 1000$ |


| Value | $R_{1}\| \| R_{2}$ |
| :---: | :---: |
| 464 | $560\|\mid 2700$ |
| 470 | 470 |
| 479 | $560\|\mid 3300$ |
| 487 | $820\|\mid 1200$ |
| 500 | $1000\|\mid 1000$ |
| 509 | $560\|\mid 5600$ |
| 524 | $560\|\mid 8200$ |
| 530 | $820\|\mid 1500$ |
| 545 | $1000\|\mid 1200$ |
| 560 | 560 |
| 563 | $820\|\mid 1800$ |
| 579 | $680\|\mid 3900$ |
| 594 | $680\|\mid 4700$ |
| 606 | $680\|\mid 5600$ |
| 618 | $680\|\mid 6800$ |
| 629 | $820\|\mid 2700$ |
| 643 | $1000\|\mid 1800$ |
| 667 | $1200\|\mid 1500$ |
| 680 | 680 |
| 698 | $820\|\mid 4700$ |
| 715 | $820\|\mid 5600$ |
| 732 | $820\|\mid 6800$ |
| 750 | $1500\|\mid 1500$ |
| 767 | $1000\|\mid 3300$ |
| 796 | $1000\|\mid 3900$ |
| 820 | 820 |
| 825 | $1000\|\mid 4700$ |
| 848 | $1000\|\mid 5600$ |
| 872 | $1000\|\mid 6800$ |
| 891 | $1000\|\mid 8200$ |
| 918 | $1200\|\mid 3900$ |
| 956 | $1200\|\mid 4700$ |
| 964 | $1500\|\mid 2700$ |
|  |  |

## B. 11 Selecting Track Dimensions for Current Flow

Copper tracks on printed circuit boards heat up when a current flows through them. The graph shown in Fig. B. 2 permits the selection of the required track width as a function of the temperature increase and the cross-sectional area of the copper. The values are for orientation for an ambient temperature of $20^{\circ} \mathrm{C}$ without external cooling.


Fig. B.2. Copper track selection
Example: A copper track should carry 8 A , while not increasing the temperature by more than 30 K . A cross-sectional area of about $0.12 \mathrm{~mm}^{2}$ is therefore required. For a track depth of 35 cm , this implies a conductor width of 3.5 mm .

## B. 12 American Wire Gauge

In the US, gauges are given in American wire gauge numbers (AWG). They are derived from the steps of the manufacturing process of copper wire.

| AWG | Diameter <br> (in) | Cross section <br> $(\mathrm{MCM})$ | Diameter <br> $(\mathrm{mm})$ | Cross-sectional area <br> $\left(\mathrm{mm}^{2}\right)$ |
| ---: | ---: | ---: | ---: | ---: |
| 0000 | 0.4600 | 211 | 11.7 | 107 |
| 000 | 0.4100 | 168 | 10.4 | 84.9 |
| 00 | 0.3650 | 133 | 9.27 | 67.5 |
| 0 | 0.3250 | 105 | 8.25 | 53.5 |
| 1 | 0.2890 | 83.7 | 7.35 | 42.4 |
| 2 | 0.2580 | 66.3 | 6.54 | 33.6 |
| 4 | 0.2040 | 41.8 | 5.19 | 21.2 |
| 6 | 0.1620 | 26.3 | 4.12 | 13.3 |
| 8 | 0.1280 | 16.5 | 3.26 | 8.35 |
| 10 | 0.1020 | 10.4 | 2.59 | 5.27 |
| 12 | 0.0810 | 6.51 | 2.05 | 3.30 |
| 14 | 0.0640 | 4.12 | 1.63 | 2.09 |
| 16 | 0.0510 | 2.58 | 1.29 | 1.31 |
| 18 | 0.0400 | 1.63 | 1.024 | 0.824 |
| 20 | 0.0320 | 1.02 | 0.813 | 0.519 |
| 22 | 0.0253 | 0.641 | 0.643 | 0.325 |
| 24 | 0.0210 | 0.405 | 0.511 | 0.205 |
| 26 | 0.0159 | 0.254 | 0.405 | 0.129 |
| 28 | 0.0126 | 0.159 | 0.320 | 0.0804 |
| 30 | 0.0100 | 0.101 | 0.255 | 0.0511 |
| 32 | 0.0080 | 0.0639 | 0.203 | 0.0324 |
| 34 | 0.0063 | 0.0397 | 0.160 | 0.0201 |
| 36 | 0.0050 | 0.0250 | 0.127 | 0.0127 |
| 38 | 0.0040 | 0.0161 | 0.102 | 0.00817 |
| 40 | 0.0031 | 0.0097 | 0.079 | 0.00490 |
| $4 / 0$ | see 0000 | - | - | - |
| $3 / 0$ | see 000 | etc. | - | - |

MCM: 1000 circular mils
$1 \mathrm{MCM}=0.5067 \mathrm{~mm}^{2}$
The 0000,000 , etc. in AWG are also denoted by $4 / 0,3 / 0$, etc.
The following rules hold for AWG numbers:

- An AWG 10 wire has a diameter of close to 0.1 in , a cross-sectional area of about 10 MCM and (for copper wire) a resistance of $1 \Omega / 1000 \mathrm{ft}$.
- An increase of 3 AWG numbers doubles the cross-sectional area and the wire weight, and decreases the wire resistance by a factor of 2 .
- An increase of 6 AWG numbers doubles the cross-sectional diameter.
- An increase of 10 AWG numbers increases the cross-sectional area 10 times.


Fig. B.3. Cross-sectional area $Q=\left(\frac{d}{2}\right)^{2} \cdot$ -

## B. 13 Dry Cell Batteries

| Coding of the cells |  |  |
| :---: | :---: | :---: |
| IEC notation | Open-circuit voltage | Chemical system |
| R | 1.5 V | Zinc-carbon |
| CR | 3.3 V | Manganese dioxide-lithium |
| ER | 3.8 V | Chromium-lithium |
| LR | 1.45 V | Zinc-Alkali metal-manganese |
| MR | 1.35 V | Zinc-Mercury oxide |
| NR | 1.40 V | Zinc-manganese dioxide-mercury oxide |
| PR | 1.40 V | Zinc-air |
| SR | 1.55 V | Zinc-silver oxide |


| Format |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dimensions | Zinc-Carbon | Alkali- <br> manganese <br> Capacity | Ni-Cd <br> battery <br> Capacity | NiMH- <br> battery <br> Capacity |
| Mono cell | R20 | LR20 | KR35/62 |  |
| $33 \mathrm{~mm} \oslash \times 60 \mathrm{~mm}$ | 7.3 Ah | 18 Ah | 4Ah | 5 Ah |
| Baby cell | R14 | LR14 | KR27/50 |  |
| $26 \mathrm{~mm} \emptyset \times 50 \mathrm{~mm}$ | 3.1 Ah | 7 Ah | 2 Ah | 2.6 Ah |
| Mignon cell | R6 | LR6 | KR15/51 |  |
| $14.5 \mathrm{~mm} \oslash \times 50 \mathrm{~mm}$ | 1.1 Ah | 2.3 Ah | 0.75 Ah | 1.1 Ah |
| Micro cell | R03 | LR03 | KR10/44 |  |
| $10.5 \mathrm{~mm} \emptyset \times 44.5 \mathrm{~mm}$ | 0.5 Ah | 1.2 Ah | 0.2 Ah | 0.45 Ah |
| Microdyn cell | R1 | LR1 | KR12/30 |  |
| $12 \mathrm{~mm} \oslash \times 30 \mathrm{~mm}$ | 0.6 Ah | 0.8 Ah | 0.15 Ah | - |
| 9 V pack | 6 F 22 | 6 LF 22 | TR7/8 |  |
| $15.5 \mathrm{~mm} \times 25 \mathrm{~mm} \times 48 \mathrm{~mm}$ | 0.4 Ah | 0.6 Ah | 0.15 Ah | 0.12 Ah |
| 4.5 V flat battery | 3 R 12 |  |  |  |
| $22 \mathrm{~mm} \times 62 \mathrm{~mm} \times 65 \mathrm{~mm}$ | 2 Ah | - | - | - |

The cell capacity values give an orientation. The cell capacity depends greatly on the kind of discharge and the operating temperature. Notation according to IEC.

| International notation of batteries |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mono <br> cell | Baby <br> cell | Mignon <br> cell | Micro <br> cell | Microdyn <br> cell | Transistor <br> battery | Flat <br> battery |
| IEC | R20 | R14 | R6 | R03 | R1 | 6F22 | 3R12 |
| USA | D | C | AA | AAA | N | 6AM6 | - |
| Japan | UM1 | UM2 | UM3 | UM4 | UM5 | - | UM10 |

The notations are valid for zinc-carbon batteries.

## B. 14 Notation of Radio-Frequency Ranges

| Frequency range | Wavelength | Description | Acronym |
| :---: | :---: | :---: | :---: |
| $30-300 \mathrm{~Hz}$ | $10000-1000 \mathrm{~km}$ | Extremely low frequency | ELF |
| $300 \mathrm{~Hz}-3 \mathrm{kHz}$ | $1000-100 \mathrm{~km}$ | Infralow frequency | ILF |
| $3-30 \mathrm{kHz}$ | $100-10 \mathrm{~km}$ | Very low frequency | VLF |
| $30-300 \mathrm{kHz}$ | $10-1 \mathrm{~km}$ | Low frequency | LF |
|  |  | Long wave | LW |
| $300-3000 \mathrm{kHz}$ | $1000-100 \mathrm{~m}$ | Medium wave | MW |
| $3-30 \mathrm{MHz}$ | $100-10 \mathrm{~m}$ | High frequency | HF |
|  |  | Short wave | SW |
| $30-300 \mathrm{MHz}$ | $10-1 \mathrm{~m}$ | Very high frequency | VHF |
|  |  | Ultrashort wave | USW |
| $300-3000 \mathrm{MHz}$ | $100-10 \mathrm{~cm}$ | Ultrahigh frequency | UHF |
| $3-30 \mathrm{GHz}$ | $10-1 \mathrm{~cm}$ | Super high frequency | SHF |
| $30-300 \mathrm{GHz}$ | $10-1 \mathrm{~mm}$ | Extremely high frequency | EHF |
| $300-3000 \mathrm{GHz}$ | $1-0.1 \mathrm{~mm}$ | Hyperhigh frequency | HHF |


| Range | Meaning | CCIR band | CCITT notation |
| :---: | :---: | :---: | :---: |
| ELF | Eextremely low frequency |  |  |
| ILF | Infralow frequency |  |  |
| VLF | Very low frequency | 4 | Miriametric |
| LF | Low frequency | 5 | Kilometric |
| MF | Middle frequency | 6 | Hectometric |
| HF | High frequency | 7 | Decametric |
| VHF | Very high frequency | 8 | Metric |
| UHF | Ultrahigh frequency | 9 | Decimetric |
| SHF | Super high frequency | 10 | Centimetric |
| EHF | Extremely high frequency | 11 | Millimetric |
| HHF | Hyperhigh frequency | 12 | Submillimetric |

## B. 15 Ratios

In measurement logarithmic ratios of values are often used. Measured values and reference values must have the same dimensions (e.g. power, current). For complex values the ratio of the absolute values (e.g. apparent power) is considered.

A destinction is made between power and field values. Power values are proportional to the power, whereas field values to the power of 2 are proportional to the power.
The decibel $(\mathrm{dB})$ is used as the unit for logarithmic ratios to the base 10 . The neper $(\mathrm{Np})$ is used for natural logarithmic ratios, although this occurs less frequently.

$$
\begin{equation*}
1 \mathrm{~Np}=8.685889 \mathrm{~dB} \quad 1 \mathrm{~dB}=0.115129 \mathrm{~Np} \tag{B.1}
\end{equation*}
$$

Power attenuation (log of the power value ratio):

$$
\begin{equation*}
a_{\mathrm{P}}=10 \cdot \lg \frac{P_{1}}{P_{2}} \mathrm{~dB} \tag{B.2}
\end{equation*}
$$

Voltage attenuation (log of the field value ratio):

$$
\begin{equation*}
a_{\mathrm{V}}=20 \cdot \lg \frac{V_{1}}{V_{2}} \mathrm{~dB}, \quad V_{1}, V_{2} \text { at the same source resistance } \tag{B.3}
\end{equation*}
$$

## B.15.1 Absolute Voltage Levels

Absolute levels perform the ratio calculation with respect to a defined reference value. The absolute power level is given by:

$$
\begin{equation*}
P_{\mathrm{L}}=10 \cdot \lg \frac{P}{1 \mathrm{~mW}} \mathrm{~dB}(\mathrm{~mW}) \quad \text { or } \mathrm{dBm} \tag{B.4}
\end{equation*}
$$

The dBm is used frequently, for example, for laser diode power output.
The absolute voltage level is defined as

$$
\begin{equation*}
P_{\mathrm{SP} 1}=20 \cdot \lg \frac{V}{0.775 \mathrm{~V}} \mathrm{~dB}(0.775 \mathrm{~V}) \tag{B.5}
\end{equation*}
$$

So a voltage level of $0 \mathrm{~dB}(0.775 \mathrm{~V})$ corresponds to a voltage of 0.775 V . A power of 1 mW will be therefore dissipated by a $600 \Omega$ resistance. The voltage level is often given with respect to 1 V .

$$
\begin{equation*}
P_{\mathrm{SP} 2}=20 \cdot \lg \frac{V}{1 \mathrm{~V}} \mathrm{~dB}(\mathrm{~V}) \quad \text { or } \mathrm{dBV} \tag{B.6}
\end{equation*}
$$

Other reference values are also used.

| Reference Values: Level Ratios |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :---: |
| $R_{\text {in }}=R_{\text {out }}$ | $P_{\text {ref }}$ | $V_{0}$ | $\mathrm{~dB}(\mathrm{~mW})$ | Application |  |
| $(\Omega)$ | $(\mathrm{mW})$ | $(\mathrm{V})$ |  |  |  |
| 600 | 1 | 0.77459 | 0 | Standard |  |
| 75 | 1 | 0.27386 | 0 | RF |  |
| 60 | 1 | 0.24494 | 0 | Measurement |  |
| 50 | 1 | 0.22360 | 0 | Measurement |  |
| 150 | 1 | 0.389 | 0 | Telephony |  |
| 500 | 6 | 1.73205 | 7.78 | USA telephony |  |
| 600 | 6 | 1.1898 | 7.78 | USA telephony |  |
| 600 | 12.5 | 2.739 | 10.97 | USA telephony |  |

There is no uniform usage of reference values, so care must be taken in applying them!

| Reference values: voltage levels |  |  |
| :---: | :---: | :---: |
| Notation | Reference value | $\mathrm{dB}(0.775 \mathrm{~V})$ |
| dBV | $0 \mathrm{dBV}=1 \mathrm{~V}$ | 2.2 |
| dBmV | $0 \mathrm{dBmV}=1 \mathrm{mV}$ | -57.8 |
| $\mathrm{~dB} \propto \mathrm{~V}$ | $0 \mathrm{~dB} \propto \mathrm{~V}=1 \propto \mathrm{~V}$ | -117.8 |

## B.15.1.1 Conversion of Power and Voltage Level Ratios

The power level ratio corresponds to the voltage level ratio only for a resistance of $600 \Omega$. For absolute level ratios, measured across a resistance, $R$,

$$
\begin{equation*}
\text { power level ratio }=\text { voltage level ratio }+ \text { correction factor } \Delta \tag{B.7}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{L}}=P_{\mathrm{SP} 1}+\underbrace{10 \cdot \lg \frac{600 \Omega}{R}}_{\Delta} \tag{B.8}
\end{equation*}
$$

The unit of the correction factor is the dB . Depending on the resistor $R$ where the level is measured, it follows that

| Correction factors |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R(\Omega)$ | 50 | 60 | 75 | 150 | 500 | 600 | 1200 |
| $\Delta(\mathrm{~dB})$ | 10.79 | 10.00 | 9.03 | 6.02 | 0.79 | 0 | -3.01 |

## B.15.2 Relative Levels

| Relative level | Gain | Attenuation | Relative level | Gain | Attenuation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 1.0000 | 1.0000 | 0.5 | 1.0593 | 0.9441 |
| 0.1 | 1.0116 | 0.9886 | 0.6 | 1.0715 | 0.9333 |
| 0.2 | 1.0233 | 0.9772 | 0.7 | 1.0839 | 0.9226 |
| 0.3 | 1.0351 | 0.9661 | 0.8 | 1.0965 | 0.9120 |
| 0.4 | 1.0471 | 0.9550 | 0.9 | 1.1092 | 0.9016 |
| 1.0 | 1.1220 | 0.8913 | 11.0 | 3.5481 | 0.2818 |
| 1.5 | 1.1885 | 0.8414 | 11.5 | 3.7584 | 0.2661 |
| 2.0 | 1.2589 | 0.7943 | 12.0 | 3.9811 | 0.2512 |
| 2.5 | 1.3335 | 0.7499 | 12.5 | 4.2170 | 0.2371 |
| 3.0 | 1.4125 | 0.7079 | 13.0 | 4.4668 | 0.2239 |
| 3.5 | 1.4962 | 0.6683 | 13.5 | 4.7315 | 0.2113 |
| 4.0 | 1.5849 | 0.6310 | 14.0 | 5.0119 | 0.1995 |
| 4.5 | 1.6788 | 0.5957 | 14.5 | 5.3088 | 0.1884 |
| 5.0 | 1.7783 | 0.5623 | 15.0 | 5.6234 | 0.1778 |
| 5.5 | 1.8836 | 0.5309 | 15.5 | 5.9566 | 0.1679 |
| 6.0 | 1.9953 | 0.5012 | 16.0 | 6.3096 | 0.1585 |
| 6.5 | 2.1135 | 0.4732 | 16.5 | 6.6834 | 0.1496 |
| 7.0 | 2.2387 | 0.4467 | 17.0 | 7.0795 | 0.1413 |
| 7.5 | 2.3714 | 0.4217 | 17.5 | 7.4989 | 0.1334 |
| 8.0 | 2.5119 | 0.3981 | 18.0 | 7.9433 | 0.1259 |
| 8.5 | 2.6607 | 0.3758 | 18.5 | 8.4140 | 0.1189 |
| 9.0 | 2.8184 | 0.3548 | 19.0 | 8.9125 | 0.1122 |
| 9.5 | 2.9854 | 0.3350 | 19.5 | 9.4406 | 0.1059 |
| 10.0 | 3.1623 | 0.3162 | 20.0 | 10.0000 | 0.1000 |
| 40 | $10^{2}$ | $10^{-2}$ | 100 | $10^{5}$ | $10^{-5}$ |
| 60 | $10^{3}$ | $10^{-3}$ | 120 | $10^{6}$ | $10^{-6}$ |
| 80 | $10^{4}$ | $10^{-4}$ | 140 | $10^{7}$ | $10^{-7}$ |

Example: The power amplification for a 48.5 dB amplifier is required; $48.5 \mathrm{~dB}=8.5 \mathrm{~dB}+$ 40 dB . From the table it can be seen that 8.5 dB corresponds to a gain of 2.6607, while 40 dB means an amplification of 100 . The product of the two yields a voltage amplification of 266 . If a more exact result is required, e.g. for 48.7 dB , then the values for $0.7 \mathrm{~dB}+8 \mathrm{~dB}+40 \mathrm{~dB}$ should be taken from the table. This yields $1.0839 \cdot 2.5119 \cdot 100=272.26$.

## B. 16 V. 24 Interface

The interface in accordance with CCITT V. 24 is also described in the American norm RS232/E and in the German DIN 66020 . The interface signals are given on the following page. In practical applications only some of the many signals are analysed. Here is an example for two devices connected with V. 24 interfaces:

| Without handshake |  |  |
| :---: | :---: | :---: |
| DTE |  |  |
| 2 |  | DCE |
| 3 |  | 2 |
| 4 |  | 3 |
| 5 |  | 4 |
| 6 |  | 5 |
| 7 |  | 6 |
| 8 |  | 7 |
| 15 |  | 15 |
| 17 |  | 17 |
| 20 |  | 20 |
| 24 |  | 24 |


| CTS handshake |  |  |
| ---: | :--- | ---: |
| DTE |  | DCE |
| 2 |  | 2 |
| 3 |  | 3 |
| 4 | $\longrightarrow$ | 4 |
| 5 |  | 5 |
| 6 | $\longmapsto$ | 6 |
| 7 |  | 7 |
| 8 |  | 8 |
| 15 |  | 15 |
| 17 |  | 17 |
| 20 |  | 20 |
| 24 |  | 24 |


| DTR handshake |  |  |
| :---: | :--- | ---: |
| DTE |  |  |
| 2 |  | DCE |
| 3 |  | 2 |
| 4 | $\longmapsto$ | 3 |
| 5 |  | 4 |
| 6 |  | 5 |
| 7 |  | 6 |
| 8 |  | 7 |
| 15 |  | 8 |
| 17 |  | 15 |
| 20 |  | 17 |
| 24 |  | 20 |


| Full handshake |  |  |
| ---: | :--- | ---: |
| DTE |  | DCE |
| 2 |  | 2 |
| 3 |  | 3 |
| 4 | $\longrightarrow$ | 4 |
| 5 | $\longrightarrow$ | 5 |
| 6 | $\longrightarrow$ | 6 |
| 7 | $\longrightarrow$ | 7 |
| 8 | $\longrightarrow$ | 8 |
| 15 | $\longrightarrow$ | 15 |
| 17 | $\longrightarrow$ | 17 |
| 20 | $\longrightarrow$ | 20 |
| 24 | $\longrightarrow$ | 24 |

CTS and DTR handshakes may be combined with each other.

| Nullmodem |  |  |
| :---: | :--- | ---: |
| DTE |  | DTE |
| 2 |  |  |
| 3 |  | 2 |
| 4 |  |  |
| 5 |  | 3 |
| 6 |  | 5 |
| 7 |  | 6 |
| 8 |  | 7 |
| 15 |  | 8 |
| 17 |  | 15 |
| 20 |  | 17 |
| 24 |  | 20 |


| CTS handshake |  |  |
| :---: | :--- | ---: |
| DTE |  | DTE |
| 2 |  | 2 |
| 3 |  | 3 |
| 4 |  | 4 |
| 5 |  | 4 |
| 6 |  |  |
| 7 |  | 6 |
| 8 |  | 7 |
| 15 |  | 8 |
| 17 |  | 15 |
| 20 |  | 20 |
| 24 |  | 24 |


| DTE |  | DTE |
| :---: | :---: | :---: |
| 2 |  | 2 |
| 3 |  | 3 |
| 4 | $\xrightarrow{\square}$ | 4 |
| 5 | - | 5 |
| 6 | - | 6 |
| 7 | $\checkmark$ | 7 |
| 8 |  | 8 |
| 15 |  | 15 |
| 17 |  | 17 |
| 20 | - | 20 |
| 24 |  | 24 |


| DTE |  | DTE |
| :---: | :---: | :---: |
| 2 |  | 2 |
| 3 |  | 3 |
| 4 | $\xrightarrow{\square}$ | 4 |
| 5 | - | 5 |
| 6 | - | 6 |
| 7 | $\checkmark \square$ | 7 |
| 8 | - | 8 |
| 15 | $\rightarrow$ | 15 |
| 17 |  | 17 |
| 20 | $\checkmark$ - | 20 |
| 24 |  | 24 |

Levels: Mark (1) $-15 \mathrm{~V}<V<-3 \mathrm{~V}$
Space (0) $+15 \mathrm{~V}>V>+3 \mathrm{~V}$
Protocols: The data flow control is carried by the RTS/CTS or DTR signals, or through an exchange of the XON/XOFF (DC1/DC3) or ETX/ACK signals.
The arrows in the following table show the signal direction between

Computer
Modem
DTE: data terminal equipment DCE: data communications equipment

| Interface signals |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Notation |  |  | Pin |  | Description |  |
| CCITT | EIA | DIN |  | RS232C |  | 1 |
| 101 | AA | E1 | 1 | - | Protective ground | $\longleftrightarrow$ |
| 102 | AB | E2 | 7 | - | Signal ground | $\longleftrightarrow$ |
| 103 | BA | D1 | 2 | TD | Transmitted data | $\longleftarrow$ |
| 104 | BB | D2 | 3 | RD | Received data | $\longrightarrow$ |
| 105 | CA | S2 | 4 | RTS | Request to send | $\longleftarrow$ |
| 106 | CB | M2 | 5 | CTS | Clear to send | $\longrightarrow$ |
| 107 | CC | M1 | 6 | DSR | Data set ready | $\longrightarrow$ |
| 108.1 |  | S1.1 | 20 | - | Connect data set to line | $\longleftarrow$ |
| 108.2 | CD | S1.2 | 20 | DTR | Data terminal ready | $\longleftarrow$ |
| 125 | CE | M3 | 22 | RI | Ring indicator | $\longrightarrow$ |
| 109 | CF | M5 | 8 | DCD | Data carrier detect | $\longrightarrow$ |
| 110 | CG | M6 | 21 | SQ | Signal quality detect | $\longrightarrow$ |
| 111 | CH | S4 | 23 | - | Data signal rate selector (DTE) | $\longleftarrow$ |
| 112 | CI | M4 | 23 | - | Data signal rate selector (DCE) | $\longrightarrow$ |
| 126 | CK | S5 | 11 | - | Select transmit frequency | $\longleftarrow$ |
| 113 | DA | T1 | 24 | - | Transmitter signal element timing | $\longleftarrow$ |
| 114 | DB | T2 | 15 | - | Transmitter signal element timing | $\longrightarrow$ |
| 115 | DD | T4 | 17 | RC | Receiver clock | $\longrightarrow$ |
|  |  |  |  |  | secondary channel |  |
| 118 | SBA | HD1 | 14 | - | transmitted data | $\longleftarrow$ |
| 119 | SBB | HD2 | 16 | - | received data | $\longrightarrow$ |
| 120 | SCA | HS2 | 19 | - | request to send | $\longleftarrow$ |
| 121 | SCB | HM2 | 13 | - | clear to send | $\longrightarrow$ |
| 122 | SCF | HM5 | 12 | - | carrier detect | $\longrightarrow$ |

${ }^{1}$ From DTE to DCE.

## B. 17 Dual-Tone Multi-Frequency

Two sinusoidal waveforms of different frequencies are sent by the telephone when a button is pressed. The frequencies and their order are internationally standardised.

| 697 Hz | 1 | 2 | 3 | A |
| :---: | :---: | :---: | :---: | :---: |
| 770 Hz | 4 | 5 | 6 | B |
| 852 Hz | 7 | 8 | 9 | C |
| 941 Hz | $*$ | 0 | $\#$ | D |
|  | 1209 Hz | 1336 Hz | 1477 Hz | 1633 Hz |

The keys shown in the last column are only availabe on some telephones.

## B. 18 ASCII Coding

| hex | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\begin{gathered} \text { NUL } \\ 0 \end{gathered}$ | $\begin{gathered} \text { DLE } \\ 16 \end{gathered}$ | 32 | $\begin{array}{\|c\|} \hline 0 \\ 48 \end{array}$ | 64 | P | 96 | $\mathrm{p}$ |
| 1 | $\mathrm{SOH}$ | $\begin{gathered} \hline \mathrm{DC1} \\ 17 \end{gathered}$ | 33 | 1 | A | Q | 97 | $\begin{gathered} \text { q } \\ 113 \end{gathered}$ |
| 2 | $\begin{gathered} \hline \text { STX } \\ 2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DC2 } \\ 18 \\ \hline \end{gathered}$ | 34 | $\begin{array}{\|c\|} \hline 2 \\ 50 \end{array}$ | $\begin{array}{\|c\|} \hline \text { B } \\ 66 \\ \hline \end{array}$ | $\begin{gathered} \hline \mathrm{R} \\ 82 \end{gathered}$ | b 98 | $114$ |
| 3 | $\begin{gathered} \hline \text { ETX } \\ 3 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DC3 } \\ 19 \\ \hline \end{gathered}$ | $\#$ 35 | 3 51 | C | $\begin{gathered} \hline \mathrm{S} \\ 83 \\ \hline \end{gathered}$ | 99 | $115$ |
| 4 | $\begin{gathered} \hline \text { EOT } \\ 4 \end{gathered}$ | $\begin{array}{\|c} \hline \text { DC4 } \\ 20 \\ \hline \end{array}$ | $\begin{gathered} \hline \$ \\ 36 \end{gathered}$ | $\begin{array}{\|c\|} \hline 4 \\ 52 \\ \hline \end{array}$ | $\begin{gathered} \hline \mathrm{D} \\ 68 \end{gathered}$ | $\begin{gathered} \hline \mathrm{T} \\ 84 \\ \hline \end{gathered}$ | d 100 | t |
| 5 | $\begin{gathered} \text { ENQ } \\ 5 \end{gathered}$ | $\begin{gathered} \text { NAK } \\ 21 \end{gathered}$ |  |  | $\begin{array}{\|c\|} \hline \mathrm{E} \\ 69 \\ \hline \end{array}$ | $\begin{gathered} \mathrm{U} \\ 85 \end{gathered}$ | 101 | $117$ |
| 6 | $\begin{gathered} \text { ACK } \\ 6 \end{gathered}$ | $\begin{gathered} \text { SYN } \\ 22 \end{gathered}$ | $\begin{gathered} \hline \& \\ 38 \end{gathered}$ | $\begin{array}{\|c\|} \hline 6 \\ 54 \\ \hline \end{array}$ | $\begin{gathered} \hline \text { F } \\ 70 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ 86 \end{gathered}$ | f 102 | $118$ |
| 7 | $\begin{gathered} \text { BEL } \\ 7 \end{gathered}$ | $\begin{gathered} \text { ETB } \\ 23 \end{gathered}$ | 39 |  |  |  | $\begin{gathered} \mathrm{g} \\ 103 \end{gathered}$ | $\begin{gathered} \text { W } \\ 119 \end{gathered}$ |
| 8 | $\begin{gathered} \mathrm{BS} \\ 8 \end{gathered}$ | $\begin{gathered} \text { CAN } \\ 24 \end{gathered}$ | $\begin{array}{\|c\|} \hline( \\ 40 \end{array}$ | $\begin{array}{\|c\|} \hline 8 \\ 56 \\ \hline \end{array}$ | $\begin{gathered} \mathrm{H} \\ 72 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{X} \\ & 88 \end{aligned}$ | $\begin{gathered} \hline \mathrm{h} \\ 104 \end{gathered}$ | $\begin{gathered} \mathrm{x} \\ 120 \end{gathered}$ |
| 9 | $\begin{gathered} \text { HT } \\ 9 \end{gathered}$ | $\begin{gathered} \text { EM } \\ 25 \end{gathered}$ | $\begin{array}{\|c\|} \hline \\ 41 \\ \hline \end{array}$ |  |  |  | 1 <br> 105 | $\begin{gathered} \mathrm{y} \\ 121 \end{gathered}$ |
| A | $\begin{gathered} \text { LF } \\ 10 \end{gathered}$ | $\begin{gathered} \hline \text { SUB } \\ 26 \end{gathered}$ | * | 58 |  |  | $\begin{gathered} \mathrm{j} \\ 106 \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ 122 \end{gathered}$ |
| B | $\begin{gathered} \hline \mathrm{VT} \\ 11 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { ESC } \\ 27 \\ \hline \end{gathered}$ | $43$ | , 5 |  | $\begin{array}{\|c\|c\|c\|} \hline[/ \AA ̈ \\ 01 \end{array}$ | k 107 | $\begin{aligned} & \text { }\{/ \text { ä } \\ & 123 \end{aligned}$ |
| C | $\begin{gathered} \hline \text { FF } \\ 12 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { FS } \\ & 28 \\ & \hline \end{aligned}$ | 44 | $\begin{array}{\|c\|} \hline< \\ 60 \end{array}$ | $\begin{gathered} \hline \mathrm{L} \\ 76 \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline \text { V/Ö } \\ 92 \\ \hline \end{array}$ | 1 108 |  |
| D | $\begin{gathered} \hline \text { CR } \\ 13 \end{gathered}$ | $\begin{gathered} \hline \text { GS } \\ 29 \\ \hline \end{gathered}$ | 45 | = | M | ]/Ü | m 109 | \}/ü 125 |
| E | $\begin{gathered} \hline \text { SO } \\ 14 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { RS } \\ 30 \\ \hline \end{gathered}$ | 46 | $\begin{array}{\|l} > \\ 62 \end{array}$ | N 78 | ${ }^{\wedge}$ | 110 | $\begin{array}{\|c\|} \hline \sim / \beta \\ 126 \\ \hline \end{array}$ |
| F | $\begin{aligned} & \hline \text { SI } \\ & 15 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { US } \\ 31 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 1 \\ 47 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline ? \\ 63 \end{array}$ | $\begin{gathered} \hline \mathrm{O} \\ 79 \\ \hline \end{gathered}$ | $\overline{95}$ | 0 111 | $\begin{array}{\|c\|} \hline \text { DEL } \\ 127 \\ \hline \end{array}$ |

The American Standard Code for Information Interchange (ASCII) is standardised worldwide as ISO/IEC 646. It allows national special characters in 12 places. In this table the German extensions according to DIN 66003 are also shown. ASCII is a 7 -bit code, but there exist many extensions to 256 characters, which are not necessarily compatible to each other.
The two- and three-letter symbols are acronyms for control codes for data transmission according to ISO. The symbol DC1 is also known as XON, and DC3 as XOFF.

## B. 19 Resolution and Coding for Analogue-to-Digital Converters

| Resolution |  |  |  |
| ---: | ---: | ---: | ---: |
| Bits | Number of steps |  |  |
| $n$ | $2^{n}$ | Resolution <br> at 10 | Dynamic range <br> $(\mathrm{dB})$ |
| 1 | 2 | 5 V | 6.02 |
| 2 | 4 | 2.5 V | 12.04 |
| 4 | 16 | 625 mV | 24.08 |
| 6 | 64 | 156 mV | 36.12 |
| 8 | 256 | 39 mV | 48.16 |
| 10 | 1024 | 9.77 mV | 60.21 |
| 12 | 4096 | 2.441 mV | 72.25 |
| 14 | 16384 | $610.352 \propto \mathrm{~V}$ | 84.29 |
| 16 | 65536 | $152.588 \propto \mathrm{~V}$ | 96.33 |
| 18 | 262144 | $38.1470 \propto \mathrm{~V}$ | 108.37 |
| 20 | 1048576 | $9.53674 \propto \mathrm{~V}$ | 120.41 |

The resolution is given for an input signal range of 10 V . The dynamic range denotes the logarithmic ratio between the largest and the smallest representable signal.

| Coding |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value | Offset <br> binary | Two's <br> complement | One's <br> complement | Sign <br> magnitude |  |
| +FS-1 LSB | $1111 \ldots 1111$ | $0111 \ldots 1111$ | $0111 \ldots 1111$ | $1111 \ldots 1111$ |  |
| +1/2 FS | $1100 \ldots 0000$ | $0100 \ldots 0000$ | $0100 \ldots 0000$ | $1100 \ldots 0000$ |  |
| +0 | $1000 \ldots 0000$ | $0000 \ldots 0000$ | $0000 \ldots 0000$ | $1000 \ldots 0000$ |  |
| -0 | $\ldots$ | $\ldots$ | $1111 \ldots 1111$ | $0000 \ldots 0000$ |  |
| $-1 / 2$ FS | $0100 \ldots 0000$ | $1100 \ldots 0000$ | $1011 \ldots 1111$ | $0100 \ldots 0000$ |  |
| -FS+1 LSB | $0000 \ldots 0001$ | $1000 \ldots 0001$ | $1000 \ldots 0000$ | $0111 \ldots 1111$ |  |
| -FS | $0000 \ldots 0000$ | $1000 \ldots 0000$ | - | - |  |

LSB: least significant bit
FS: full scale, maximum range allowed for the converter. The maximum output value is given by the input voltage $\left(2^{n}-1\right) \cdot \mathrm{FS}$.
One's complement is derived by inverting each of the bits of the value. The representation as sign magnitude uses the highest value bit to show the positive sign. Both representations have two different representations for zero.

## B. 20 Chemical Elements

| $Z$ | Symbol | Element name | Atomic <br> weight | Remark |
| ---: | :---: | :--- | :--- | :--- |
| 1 | H | Hydrogen | 1.008 | Gas |
| 2 | He | Helium | 4.003 | Inert gas |
| 3 | Li | Lithium | 6.941 | Alkaline metal |
| 4 | Be | Beryllium | 9.012 | Alkaline earth element |
| 5 | B | Boron | 10.81 | - |
| 6 | C | Carbon | 12.01 | - |
| 7 | N | Nitrogen | 14.01 | Gas |
| 8 | O | Oxygen | 16.00 | Gas |
| 9 | F | Flourine | 19.00 | Halogen |
| 10 | Ne | Neon | 20.18 | Inert gas |
| 11 | Na | Sodium | 22.99 | Alkaline metal |
| 12 | Mg | Magnesium | 24.31 | Light metal |
| 13 | Al | Aluminium | 26.98 | Light metal |
| 14 | Si | Silicon | 28.09 | Semiconductor |
| 15 | P | Phosphorus | 30.97 | - |
| 16 | S | Sulfur | 32.06 | - |
| 17 | Cl | Chlorine | 35.45 | Halogen |
| 18 | Ar | Argon | 39.95 | Inert tas |
| 19 | K | Potassium | 39.10 | Alkaline metal |
| 20 | Ca | Calcium | 40.08 | Alkaline earth element |
| 21 | Sc | Scandium | 44.96 | Metal |
| 22 | Ti | Titanium | 47.88 | Light metal |
| 23 | V | Vanadium | 50.94 | Heavy metal |
| 24 | Cr | Chromium | 52.00 | Heavy metal |
| 25 | Mn | Manganese | 54.94 | Heavy metal |
| 26 | Fe | Iron | 55.85 | Heavy metal |
| 27 | Co | Cobalt | 58.93 | Heavy metal |
| 28 | Ni | Nickel | 58.69 | Heavy metal |
| 29 | Cu | Copper | 63.55 | Heavy metal |
| 30 | Zn | Zinc | 65.39 | Metal |
| 31 | Ga | Gallium | 69.72 | Semiconductor |
| 32 | Ge | Germanium | 72.59 | Semiconductor |
| 33 | As | Arsenic | 74.92 | - |
| 34 | Se | Selenium | 78.96 | Semiconductor |
| 35 | Br | Bromine | 79.90 | Halogen |
| 36 | Kr | Krypton | 83.80 | Inert tas |
| 37 | Rb | Rubidium | 85.47 | Alkaline metal |
| 38 | Sr | Strontium | 87.62 | Alkaline earth element |
| 39 | Y | Yttrium | 88.91 | Metal |
| 40 | Zr | Zirconium | 91.22 | Metal |
| 41 | Nb | Niobium | 92.91 | Metal |
| 42 | Mo | Molybdenum | 95.94 | Metal |
| 43 | Tc | Technetium | $(98)$ | Artificial metal |
| 44 | Ru | Ruthenium | 101.1 | Transition metal |
|  |  |  |  |  |

$Z$ : atomic number. The atomic weight is given in $\mathrm{g} / \mathrm{mol}$.

| $Z$ | Symbol | Element name | Atomic <br> weight | Remark |
| :---: | :---: | :--- | :--- | :--- |
| 45 | Rh | Rhodium | 102.9 | Precious metal |
| 46 | Pd | Palladium | 106.4 | Precious metal |
| 47 | Ag | Silver | 107.9 | Precious metal |
| 48 | Cd | Cadmium | 112.4 | Metal |
| 49 | In | Indium | 114.8 | Metal |
| 50 | Sn | Tin | 118.7 | Heavy metal |
| 51 | Sb | Antimony | 121.8 | Heavy metal |
| 52 | Te | Tellurium | 127.6 | Semiconductor |
| 53 | I | Iodine | 126.9 | Halogen |
| 54 | Xe | Xenon | 131.3 | Inert gas |
| 55 | Cs | Cesium | 132.9 | Alkaline metal |
| 56 | Ba | Barium | 137.3 | Alkaline earth element |
| 57 | La | Lanthanum | 138.9 | Rare earth element |
| 58 | Ce | Cerium | 140.1 | Rare earth element |
| 59 | Pr | Praseodymium | 140.9 | Rare earth element |
| 60 | Nd | Neodymium | 144.2 | Rare earth element |
| 61 | Pm | Promethium | 145.0 | Rare earth element |
| 62 | Sm | Samarium | 150.4 | Rare earth element |
| 63 | Eu | Europium | 152.0 | Rare earth element |
| 64 | Gd | Gadolinium | 157.3 | Rare earth element |
| 65 | Tb | Terbium | 158.9 | Rare earth element |
| 66 | Dy | Dysprosium | 162.5 | Rare earth element |
| 67 | Ho | Holmium | 164.9 | Rare earth element |
| 68 | Er | Erbium | 167.3 | Rare earth element |
| 69 | Tm | Thulium | 168.9 | Rare earth element |
| 70 | Yb | Ytterbium | 173.0 | Rare earth element |
| 71 | Lu | Lutetium | 175.0 | Rare earth element |
| 72 | Hf | Hafnium | 178.5 | - |
| 73 | Ta | Tantalum | 180.9 | - |
| 74 | W | Tungsten | 183.9 | - |
| 75 | Re | Rhenium | 186.2 | Transition metal |
| 76 | Os | Osmium | 190.2 | Heavy metal |
| 77 | Ir | Iridium | 192.2 | Precious metal |
| 78 | Pt | Platinum | 195.1 | Precious metal |
| 79 | Au | Gold | 197.0 | Precious metal |
| 80 | Hg | Mercury | 200.6 | Liquid metal |
| 81 | Tl | Thallium | 204.4 | - |
| 82 | Pb | Lead | 207.2 | Heavy metal |
| 83 | Bi | Bismuth | 209.0 | Heavy metal |
| 84 | Po | Polonium | $(209)$ | - |
| 85 | At | Astatine | $(210)$ | - |
| 86 | Rn | Radon | $(222)$ | Radioactive inert gas |
| 87 | Fr | Francium | 223.0 | Alkaline metal |
| 88 | Ra | Radium | 226.0 | Radioactive metal |
|  |  |  |  |  |
|  |  |  |  |  |

$Z$ : atomic number. The atomic weight is given in $\mathrm{g} / \mathrm{mol}$. For unstable elements the atomic mass of the longest-lasting isotope is given in parentheses.

| $Z$ | Symbol | Element name | Atomic <br> weight | Remark |
| ---: | :---: | :--- | :---: | :--- |
| 89 | Ac | Actinium | 227.0 | Actinoid |
| 90 | Th | Thorium | 232.0 | Actinoid |
| 91 | Pa | Protactinium | 231.0 | Actinoid |
| 92 | U | Uranium | 238.0 | Actinoid |
| 93 | Np | Neptunium | 237.0 | Transuranic $\downarrow$ |
| 94 | Pu | Plutonium | $(244)$ |  |
| 95 | Am | Americium | $(243)$ |  |
| 96 | Cm | Curium | 247 |  |
| 97 | Bk | Berkelium | $(247)$ |  |
| 98 | Cf | Californium | $(251)$ |  |
| 99 | Es | Einsteinium | $(252)$ |  |
| 100 | Fm | Fermium | 257 |  |
| 101 | Md | Mendelevium | $(258)$ |  |
| 102 | No | Nobelium | $(259)$ |  |
| 103 | Lr | Lawrencium | $(260)$ |  |
| 104 | Rf | Rutherfordium | $(261)$ |  |
| 105 | Db | Dubnium | $(262)$ |  |
| 106 | Sg | Seaborgium | $(263)$ | also Unh, Unnilhexium |
| 107 | Bh | Bohrium | $(262)$ |  |
| 108 | Hs | Hassium | $(265)$ |  |
| 109 | Mt | Meitnerium |  |  |
| 110 | Uun | Ununnilium | $(269)$ | discovered 1994 |
| 111 | Uuu | Ununium | $(272)$ | discovered 1994 |
| 112 | Uub | Ununbium | $(277)$ | discovered 1996 |
| 113 | Uut |  | $(285)$ | discovered 1999 |
| 114 | Uuq |  |  |  |
| 115 | Uup |  | $(289)$ |  |
| 116 | Uuh |  | $(293)$ | discovered 1999, announcement retracted |
| 117 | Uus |  | 2001 |  |
| 118 | Uuo |  |  |  |
|  |  |  | as of 2001 |  |
|  |  |  |  |  |

$Z$ : atomic number. The atomic weight is given in $\mathrm{g} / \mathrm{mol}$. For unstable elements the atomic mass of the longest-lasting isotope is given in parentheses.

## B. 21 Materials

\begin{tabular}{|c|c|c|c|c|}
\hline Material \& Chem. symbol \& Density $\mathrm{kg} / \mathrm{dm}^{3}$ \& Resistivity

$\alpha \Omega \mathrm{m}^{*}$ \& Temperature coefficient $10^{-3} \mathrm{~K}^{-1}$ <br>
\hline Aluminium \& Al \& 2.70 \& 0.027 \& 4.3 <br>
\hline Antimony \& Sb \& 6.68 \& 0.42 \& 3.6 <br>
\hline Brass \& - \& 8.4 \& 0.05-0.12 \& 1.5 <br>
\hline Bronze \& - \& 8.9 \& 0.02-0.14 \& 0.5 <br>
\hline Cadmium \& Cd \& 8.64 \& 0.077 \& 3.8-4.2 <br>
\hline Chromium \& Cr \& 7.20 \& 0.13 \& - <br>
\hline Chromium-Nickel \& - \& 8.3 \& 1-1.1 \& 0.14 <br>
\hline Cobalt \& Co \& 8.9 \& 0.06-0.09 \& 3-6 <br>
\hline Constantan \& - \& 8.8 \& 0.5 \& -0.04 <br>
\hline Copper \& Cu \& 8.92 \& 0.017 \& 4.3 <br>
\hline Germanium (pure) \& Ge \& 5.35 \& $0.46 \cdot 10^{6}$ \& - <br>
\hline German silver \& - \& 8.5 \& 0.33 \& 0.07 <br>
\hline Glass \& - \& 2.4-2.6 \& $10^{17}-10^{18}$ \& - <br>
\hline Gold \& Au \& 19.3 \& 0.022 \& 3.8 <br>
\hline Iridium \& Ir \& 22.42 \& 0.06-0.08 \& 4.1 <br>
\hline Iron \& Fe \& 7.86 \& 0.1 \& 6.5 <br>
\hline $55 \% \mathrm{Cu}, 44 \% \mathrm{Ni}, 1 \% \mathrm{Mn}$ \& \& \& \& <br>
\hline Lead \& Pb \& 11.2 \& 0.21 \& 3.9 <br>
\hline Magnesium \& Mg \& 1.74 \& 0.045 \& 3.8-5.0 <br>
\hline Manganin \& - \& 8.4 \& 0.43 \& $\pm 0.01$ <br>
\hline $86 \% \mathrm{Cu}, 2 \% \mathrm{Ni}, 12 \% \mathrm{Mn}$ \& \& \& \& <br>
\hline Mercury \& Hg \& 13.55 \& 0.97 \& 0.8 <br>
\hline Mica \& - \& 2.6-3.2 \& $10^{19}-10^{21}$ \& - <br>
\hline Molybdenum \& Mo \& 10.2 \& 0.055 \& 3.3 <br>
\hline Nickel \& Ni \& 8.9 \& 0.08 \& 6.0 <br>
\hline Palladium \& Pd \& 11.97 \& 0.11 \& 3.3 <br>
\hline Platinum \& Pt \& 21.45 \& 0.098 \& 3.5 <br>
\hline Rhodium \& Rh \& 12.4 \& 0.045 \& 4.4 <br>
\hline Selenium \& Se \& 4.8 \& $10^{11}$ \& - <br>
\hline Silver \& Ag \& 10.5 \& 0.016 \& 3.6 <br>
\hline Silicon \& Si \& 2.4 \& 0.59 \& - <br>
\hline Tantalum \& Ta \& 16.6 \& 0.15 \& 3.1-3.5 <br>
\hline Tin \& Sn \& 7.23 \& 0.12 \& 4.3 <br>
\hline Titanium \& Ti \& 4.43 \& 0.048 \& - <br>
\hline Tungsten \& W \& 19.3 \& 0.055 \& 4.5-5.7 <br>
\hline Water (distilled) \& $\mathrm{H}_{2} \mathrm{O}$ \& 1.00 \& $4 \cdot 10^{4}$ \& - <br>
\hline Wood's metal \& - \& 9.7 \& 0.53 \& 2.0 <br>
\hline Zinc \& Zn \& 7.14 \& 0.061 \& 3.7 <br>
\hline
\end{tabular}

${ }^{*}$ Conversion: $1 \propto \Omega \mathrm{~m}=1 \Omega \mathrm{~mm}^{2} / \mathrm{m}=10^{-6} \Omega \mathrm{~m}$. The resistivity (specific resistance) is valid in the range from 0 to $100^{\circ} \mathrm{C}$. The density is given for $20^{\circ} \mathrm{C}$. The temperature coefficient is valid for $0^{\circ} \mathrm{C}$; some ranges are given for temperatures from 0 to $500^{\circ} \mathrm{C}$.

| Resistivity of isolators $(\Omega \mathrm{m})$ |  |  |  |
| :--- | :---: | :--- | :---: |
| Amber | $>10^{16}$ | Polyethylene | $10^{16}$ |
| Epoxy resin | $10^{13}-10^{15}$ | Polystyrene | $10^{16}$ |
| Glass | $10^{11}-10^{12}$ | Porcelain | $<5 \cdot 10^{12}$ |
| Hard rubber | $10^{16}$ | PVC, hard | $10^{15}$ |
| Mica | $10^{13}-10^{15}$ | soft | $10^{13}$ |
| Micanite | $10^{15}$ | Quartz | $10^{13}-10^{16}$ |
| Paper | $10^{15}-10^{16}$ | Transformer oil | $10^{10}-10^{13}$ |
| Plexiglas | $10^{15}$ | Wood (dry) | $10^{9}-10^{13}$ |


| Permittivity Values |  |  |  |
| :--- | :---: | :--- | :---: |
|  | (lielectric Constants) |  |  |
| Air lat, $0^{\circ}$ C, dry | 1.000594 | Methyl alcohol | 33.5 |
| Amber | $2.2-2.9$ | Mica | $4-9$ |
| Acetone | 21.4 | Micanite | $4.0-6.0$ |
| Argon | 1.000504 | Nitrobenzene | 35.5 |
| Barium titanate | $1000-9000$ | Nitrogen | 1.000528 |
| Benzene | 2.3 | Oxygen | 1.000486 |
| Cable joint resin | 2.5 | Paraffin oil | 2.2 |
| Cable paper, im- | $4-4.3$ | Pertinax | $3.5-5.5$ |
| pregnated |  |  |  |
| Cable oil | 2.25 | Phenoplaste | $5-7$ |
| Carbon dioxide | 1.000985 | Plexiglas | $3-4$ |
| Cellulose | $3-7$ | Polyethylene | $2.2-2.7$ |
| Ceramics | up to 4000 | Polystyrene | $1.1-1.4$ |
| Condensa | $40-80$ | Porcelain | $4.5-6.5$ |
| Diethyl ether | 4.3 | PVC | $3.1-3.5$ |
| Epoxy resin | 3.7 | Quartz glass | $3.2-4.2$ |
| Ethyl alcohol | 25.1 | Shellac | $2.7-4$ |
| Germanium | $\approx 16$ | Silicon oil | $2.2-2.8$ |
| Glass | $2-16$ | Silicon | $\approx 12$ |
| Glycerine | 41.1 | Styroflex | 2.5 |
| Hard rubber | $2.5-5$ | Teflon | 2.1 |
| Helium | 1.000066 | Transformer oil | $2.2-2.5$ |
| Hydrogen | 1.000252 | Vacuum | 1.000000 |
| Kerosene | 2.2 | Water, distilled | 81 |
| Marble | $8.4-14$ | Wood | $2.5-6.8$ |

The values for materials are for orientation. For a specific application it is recommended to get more information in reference books and tables. In particular, the conditions of the measurement have to be considered carefully.

## C Acronyms

| Acronym | Stands for |
| :--- | :--- |
| A |  |
| AC | alternating current |
| ACD | automatic call distribution |
| ACIA | asynchronous communication-interface adapter |
| ACK | acknowledge |
| ACL | access control list |
| ACTE | Approval Committee for Telecommunications Equipment |
| ACW | architecture control word (GAL) |
| A/D | analogue to digital |
| AD | administrative domain |
| ADC | analogue-to-digital converter |
| ADM | add-drop multiplexer |
| ADPCM | adaptive differential-pulse code modulation |
| ADSL | asymmetrical digital subscriber line |
| ADSR | attack-decay-sustain-release (sound generator) |
| AEA | American Electronics Association |
| AF | audio frequency |
| APD | andanche photodiode |
| AFC | automatic frequency control |
| AFS | automatic noise limiter |
| AFT | automatic fine tuning |
| AGA | alterable gate array |
| AGC | automatic gain control |
| AHDL | analogue hardware-description language |
| ALC | automatic level control |
| ALERT | advice and problem location for European road traffic (RDS decoder) |
| ALGOL | algorithmic language |
| ALS | advanced low-power Schottky |
| ALU | arithmetic logical unit |
| AMstitute |  |


| Acronym | Stands for |
| :---: | :---: |
| API | application programming interface |
| APL | a programming language |
| AQL | acceptable quality level |
| ARP | address resolution protocol |
| ARRL | American Radio Relay League |
| AS | advanced Schottky |
| ASA | American Standards Association |
| ASCII | American Standard Code for Information Interchange |
| ASIC | application-specific integrated circuit |
| ASIS | application-specific instruction set |
| ASK | amplitude shift keying |
| ASM | algorithmic state machine |
| ASRA | application-specific resistor array |
| AT | control language for dial-up modems |
| ATAPI | AT-attachment packet interface |
| ATE | automatic test equipment |
| ATF | automatic track finding |
| ATM | Adobe Type Manager |
| ATM | asynchronous transfer mode |
| AUI | attachment unit interface (Ethernet) |
| AVC | automatic volume control |
| avg | average |
| AVI | audio-video interlace |
| AWG | American wire gauge |
| AWGN | additive white Gaussian noise |


| B |  |
| :--- | :--- |
| BALUN | balanced/unbalanced |
| BASIC | beginner's all-purpose instruction code |
| bbl | barrel |
| BBS | bulletin board system |
| BCC | block check character |
| BCD | binary coded decimal |
| BCH | Bose-Chaudhuri-Hocquenghem (code) |
| bd | French: baud |
| BEAB | British Electrotechnical Approvals Board |
| BEL | bell |
| BER | bit error rate |
| BFO | beat frequency oscillator |


| Acronym | Stands for |
| :---: | :---: |
| BG | borrow generate |
| BGA | ball/column grid array |
| BI | burn-in |
| BITBLT | bit block transfer |
| BIBO | bounded input-bounded output |
| BIFET | bipolar field-effect transistor |
| BIOS | basic input/output system |
| B-ISDN | broadband ISDN |
| BIST | built-in self test |
| BISYNC | binary synchronous communication |
| bit | binary digit |
| BK | black |
| BLOB | binary large object |
| bn | billion |
| BN | brown |
| BNC | bayonet nut connector, baby n-connector |
| BO | borrow-out output, ripple borrow output |
| BOC | Bell Operating Company |
| BOM | begin of message |
| BORSCHT <br> bp | battery, overvoltage protection, ringing, signalling, coding, hybrid and testing boiling point |
| BP | borrow propagate |
| BPL | biphase level (code) |
| bpp | bits per pixel |
| BPSK | biphase shift keying |
| BRA | basic rate access (ISDN) |
| BS | base station |
| BS | backspace |
| BSC | binary synchronous communication |
| BSI | British Standards Institution |
| BTLZ | British Telecom Lempel-Ziv algorithm (data compression standard V.42bis) |
| BU | blue |
| BW | bandwidth |
| BWG | Birmingham wire gauge |
| C |  |
| C | ceramic |
| CA | collision avoidance |
| CAD | computer-aided design |


| Acronym | Stands for |
| :--- | :--- |
| CAE | computer-aided engineering |
| CAI | computer-assisted instruction |
| CAM | common access method (SCSI) |
| CAM | content-addressable memory |
| CAN | cancel |
| CAN | controller area network |
| CAN | customer access network |
| CAPI | common ISDN application programming interface |
| CAS | column address strobe |
| CASE | computer-aided software engineering |
| CAT | computer-aided telephony |
| CATV | community area television |
| CAV | constant angular velocity |
| CAZ | commutating auto zero (amplifier) |
| CB | citizen band |
| CB | common base (circuit) |
| CBDS | connectionless broadband data service |
| CBMS | computer-based message system |
| CCC | ceramic chip carrier |
| CCD | charge-coupled device |
| CCFL | cold-cathode flourescent light |
| CCIR | French: Comité Consultatif International de Radiodiffusion |
| CCITT | French: Comité Consultatif International de Téléphonique et de Télégraphique |
| CCN | cordless communication network |
| CCO | current-controlled oscillator |
| CCS7 | common channel signalling system no. 7 |
| CCTV | closed circuit television |
| CDOM | counterclockwise |
| CD | compact disk ROM |
| CD | call deflection (ISDN) |
| CD | collision detection (Ethernet) |
| CD | conditioned diphase (pulse frequency shift keying) |
| CDDI | copper distributed data interface |
| CD-I | cD interactive |
| CDIP | ceramic dual in-line package |
| CDLC | cellular data link control |
| code-division multiple access |  |
| CDAM |  |


| Acronym | Stands for |
| :---: | :---: |
| CDV | compressed digital video |
| CE | chip enable |
| CE | common emitter (circuit) |
| CE | concurrent engineering |
| CECC | French: Comité des Composants Electroniques du CENELEC |
| CELP | code-excited linear predictive coding |
| CEN | French: Comité Européen de Normalisation |
| CENELEC | French: Comité Européen de Normalisation Electrotechniques |
| CEPT | French: Conférence Européenne des Administrations des Postes et des Télécommunications |
| CERDIP | ceramic dual in-line package |
| CF | call forwarding |
| CF | center frequency |
| CG | carry generate |
| CGA | color graphics adaptor |
| CI | carry-in input |
| CID | charge injection device |
| CIE | French: Commission International de l'Éclairage |
| CIM | computer-integrated manufacturing |
| CIR | committed information rate |
| CISC | complex-instruction set computer |
| CIT | computer-integrated telephony |
| Ck | clock |
| CLCC | ceramic leaded chip carrier |
| CLI | command language interpreter |
| CLIP | calling line identification presentation (ISDN) |
| CLIR | calling line identification restriction |
| CLP | configurable logic block |
| Clr | clear |
| CLUT | colour look-up table |
| CLV | constant linear velocity |
| CM | circular mil |
| CMI | coded mark inversion |
| CMIP | common management information protocol |
| CML | current mode logic |
| CMOL | CMIP over LLC (logical link control) |
| CMOP | CMIP over TCP/IP |
| CMR | common-mode rejection |
| CMRR | common-mode rejection ratio |


| Acronym | Stands for |
| :---: | :---: |
| CMV | common-mode voltage |
| C/N | carrier-to-noise ratio |
| CNC | computer numerical control |
| CNR | carrier-to-noise ratio |
| CO | carry-out output, ripple carry output |
| COFDM | coded orthogonal frequency-division multiplex |
| COHO | coherent oscillator |
| COLP | connected line identification presentation |
| COMAL | common algorithmic language |
| COMEL | French: Comité de Coordination des Constructeurs des Machines Tournantes Electriques du Marché Commun |
| CompuSec | computer security |
| ComSec | communications security |
| CONP | connection-oriented protocol |
| CP | carry propagate (output) |
| CP/M | control program for microcomputers |
| CPE | customer premises equipment |
| CPFSK | continuous phase frequency shift keying |
| CPGA | ceramic pin grid array |
| CPM | continuous phase modulation |
| CPN | customer premises network |
| cps | characters per second |
| cps | cycles per second |
| CPU | central processing unit |
| CQFP | ceramic quad flat package |
| CR | carriage return |
| CRC | cyclic redundancy check |
| CRO | cathode ray oscilloscope |
| CRT | cathode ray tube |
| c/s | client server (application) |
| CS | chip select |
| CSA | Canadian Standard Association |
| CSMA | carrier sense multiple access |
| CSMA/CA | carrier sense multiple access/collision avoidance |
| CSMA/CD | carrier sense multiple access/collision detection |
| CSTA | computer-supported telephony applications |
| CT | cordless telephone |
| CTC | counter/timer circuit |
| CTI | computer telephone integration |


| Acronym | Stands for |
| :---: | :---: |
| CTR | counter |
| CTS | clear to send |
| CUP | count up |
| CVD | chemical vapour deposition |
| CW | call wait |
| cw | clockwise |
| CW | continuous wave |
| CWL | continuous wave laser |
| Cy | carry |
| D |  |
| D | data |
| D2B | domestic digital bus |
| $\mathrm{D}^{2} \mathrm{MAC}$ | duobinary coded multiplexed analogue components |
| D/A | digital to analogue |
| DAB | digital audio broadcast |
| DAC | digital-to-analogue converter |
| DASP | digital audio signal processor |
| DATEC | data telecommunications |
| DAU | data acquisition unit |
| DBS | direct broadcast satellite |
| DC | direct current |
| dc | don't care |
| DCE | data circuit-terminating equipment |
| DCS | digital cellular system |
| DCT | discrete cosine transform |
| DCTL | direct-coupled transistor logic |
| DD | double density |
| DDC | direct digital control |
| DECT | digital enhanced cordless telephone |
| DEMKO | Danish national quality assurance symbol |
| DES | data encryption standard |
| DFB | distributed feedback (laser) |
| DFT | discrete Fourier transform |
| DIAC | diode alternating current switch |
| DIL | dual in-line |
| DIMM | dual in-line memory module |
| DIP | dual in-line package |
| DLC | data link control |


| Acronym | Stands for |
| :---: | :---: |
| DMA | direct memory access |
| DMM | digital multimeter |
| DNS | domain name system |
| DOV | data over voice |
| dpb | defects per billion |
| DPDT | double-pole double-throw |
| dpi | dots per inch |
| DPLL | digital phase-locked loop |
| DPM | digital panel meter |
| DPSK | differential phase shift keying |
| DPST | double-pole single-throw |
| DQDB | distributed queued dual bus |
| DQPSK | differential quadrature phase shift keying |
| DRAM | dynamic random-access memory |
| DRO | digital recording oscilloscope |
| DS | double sided |
| DSB | double sideband |
| DSBS | direct sound broadcasting by satellite |
| DSO | digital storage oscilloscope |
| DSO | dual in-line package small outline |
| DSP | digital signal processing/processor |
| DSR | data set ready |
| DSR | digital satellite radio |
| DSS-1 | digital subscriber signalling system no. 1 |
| DSSS | direct sequencing spread spectrum |
| DSU/CSU | digital service unit/channel service unit |
| DTE | data terminal equipment |
| DTL | diode transistor logic |
| DTMF | dial tone multiple frequency |
| DTR | data terminal ready |
| DUT | device under test |
| DVD | digital versatile disk |
| DVSO | dual in-line package very small outline |
| dx | duplex |
| DX | distant (reception) |
| E |  |
| E | extension input |
| E2PROM | electrically erasable EPROM |


| Acronym | Stands for |
| :---: | :---: |
| EAPROM | electrically alterable PROM |
| EAROM | electrically alterable ROM |
| EAV | end of active video |
| EBCDIC | extended binary-coded-decimal interchange code |
| EBU | European Broadcasting Union |
| ECC | error checking and correction |
| ECC | error correcting code |
| ECCT | enhanced computer-controlled teletext |
| ECL | emitter-coupled logic |
| ECM | error-correcting mode |
| ECMA | European Computer Manufacturers Association |
| ECMA-6 | extended ASCII code |
| ECQAC | Electronic Components Quality Assurance Committee |
| ED | extreme density |
| EDA | electronic design automation |
| EDC | error-detecting code |
| EDC | error-detection and correction |
| EDFA | Erbium-doped fibre amplifier |
| EDI | electronic data interchange |
| EDIF | electronic data interchange format |
| EDO | extended data out |
| EDP | electronic data processing |
| EDRAM | enhanced dynamic RAM |
| EDTV | enhanced definition TV |
| EE | electrical engineering |
| EEPLD | electrically erasable PLD |
| EEPROM | electrically erasable PROM |
| EFM | eight-to-fourteen (modulation) |
| EGA | enhanced graphics adapter |
| EHF | extremely high frequency ( $30-300 \mathrm{GHz}$ ) |
| EIA | Electronic Industries Association |
| EIB | European installation bus |
| E-IDE | enhanced IDE |
| EIRP | effective isotropic radiated power |
| EISA | extended industry standard architecture |
| ELCB | earth leakage circuit breaker |
| ELD | electroluminescent display |
| ELF | extremely low frequency ( $30-300 \mathrm{~Hz}$ ) |
| EMC | electromagnetic compatibility |


| Acronym | Stands for |
| :---: | :---: |
| emf | electromotive force |
| EMI | electromagnetic interference |
| EMR | electromagnetic radiation |
| EMS | expanded memory specification |
| EN | enable |
| EN | European norm |
| ENQ | enquiry |
| e/o | electro-optical |
| EOF | end of file |
| EOR | exclusive Or |
| EOT | end of tape |
| EOT | end of transmission |
| EPAC | electrically programmable analogue circuit |
| EPLD | electrically programmable logic device |
| EPO | European Patent Office |
| EPROM | erasable ROM |
| EPS | encapsulated PostScript |
| erf | error function |
| ERMES | European radio message system |
| ERP | effective radiated power |
| ES | European standard |
| ESC | escape |
| ESD | electrostatic discharge |
| ESDI | enhanced small device interface |
| ESDS | electrostatic discharge sensitive (device) |
| ESPRIT | European Strategic Programme for Research and Development on Information Technology |
| ETS | European Telecommunication Standard |
| ETSI | European Telecommunication Standards Institute |
| EUT | equipment under test |
| EXOR | exclusive Or |
| E1 | transmission rate in European multiplex hierachy 2.048 Mbit/s |
| F |  |
| FACT | Fairchild Advanced CMOS Technology |
| FAMOS | floating gate avalanche-injection MOS |
| FAQ | frequently asked questions |
| FAST | Fairchild advanced Schottky TTL |
| FAT | file allocation table |


| Acronym | Stands for |
| :---: | :---: |
| FCC | Federal Communications Commission |
| FCS | frame check sequence |
| FDC | floppy disk controller |
| FDD | floppy disk drive |
| FDDI | fibre-distributed data interface |
| FDDI-II | FDDI enhancement |
| FDM | frequency-division multiplexing |
| FDMA | frequency-division multiple access |
| FDX | full duplex |
| FEC | forward error correction |
| FET | field-effect transistor |
| FF | form feed |
| FFT | fast Fourier transform |
| FH-CDMA | frequency-hopping CDMA |
| FHSS | frequency-hopping spread spectrum |
| FIFO | first in-first out |
| FILO | first in-last out |
| FIPS | Federal information-processing standard |
| FIR | finite impulse response |
| FIT | failures in time |
| FLOTOX | floating gate tunnel oxide |
| FM | frequency modulation |
| FoD | fax on demand |
| FOR | fax over radio |
| FORTRAN | formula translator |
| FOX | fibre-optic transceiver |
| fp | freezing point |
| FPA | floating point accelerator |
| FPDT | four-pole double-throw |
| FPGA | field-programmable gate array |
| FPLD | field-programmable logic device |
| FPLS | field-programmable logic sequencer |
| fps | frames per second |
| FPST | four-pole single-throw |
| FPU | floating point unit |
| FR | frame relay |
| FRD | fast recovery diode |
| FROM | flash ROM |
| FSD | full scale deflection |


| Acronym | Stands for |
| :--- | :--- |
| FSK | frequency shift keying |
| FSM | finite state machine |
| FSR | force sensitive resistor |
| FTAM | file transfer, access and management |
| FTP | file transfer protocol |
| FTTC | fibre to the curb |
| FTTD | fibre to the desk |
| FTTH | fibre to the home |


| G |  |
| :--- | :--- |
| GA | gate array |
| GaAs | gallium arsenide |
| GAFET | gallium arsenide FET |
| GAL | generic array logic |
| GB | gigabytes |
| GCD | greatest common divisor |
| GCR | group-coded recording |
| GCT | gamma correction table |
| GD | gold |
| GDI | graphics device interface |
| GFLOPS | giga (10 $)$ floating point operations per second |
| GIGO | garbage in, garbage out |
| GMSK | Gaussian minimum shift keying |
| GN | green |
| GND | ground |
| GNYE | green-yellow |
| GOLD | GSM one-chip logic device |
| GOPS | giga (109 $)$ operations per second |
| GP | general purpose |
| GPIA | general-purpose interface adapter |
| GPIB | general-purpose interface bus |
| GPS | global positioning system |
| GSM | global system for mobile communications |
| GTO | gate turn-off (thyristor) <br> GUI |
| graphical user interface |  |
| GY | grey, gray |


| Acronym | Stands for |
| :---: | :---: |
| H |  |
| HAL | hardware array logic |
| HBT | heterojunction bipolar transistor |
| HC | high-speed CMOS |
| HCF | highest common factor |
| HCMOS | high-density complementary metal oxide on silicon |
| HCT | high-speed CMOS with TTL thresholds |
| HD | hard disk |
| HD | high density |
| HDB3 | high-density binary code with 3 zeros substitution |
| HDCD | high-density compact disk |
| HDD | hard disk drive |
| HDL | hardware-description language |
| HDLC | high-level data-link control |
| HDMAC | high-definition multiplexed analogue components |
| HDTV | high-definition TV |
| HDVS | high-definition video system |
| HDX | half duplex |
| HEMT | high electron mobility transistor |
| HFO | high-frequency oscillator |
| HHF | hyperhigh frequency ( $300-3000 \mathrm{GHz}$ ) |
| HiFi | high fidelity |
| HIP | hex in-line package |
| HIPO | hierarchy of input-process-output |
| HLF | hyperlow frequency (below 3 kHz ) |
| HLL | high-level logic |
| HLL | high-level language |
| HLLCMOS | high-speed low-voltage low-power CMOS |
| HMA | high memory area |
| HNIL | high noise immunity logic |
| HPIB | general-purpose interface bus |
| HSB | hue, saturation, brightness |
| HSI | hue, saturation, intensity |
| HSV | hue, saturation, value |
| HTL | high threshold logic |
| HTL | high-voltage transistor logic (26-33 V) |
| HTML | hypertext markup language |
| HTP | high trigger point |
| HTS | high-temperature superconductor |


| Acronym | Stands for |
| :---: | :---: |
| http | hypertext transfer protocol |
| h/w | hardware |
| I |  |
| IAE | ISDN attachment unit |
| IARU | International Amateur Radio Union |
| IC | integrated circuit |
| ICAP | Interactive Circuit Analysis Program |
| ICCS | integrated communications cabling system |
| ICE | in-circuit emulation |
| ICIS | current-controlled current source |
| ICT | in-circuit test |
| ICVS | current-controlled voltage source |
| IDE | intelligent drive electronics |
| IDFT | inverse discrete Fourier transform |
| IDN | integrated digital network |
| IDTV | improved definition TV |
| IEC | International Electrotechnical Commission |
| IECC | International Electronic Components Committee |
| IECEE | IEC System for Conformity Testing to Standards for Safety of Electrical Equipment |
| IEEE | Institute of Electrical and Electronics Engineers |
| IEV | International Electrotechnical Vocabulary |
| IF | image frequency |
| IF | intermediate frequency |
| IFL | integrated fuse logic |
| IGBT | insulated gate bipolar transistor |
| IGES | initial graphics exchange specification |
| IGFET | insulated gate FET |
| IIL | integrated injection logic |
| IIR | infinite impulse response |
| ILF | infralow frequency ( $0.3-3 \mathrm{kHz}$ ) |
| IM | intermodulation |
| IMD | intermodulation distortion |
| IMPATT | impact avalanche transit time |
| IMQ | Italian national quality sign |
| INIC | current inverting negative impedance converter |
| INT | interrupt |
| I/O | input-output |
| IP | Internet Protocol |


| Acronym | Stands for |
| :---: | :---: |
| IP | international protection |
| IP3 | intercept point of third order |
| IPC | Institute for Interconnecting and Packaging of Electronic Circuits |
| IPIP | input intercept point |
| ips | inches per second |
| IPX | Internetwork Packet Exchange |
| IR | infrared |
| IrDA | Infrared Data Association |
| IRE | Institute for Radio Engineers |
| IRE | IRE units |
| IRED | infrared emitting diode |
| IRQ | interrupt request |
| ISA | industry standard architecture |
| ISDN | integrated services digital network |
| ISI | intersymbol interference |
| ISO | International Standards Organisation |
| ISP | Internet service provider |
| IT | information technology |
| ITSEC | information technology security evaluation criteria |
| ITU | International Telecommunications Union |
| ITU-R | International Telecommunications Union - Radio Communication Sector |
| ITU-T | see ITU-TSS |
| ITU-TSS | International Telecommunications Union - Telecom Standardisation Sector |
| IVR | interactive voice response |
| IWG | Imperial wire gauge |
| J |  |
| JAN | Joint Army-Navy |
| JEDEC | Joint Electron Device Engineering Committee |
| JFET | junction FET |
| JIT | just in time |
| JPEG | Joint Photographic Expert Group (picture compression) |
| K |  |
| kbps | kilobits per second |
| KCL | Kirchhoff's current law |
| kc/s | kilocycles per second |
| KIS | keep it simple |


| Acronym | Stands for |
| :--- | :--- |
| KLT | Karhunen-Loéve transform |
| kMc | kilo megacycles (GHz) |
| KOPS | kilo-operations per second |
| ksps | kilosamples per second |
| KVL | Kirchhoff's voltage law |


| L | live |
| :---: | :---: |
| LAN | local area network |
| LAP-M | link access procedure for modems |
| laser | light emission by stimulated emission of radiation |
| LCA | logic cell array |
| LCC | leadless chip carrier |
| LCD | liquid crystal display |
| LCM | least common multiple |
| LCR | least cost routing |
| LD | laser diode |
| LDC | long distance carrier |
| LDR | light-dependent resistor |
| LDTV | low-definition TV |
| LE | local exchange |
| LED | light-emitting diode |
| LEMP | lightning electromagnetic pulse |
| LF | line feed |
| LF | low frequency ( $30 \mathrm{~Hz}-300 \mathrm{kHz}$ ) |
| LFO | low-frequency oscillator |
| LIFO | last in-first out |
| LISP | list processing (programming language) |
| LL | leased line |
| LLC | logical link control |
| LLLTV | low-level light TV |
| LMS | least mean square |
| LNA | low-noise amplifier |
| LNB | low-noise block converter |
| LNC | low-noise converter |
| LO | local oscillator |
| LOCMOS | local oxide CMOS |
| LORAN | long-range navigation |
| LP | low pass (filter) |


| Acronym | Stands for |
| :---: | :---: |
| LPC | linear predictive coding |
| LR | loudness rating |
| LRC | longitudinal redundancy check |
| LRU | last recently used (memory) |
| LS | least square |
| LSB | least significant bit |
| LSD | least significant digit |
| LSI | large-scale integration (1000-5000 gates) |
| LSTTL | low-power Schottky TTL |
| LTP | lower trigger point |
| LUT | look-up table |
| LZW | Lempel-Ziv-Welch (data compression) |
| M |  |
| MAC | media access control |
| MAC | multiplexed analogue components |
| MAD | mean absolute difference |
| MAN | metropolitan area network |
| MAP | manufacturing automation protocol |
| MASK | multiple-amplitude shift keying |
| MAU | medium attachment unit |
| MAU | multistation access unit |
| MB | megabytes |
| Mbps | megabits per second |
| MBS | mutual broadcasting system |
| $\propto \mathrm{C}$ | micro-controller |
| MCA | microchannel architecture |
| MCM | 1000 circular mils |
| MCT | MOS-controlled thyristor |
| MDAC | multiplying analogue-to-digital converter |
| MDR | magnetic field dependent resistor |
| MDT | mean down time |
| MECL | Motorola emitter-coupled logic |
| MET | multiemitter transistor |
| MF | medium frequency ( $300 \mathrm{kHz}-3 \mathrm{MHz}$ ) |
| MF | microfarad, $\propto \mathrm{F}$ |
| MFAQ | most frequently asked questions |
| MFD | microfarad, $\propto \mathrm{F}$ |
| MFLOPS | mega floating-point operations per second |


| Acronym | Stands for |
| :---: | :---: |
| MFM | modified frequency modulation |
| MFSK | multiple-frequency shift keying |
| MHC | modified Huffmann code |
| MHS | message-handling system |
| MIB | management information base |
| MIDI | musical instrument digital interface |
| mil | 1/1000 inch |
| MIL | qualified for military use |
| MIMD | multiple instruction/multiple data (stream) |
| MIME | multipurpose Internet mail extension |
| MIPS | million instructions per second |
| MLE | maximum likelihood estimation/estimator |
| MLSE | minimum least-square error |
| MM-CD | mixed-mode compact disk |
| MMS43 | multimode system 4B3T |
| MMU | memory management unit |
| MNP | Microcom network protocol |
| MO | magneto-optical |
| MOD | magneto-optical drive |
| modem | modulator/demodulator |
| MOS | metal-oxide semiconductor |
| ${ }_{\circ} \mathrm{P}$ | microprocessor |
| mp | melting point |
| MPEG | motion picture expert group |
| MPLD | mask-programmed logic device |
| MPP | massively parallel processor |
| MPP | maximum power point |
| MPPP | multiwatt power plastic package |
| MPRII | Swedish norm concerning the maximum values for electric fields from PC monitors |
| MPSK | multiple-phase shift keying |
| MPU | microprocessing unit |
| MR | master reset |
| MSB | most significant bit |
| MSD | most significant digit |
| MS-DOS | Microsoft disk operating system |
| MSE | mean square error |
| MSI | medium scale integration (10-1000 gates) |
| MSK | minimum shift keying |
| MSPS | mega samples per second |


| Acronym | Stands for |
| :--- | :--- |
| MTBF | mean time between failures |
| MTF | modulation transfer function |
| MTTF | mean time to failure |
| MTTFF | mean time to first failure |
| MTTR | mean time to repair |
| MUSE | multiple subsampling encoding |
| MUSICAM | masking pattern universal sub-band integrated coding and multiplexing |
| MUT | mean up time |
| MUX | multiplexer |
| MW | hectometric waves |
| MX | multiplex |


| N |  |
| :---: | :---: |
| N | neutral |
| NAK | negative acknowledge |
| NB | narrowband |
| NBFM | narrow-band frequency modulation |
| NBS | National Bureau of Standards (USA) |
| nc | normally closed |
| nc | not connected |
| NCCF | normalized cross-correlation function |
| NCO | numerically controlled oscillator |
| NDI | nondestructive inspection |
| NDT | nondestructive testing |
| NE | network element |
| NEC | National Electric Code (USA) |
| NEMA | National Electrical Manufacturers Association |
| NEMKO | Norwegian national quality assurance symbol |
| NEP | noise equivalent power |
| NF | noise figure |
| NFB | negative feedback |
| NFS | network file system |
| NI | network interface |
| NIC | negative impedance converter |
| NIC | network interface card |
| NIH | not invented here (syndrome) |
| NIM | nuclear instrumentation module |
| NIST | US National Institute of Standards and Technology |
| NLQ | near letter quality |

Acronym Stands for

| NMI | nonmaskable interrupt |
| :--- | :--- |
| NN | neural network |
| no | normally open |
| NOT | number of turns |
| Np | neper (log unit $=8.69 \mathrm{~dB})$ |
| NPV | net present value |
| NRZ | nonreturn-to-zero |
| NRZI | nonreturn-to-zero inverted |
| NT | network terminator (ISDN) |
| NTC | negative temperature coefficient |
| NTFS | new technology file system |
| NTP | normal temperature and pressure |
| NTSC | National Television System Committee |
| nv | nonvolatile |
| NVM | nonvolatile memory |


| O |  |
| :--- | :--- |
| OA | office automation |
| OA | operational amplifier |
| OC | open collector |
| OC | output control |
| OCCAM | programming language for transputer |
| OCP | overcurrent protection |
| OCR | optical character recognition/reader |
| ODA | open document architecture |
| ODIF | open document interchange format |
| ODL | optical data link |
| o/e | optoelectronic |
| OEIC | optoelectronic integrated circuit |
| OEM | original equipment manufacturer |
| OFA | optical fibre amplifier |
| OFDM | optical frequency-division multiplex |
| OFDM | orthogonal frequency-division multiplex |
| OG | orange |
| OGM | outgoing message |
| OHP | overheat protection |
| OLMC | output logic macro cell |
| ONT | optical network termination |
| OOK | on-off keying |


| Acronym | Stands for |
| :---: | :---: |
| OOP | object-oriented programming |
| OOS | out of service |
| OPIP | output intercept point |
| OSD | on-screen display |
| OSF | Open Systems Foundation |
| OSI | open systems interconnection |
| OTA | operational transconductance amplifier |
| OTDM | optical time-division multiplex |
| OTDR | optical time-domain reflectometer |
| OTP | one-time programmable |
| ÖVE | Austrian national quality assurance initials |
| OVP | overvoltage protection |
| P |  |
| P | plastic |
| P | proportional (control) |
| PA | power amplifier |
| PA | polyamide |
| PA | public address |
| PABX | private automatic branch exchange |
| PAD | packet assembler/disassembler |
| PAL | phase alternation line |
| PAL | programmable array logic |
| PAM | pulse amplitude modulation |
| PAP | plug and play |
| PASC | precision adaptive sub-band coding |
| PASTA | Poisson arrivals see time averages |
| PBN | private branch network |
| PBX | private branch exchange |
| PC | personal computer |
| PCB | printed circuit board |
| PCC | plastic chip carrier |
| PCD | photo compact disk |
| PCI | peripheral component interconnect |
| PCL | printer command language |
| PCM | pulse code modulation |
| PCMCIA | PC Memory Card International Association |
| PCN | personal communication network |
| pcs | pieces |


| Acronym | Stands for |
| :---: | :---: |
| PCS | plastic cladded silica |
| PCSF | plastic cladding silica fibre |
| PCTA | personal computer terminal adapter |
| PD | proportional differential (control) |
| PD | public domain |
| PDA | personal digital assistant |
| PDCA | plan, do, check, assess |
| PDH | plesiosynchronous digital hierarchy |
| PDM | polarization-division multiplex |
| PDM | pulse-duration modulation |
| PE | parallel enable |
| PE | phase encoding |
| PE | polyethylene |
| PE | protective earth |
| PEARL | process and experiment automation real-time language |
| PECL | pseudo-ECL |
| PEEL | programmable electrically erasable logic |
| PEN | protective earth neutral |
| PERL | practical extraction and report language |
| PF | power factor $\cos \varphi$ |
| PFC | power factor correction |
| PFET | power field-effect transistor |
| PFM | pulse frequency modulation |
| PGA | pin grid array |
| PGA | programmable gain amplifier |
| PHIGS | programmer's hierarchical interactive graphics system |
| PHL | physical layer |
| PI | proportional integral (control) |
| PIA | peripheral interface adapter |
| PID | process indentifer |
| PID | proportional integral differential (control) |
| PIN | personal identification number |
| PIN | positive-intrinsic-negative |
| PIO | parallel input/output |
| PIP | picture in picture |
| PIPO | parallel in, parallel out |
| PIR | passive infrared (detector) |
| PISO | parallel in serial out |
| PK | pink |


| Acronym | Stands for |
| :--- | :--- |
| PKC | public key cryptography system |
| PKI | public key cryptography infrastructure |
| PLA | programmable logic array |
| PLC | programmable logic controller |
| PLCC | plastic leaded chip carrier |
| PLD | programmable logic device |
| PLL | phase-locked loop |
| PLM | pulse length modulation |
| PL/1 | programming language no. 1 |
| PM | phase modulation |
| PM | polarization maintaining (fibre) |
| PMF | power MOSFET |
| POF | polymer optical fibre |
| POH | power-on hours |
| POLSK | polarisation shift keying |
| PON | passive optical network |
| PON | power on |
| POS | product of sums |
| POST | power-on self-test |
| POTS | plain old telephone service |
| pp | peak to peak |
| PP | polypropylene |
| PPA | push-pull amplifier |
| ppb | parts per billion |
| ppm | parts per million |
| PPP | point-to-point protocol |
| PQFP | plastic quad flat pack |
| PRA | primary rate access (ISDN) |
| PRBS | pseudo-random binary sequence |
| PRF | pulse repetition frequency |
| PRN | pseudo-random noise |
| PSSO | plastic shrink small outline (SMD) |
| PROM | programmable read-only memory |
| PRR | pulse repetition rate |
| PSS telephone network |  |
| PSDN | polystyrol |
| packet-switched data network |  |
| phase shift keying |  |
| Power supply rejection ratio |  |
| PR |  |
| PR |  |


| Acronym | Stands for |
| :--- | :--- |
| PSW | program status word |
| PTC | positive temperature coefficient |
| PTFE | polytetraflourineethylene (Teflon) |
| PTO | public telephone operator |
| PTT | post, telephone and telegraph company |
| PU | polyurethane |
| PVC | polyvinyl chloride |
| PWD | pulse-width distortion |
| PWM | pulse-width modulation |
| PWR | power |
| PWR DWN | power down |
| PXO | programmable oscillator |

Q
QAM quadrature amplitude modulation
QASK quadrature amplitude shift keying
QBE query by example
QCIF quarter common intermediate format
QDPSK quadrature differential-phase shift keying
QFP quad flat package
QFPP quad flat plastic package
QIC quarter-inch cartridge
QIP quad in parallel
QIP quad-in-line package
QMS quality management system
QoS quality of service
QPP quiescent push-pull amplifier
QPSK quadrature phase shift keying
QSPI queued serial peripheral interface
QTY quantity

| R |  |
| :--- | :--- |
| RAC | rectified alternating current |
| RACE | Research on Advanced Communications for Europe |
| RADAR | radio detection and ranging |
| RAH | row address hold |
| RAID | redundant array of inexpensive disks |
| RAIT | redundant array of inexpensive tapes |


| Acronym | Stands for |
| :---: | :---: |
| RAM | random-access memory |
| RAMDAC | digital-to-analogue converter with RAM |
| RAS | row address strobe |
| RBER | residual bit error rate |
| RBOC | regional Bell operating company |
| RCO | ripple counter output |
| RCT | reduced contact test |
| RCTL | resistor-coupled transistor logic |
| RCV | receive |
| R\&D | research and development |
| RD | receive data |
| RD | red |
| RDBMS | relational database management system |
| RDS | running digital sum |
| RDY | ready |
| RF | radio frequency ( $3-30 \mathrm{MHz}$ ) |
| RF | reactive factor $\sin \varphi$ |
| RFA | radio-frequency amplifier |
| RFI | radio-frequency interference |
| RGB | red, green, blue |
| RIP | remote image processing |
| RISC | reduced instruction set computer |
| RJ45 | 8-pin connector for network/telecommunications applications |
| RLC | resistor, inductance, capacitor (filter) |
| RLE | run-length encoding |
| RLLE | run-length-limited encoding |
| RMS | root mean square |
| RNIS | French: Réseau Numérique Intégration de Services (ISDN) |
| ROC | region of convergence |
| ROD | rewritable optical disk |
| ROM | read-only memory |
| RPM | revolutions per minute |
| RPN | reverse polish notation |
| RPS | revolutions per second |
| RS | Reed-Solomon (code) |
| RS232 | American interface standard similar to V. 24 |
| RSA | Rivest-Shamir-Adleman (code) |
| RSC | Reed-Solomon code |
| RS-PG | Reed-Solomon product code |


| Acronym | Stands for |
| :---: | :---: |
| RTC | real-time convolver |
| RTD | resistive temperature device (thermistor) |
| RTF | rich text format |
| RTL | resistor transistor logic |
| RTS | request to send |
| RTTY | radio teletype |
| R/W | read/write |
| RX | receiver |
| RZ | return to zero |
| S |  |
| $\mathrm{S}_{0}$ | ISDN subscriber interface |
| SAA | standard application architecture |
| SAH | stuck at high |
| SAL | stuck at low |
| SAM | sequential access memory |
| SAV | start of active video |
| SAW | surface acoustic wave (filter) |
| SAWR | surface acoustic wave resonator |
| SBC | single-board computer |
| SC | switched capacitor (filter) |
| SCAM | suppressed carrier amplitude modulation |
| SCM | subcarrier modulation |
| SCP | serial communication port |
| SCR | silicon-controlled rectifier |
| SCS | silicon-controlled switch |
| SCSI | small computer systems interconnect (pronounce: scuzzy) |
| $\Sigma-\Delta$ | sigma delta converter |
| SD | single density |
| SDH | synchronous digital hierarchy |
| SDIP | shrink dual in-line package |
| SDLC | synchronous data-link control |
| SDRAM | synchronous dynamic RAM |
| SDTV | standard-definition TV |
| SECAM | French: Séquential á mémoire (TV) |
| SEM | scanning electron microscope |
| SEMKO | Swedish national quality assurance initials |
| SET | single-electron transistor |
| SETI | Finnish national quality assurance initials |


| Acronym | Stands for |
| :---: | :---: |
| SEV | Swiss national quality assurance initials |
| SFN | single-frequency network |
| SG | signal ground |
| SGML | standardized generalized markup language |
| S/H | sample and hold |
| SHA | sample-and-hold amplifier |
| SHF | superhigh frequency ( $3-30 \mathrm{GHz}$ ) |
| S/I | signal to interference (ratio) |
| SIA | Semiconductor Industry Association |
| SIL | single in line |
| SIMD | single-instruction multiple data (stream) |
| SIMM | single in-line memory modules |
| SIO | serial input/output |
| SIP | single in-line package |
| SIPO | serial in, parallel out |
| SISD | single instruction single data |
| SISO | serial in, serial out |
| SLALOM | semiconductor laser amplifier in a loop mirror |
| SLF | superlow frequency ( $<3 \mathrm{kHz}$ ) |
| SLIC | subscriber line interface circuit |
| SMAC | state machine atomic cell |
| SMC | surface-mounted component |
| SMD | surface-mounted device |
| SMDS | switched multimegabit data service |
| SMPS | switched-mode power supply |
| SMPTE | Society of Motion Picture and Television Engineers |
| SMT | surface-mount technology |
| SMTP | simple mail transfer protocol |
| S/N | signal to noise (ratio) |
| SNA | systems network architecture |
| SNMP | simple network management protocol |
| SNR | signal-to-noise ratio |
| SO | serial output |
| SO | small outline |
| SOA | safe operating area |
| SOG | small-outline gull-wing |
| SOH | start of heading |
| SOHO | small office, home office |
| SOIC | small-outline IC |


| Acronym | Stands for |
| :---: | :---: |
| SOJ | small-outline J (IC housing) |
| SOP | state of polarisation |
| SOP | sum of products |
| SOP | small-outline package |
| SOS | silicon on sapphire |
| SOT | small-outline transistor |
| SP | signal processor |
| SP | stack pointer |
| SP | surge protector |
| SPARC | scalable processor architecture |
| SPC | stored program control |
| SPDT | single-pole double-throw |
| SPE | subscriber premises equipment |
| sp gr | specific gravity |
| SPICE | simulation program with IC emphasis |
| SPN | subscriber premises network |
| SPST | single-pole single-throw |
| SPX | sequenced packet exchange |
| SQFT | shrink quad flat package |
| SQL | structured query language |
| SR | shift register |
| SR | silver |
| SRAM | static RAM |
| SRD | step recovery diode |
| SSB | single sideband (modulation) |
| SSBSC | single sideband suppressed carrier (modulation) |
| SSD | solid-state disk |
| SS/DD | single side double density |
| SSI | small-scale integration |
| SSMA | spread spectrum multiple access |
| SSN7 | signalling system no. 7 |
| SSOP | shrink small-outline package |
| SSPA | solid-state power amplifier |
| SSR | solid-state relay |
| SSSC | single sideband suppressed carrier |
| SSTV | slow-scan television |
| SS\#7 | signalling system no. 7 |
| SS7 | signalling system no. 7 |
| STDM | synchronous time-division multiplex |


| Acronym | Stands for |
| :--- | :--- |
| STEP | standard for the exchange of product and model data |
| STM | synchronous transfer mode |
| STM-1 | synchronous transport module (ISS Mbps) |
| STP | shielded twisted pair |
| STP | standard temperature and pressure |
| STX | start of text |
| s-VHS | super-video home system |
| SVP | surge voltage protector |
| S/w | software |
| SW | short wave |
| SWG | Imperial standard wire gauge |
| SWR | standing-wave ratio |
| SYN | synchronous idle |


| T |  |
| :--- | :--- |
| TAM | telephone answering machine |
| TAP | terminal access point |
| TASI | time-assignment speech interpolation |
| TAT | transatlantic tube |
| TAZ | transient absorption zener (diode) |
| TB | terminal block |
| TC | temperature coefficient |
| TC | terminal count |
| TC | two's complement |
| TCM | Trellis coded modulation |
| TCO92 | Swedish standard for electric fields from PC monitors |
| TCO95 | Swedish standard for power consumption of PC monitors |
| TCP/IP | transmission control protocol/internet protocol |
| TD | transmit data |
| TDD | time-division duplex |
| TDM | time-division multiplexing |
| TDMA | time-division multiple access |
| TDR | time-domain reflectometer |
| TE | transversal electrical (wave) |
| TE | terminal equipment |
| TEM | transversal electromagnetic (wave) |
| TEMPEST | test for electromagnetic propagation emission and secure transmission |
| TETRA | trans-European trunked radio |
| TFP | thin flat package |


| Acronym | Stands for |
| :---: | :---: |
| TFT | thin-film transistor (LCDs) |
| T/H | terminal host (application) |
| T/H | track and hold |
| THD | total harmonic distortion |
| THZ | terahertz ( $10^{15} \mathrm{~Hz}$ ) |
| TIFF | tagged image file format |
| TIM | transient intermodulation |
| TLA | three-letter acronym |
| TM | transversal magnetic (wave) |
| TN-C | terra, neutral, common (protective conductor also serves as neutral) |
| TN-C-S | terra, neutral, common, separated (contains both combined and separate neutral and protective conductors) |
| TOC | table of contents |
| TOR | telex over radio |
| TPDDI | twisted-pair distributed data interface |
| TPE | twisted pair Ethernet |
| tpi | tracks per inch |
| TQ | turquoise |
| TQFP | thin quad flat package |
| TQM | total quality management |
| TRIAC | triode alternating current switch |
| Triple nickel | lab-slang for the timer-IC 555 |
| TSR | terminate and stay resident |
| TSSOP | thin shrink small-outline package |
| TT | true type |
| TTL | transistor-transistor logic |
| TTY | teletypewriter |
| TÜV | German national quality assurance initals |
| TV | television |
| TWAIN | technology without an interesting name |
| TWT | travelling wave tube |
| TX | transmitter |
| T1 | transmission rate in US multiplex hierarchy, $1.5 \mathrm{Mbit} / \mathrm{s}$ |
| T3 | transmission rate in US multiplex hierarchy, $45 \mathrm{Mbit} / \mathrm{s}$ |
| $\mathbf{U}$ |  |
| UART | universal asynchronous receiver/transmitter |
| UDP | user datagram protocol |
| UDTV | ultradefinition TV |


| Acronym | Stands for |
| :--- | :--- |
| UEP | unequal error protection |
| uF | microfarad, $\propto \mathrm{F}$ |
| uH | microhenry, $\propto \mathrm{H}$ |
| UHF | ultrahigh frequency (300 MHz-3 GHz) |
| UI | unit interval |
| UIT | French: Union International des Télécommunications (ITU) |
| UJT | unijunction transistor |
| UKW | German abbreviation for VHF, metric waves |
| UL | American national quality assurance initials |
| ULA | uncommitted logic arrays (ASICs) |
| ULF | ultralow frequency (300 Hz-3 kHz) |
| ULSI | ultralarge scale integration |
| UMA | upper memory area |
| UMB | upper memory blocks |
| UNIC | voltage-inverting negative impedance converter |
| UNIX | widely used multiuser operating system for powerful workstations |
| UPC | universal product code |
| UPS | uninterruptible power supply |
| US | unavailable seconds |
| USART | universal synchronous/asynchronous receiver/transmitter |
| USAT | ultrasmall-aperture terminal |
| USD | US dollars |
| UTC | universal time coordinated |
| UTP | unshielded twisted pair (cable) |
| UV | ultraviolet ( $\lambda$ < 400 nm) |


| V |  |
| :--- | :--- |
| VAC | volts alternating current |
| VANS | value-added network service |
| VAR | value-added reseller |
| VAS | value-added service |
| VC | virtual channel |
| VCA | voltage-controlled amplifier |
| V $_{\text {cc }}$ | supply voltage |
| VCD | variable-capacitance diode |
| VCF | voltage-controlled filter |
| VCI | virtual channel identifier |
| VCIS | voltage-controlled current source |
| VCO | voltage-controlled oscillator |


| Acronym | Stands for |
| :---: | :---: |
| VCR | videocassette recorder |
| VCVS | voltage-controlled voltage source |
| VCXO | voltage-controlled crystal oscillator |
| VDC | volts direct current |
| VDE | German national quality assurance initals |
| VDR | voltage-dependent resistor (varistor) |
| VDT | video display terminal |
| VDU | video display unit |
| VESA | Video Electronics Standards Association |
| VF | voice frequency ( $16 \mathrm{~Hz}-20 \mathrm{kHz}$ ) |
| VFC | voltage-to-frequency converter |
| VFO | variable-frequency oscillator |
| VHDL | VHSIC hardware description language |
| VHF | very high frequency ( $30-300 \mathrm{MHz}$ ) |
| VHSIC | very high speed integrated circuit |
| VIA | versatile interface adapter |
| $\mathrm{V}_{\text {IH }}$ | high-level input voltage |
| $\mathrm{V}_{\text {IL }}$ | low-level input voltage |
| VIL | vertical in-line |
| VLB | VESA local bus |
| VLF | very low frequency ( $3-30 \mathrm{kHz}$ ) |
| VLSI | very large scale integration (more than 5000 gates) |
| VLT | video look-up table |
| VME | Versa Module Eurocard (bus system for microcomputers and workstations) |
| VMOS | V-groove MOS |
| VMS | voice mail system |
| VoD | video on demand |
| $\mathrm{V}_{\mathrm{OH}}$ | high-level output voltage |
| $\mathrm{V}_{\text {OL }}$ | low-level output voltage |
| VOM | volt-ohm-milliammeter (multimeter) |
| VOX | voice-operated transmission |
| VPI | virtual path identifier |
| VPN | virtual private network |
| VR | voltage regulator |
| VRAM | video random-access memory |
| VRC | vertical redundancy check |
| VSAT | very small aperture terminal |
| VSO | very small outline |
| $\mathrm{V}_{\text {ss }}$ | ground |


| Acronym | Stands for |
| :---: | :---: |
| VSW | very short waves ( $10-1 \mathrm{~m}$, UKW) |
| VSWR | voltage standing-wave ratio |
| VT | vertical tabulator |
| VT | violet |
| VTF | voltage-tunable filter |
| VTR | videotape recorder |
| VTVM | vacuum voltmeter |
| VXI | VME bus extension for instrumentation |
| VXO | variable-frequency crystal oscillator |
| V. 24 | interface standard of the CCITT |
| W |  |
| $\mathrm{W}^{3}$ | World Wide Web |
| WAN | wide area network |
| WARC | World Administrative Radio Conference |
| WB | wide-band |
| WBFM | wide-band frequency modulation |
| WCS | writable control store |
| WDM | wavelength-division multiplexing |
| WDT | watchdog timer |
| WE | write enable |
| WH | white |
| WISCA | why isn't Sam coding anything? |
| WLAN | wireless LAN |
| WORM | write once read multiple |
| wpe | watts per candle (light power) |
| wrt | with respect to |
| WSI | wafer-scale integration |
| wt | weight |
| WWW | World Wide Web |
| WYSIWYG | what you see is what you get |

## X

| XBIOS | extended basic input/output system |
| :--- | :--- |
| XMS | extended memory specification |
| XMT | transmit |
| XOR | exclusive Or |
| XTAL | crystal |

```
Acronym Stands for
Y
yd yard (0.9 m)
YE yellow
YIG yttrium-iron-garnet
YIQ luminance, in-phase, quadrature
YUV colour coordinates of the European PAL system (Y= luminance, UV = chrominance)
```

Z
$\begin{array}{ll}\text { Z } & \text { zero bit } \\ \text { Z80 } & \text { highly popular 8-bit microprocessor }\end{array}$
ZCS zero code suppression
ZCS zero current switching
ZD zero defects
ZIF zero insertion force (ICs)
ZIP zigzag in-line package
ZM dual sideband modulation
ZTAT zero turnaround time
ZVS zero voltage switching
4PDT four-pole double-throw
4PST four-pole single-throw
555 triple nickel (nickel: 5-cent coin)

## D Circuit Symbols (Selected)

| Resistors |  |  |  |
| :---: | :---: | :---: | :---: |
| $\checkmark \square$ | Resistor, general | $-\underset{-\Theta}{-7}$ | Thermal resistor, NTC |
| - 7 | Adjustable resistor | $-7$ | Thermal resistor, PTC |
| $\sqrt{5}$ | Potentiometer with movable contact | $\frac{-7}{B}$ | Magnetic-dependant resistor |
| $-7$ | Voltage-dependent resistor, varistor | $-7 x$ | Magnetoresistor, linear |
| $-\square$ | Resistor with fixed taps | $\nearrow$ | Adjustability, general |
| $\square$ | Shunt | $\nearrow$ | Adjustability, nonlinear |
| - - | Heating element | $ノ$ | Variability, inherent, general |
|  |  | $I$ | Variability, inherent, nonlinear |


| Capacitors |  |  |  |
| :---: | :--- | :---: | :--- |
| $\stackrel{\perp}{\top}$ | Capacitor, general | $\not \neq \boldsymbol{*}$ | Capacitor, adjustable |
| $\stackrel{+}{\top}$ | Polarised capacitor | $-\bar{\top}$ | Lead-through capacitor <br> feed-through capacitor |


$\left.$| Inductors |  |  |  |
| :--- | :--- | :---: | :--- |
| $\Gamma$ | Inductor, Coil <br> general | $\overline{\text { F }}$ |  | | Continuously variable |
| :--- |
| inductor | \right\rvert\,


| Transformers |  |  |  |
| :--- | :--- | :---: | :--- |
|  | Transformer with <br> 2 windings | Transformer with <br> 2 windings and identical <br> voltage polarity | Transformer with <br> 3 windings |
|  | Autotransformer |  |  |
| .Transformer with <br> 2 windings and opposing <br> voltage polarity | \& | Pulse transformer |  |


| Voltage Sources, Current Sources |  |  |  |
| :---: | :---: | :---: | :---: |
| $\phi$ | Ideal voltage source | $\theta$ | Ideal current source |
| $\stackrel{\rightharpoonup}{\text { ¢ }}$ | AC voltage source, technical frequency | ¢ | AC voltage source, high frequency |
| $\stackrel{\text { ¢ }}{\text { - }}$ | AC voltage source, audio frequency | $\dagger$ | Protective earth, Protective ground |
| $\stackrel{1}{ \pm}$ | Earth, general Ground, general | $\perp \pitchfork$ | Ground, Chassis |
| $\square$ | Fuse |  |  |


| Old Symbols（no longer used！） |  |  |  |  |
| :---: | :--- | :---: | :--- | :---: |
| $-W-$ | Resistor，general | $\frac{1}{\top}$ | Electrolytic capacitor |  |
| $\frac{1}{\top}$ | Capacitor，general | - | Inductor |  |
| $+\frac{}{\top}$ | Polarized capacitor | - | Transformer |  |


| Semiconductor Diodes |  |  |  |
| :---: | :---: | :---: | :---: |
| \＄ | Semiconductor diode， general | 本 ${ }_{\text {¢ }}$ | Variable capacitance diode Varactor |
| 中 ${ }^{\text {² }}$ | Light emitting diode， LED general | 本 | Breakdown diode，unidi－ rectional Zener diode |
| $\not \chi^{+}$® | Temperature sensing diode | 考 | Breakdown diode，bidi－ rectional |
| ＊${ }^{\text {a }}$ | Photodiode | － | － |


| Thyristors |  |  |  |
| :---: | :---: | :---: | :---: |
| 标 | Bidirectional diode thyristor DIAC | 法 | Bidirectional triode thyristor TRIAC |
| 央 | Thyristor | ＋ | Turn－off triode thyristor GTO |


| Transistors |  |  |  |
| :---: | :---: | :---: | :---: |
| － | npn－transistor | 洼 | Insulated gate field－ effect transistor IGFET， enhancement type， p－type channel |
| －K | pnp－transistor | 平 | IGFET，enhancement type，n－type channel |
| 区 | npn－transistor，collector connected to housing | 活 | IGFET，enhancement type，n－type channel |
| $\ddagger$ | Junction field－effect transistor JFET，n－type channel | 壮 | IGFET，depletion type，n－type channel |
| $\ddagger$ | JFET，p－type channel | 」E | IGFET，depletion type， p－type channel |
| $\sqrt{k}$ | Insulated gate bipolar transisor IGBT，enhance－ ment type，n－type chan－ nel | $*$ | Phototransistor， pnp－type |


| Measurement Instruments |  |  |  |
| :---: | :---: | :---: | :---: |
| $\bigcirc$ | Indicating instrument | $\square$ | Recording instrument |
| $\square$ | Integrating instrument | O－－－ | Counter |
| （v） | Voltmeter | W | Recording wattmeter |
| （30） | Power－factor meter | Wh | Watt－hour meter |
| （W） | Wattmeter | $\square$ | Hour meter <br> Hour counter |
| $\Theta$ | Thermometer | －$\square_{1}$ ， | Pulse meter |
| $-$^{+}\) | Thermocouple， with polarity | U. | Thermoelement with noninsulated heating element |
| Movement symbols，see Sect．4．1．6 |  |  |  |


| Switches, Relays |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | Switch, make contact | $\stackrel{\square}{\square}$ | Operating device <br> Relay coil, general |
| 4 | Switch, break contact | - | Relay coil of a polarised relay |
| $\psi^{\ominus}$ | Temperature-sensitive switch, break contact | $\stackrel{1}{4}$ | Relay coil of a remanent relay |
| $\checkmark$ | Self-operating thermal switch, break contact | $\square$ | Operating device of a thermal relay |
| +-1 | Manually operated switch, general |  | Operating device of an electronic relay |


| Connections，Connectors |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Connection，general | － | Junction， connection point |
| $\frac{11 / 3}{1 / 3}$ | 3 connections | T丁 | T－connection |
| － | Screened conductor | ＋${ }^{+}$ | Double junction of con－ ductors |
| 7 | Twisted connection， 2 connections | ＋ | Not connected |
| $\frac{0}{\underline{2}}$ | Coaxial pair | － | Plug and socket |
| － | Terminal | － | Female contact，socket |
| －－1 | Connecting link，closed | － | Male contact，socket |


| Sensors |  |  |  |
| :---: | :---: | :---: | :---: |
| $\square$ | Permanent magnet | － | Hall generator |
| ${ }^{*} \square_{1}$ | Light－dependent resistor | $\times 1$ | Photovoltaic cell |
| $\stackrel{ \pm}{\text { ¢ }}$ | Piezoelectric crystal， quartz | － | － |


| Integrated Circuits |  |  |  |
| :---: | :---: | :---: | :---: |
| 矛 $=1$ | Optocoupler |  | Operational amplifier |
| 両比 | Optical coupling device with slot for light barrier | 7 $=$ 我 | Opto－TRIAC |

## Index

8421-code 452
absolute value 102-104
absolute value squared 102
absolute values of sums 105
absolute voltage level 549
AC bridges see bridge circuits
AC current gain 274
AC equivalent circuit 262
AC measurement
current 177
voltage 177
AC power
overview 156
AC voltage amplifier 343
access time 440
acronyms 561
active 265
active filter see filter
actual value 99
addition of vectors 105
addition theorems
of hyperbolic functions 518
of trigonometric functions 514
address 439
address access time 440
address inputs 424
addressable memory 439
adjacent terms
logic algebra 407
admittance 119
admittance parameters 266
admittance plane
complex 120
advanced low-power Schottky TTL series 416
advanced Schottky TTL series 416
AGA 446
air gap 500
value of $A_{\mathrm{L}} 73$
all-pass filter 197, 237, 348
alternating quantity 112
alternative phase-shifting circuits 148
$A_{\mathrm{L}}$-value 500
American units 535
American wire gauge 545
amount of feedback 323
ampere 1
definition 64
ampere turns 71
Ampere's law 71,95
amplitude 99,113
amplitude spectrum 212
amplitude-phase form 211
analogue circuit design 261 ff
methods of analysis 261
analogue signals 261
analogue stabilisation with transistor 474
analogue-to-digital converter resolution and coding 555
And 444
And function 392
And gate 394
angular frequency $99,106,113$
antisymmetric function 209
apparent power 155,156
application of the Fourier series 217
approval sign 469
arbiter 442
arc-functions 517
principal value 517
Argand diagram 103
argument 103, 104
arithmetic mean 114
Aron-circuit 186
Arrhenius-law 372
artificial mains network 508
artificial zero-point 185
ASCII coding 554
ASCII table 554
associative law 397
asymmetric radio-frequency interference
voltage 508
asymmetrical 265
asynchronous counters 447,450
attenuation constant 237
attenuation distortion 237
attenuation factor 194
atto 531
average 114
average power 7,152
AWG 545
axial symmetry 209
baby cell 547
balanced 158
balanced systems 165
balancing
of AC bridges 149
balancing condition
of AC bridges 149
bandpass filter 196, 204, 361
bandwidth 361
centre frequency 361
circuit 362
frequency response 361
higher order 362
ideal 240
bandwidth $26,196,240,361$
definition 240
Barkhausen criterion 364
barkhausencriterion 328
basics of differential calculus 518
basics of integral calculus 519
batteries 547
BCD 452
BCD counter 447
BCD-decimal decoder 426
Bessel-filter 351
bias voltage production 385
bimetallic instrument 171
binary coded decimal 452
binary counter 447,450
Biot-Savart 68
Biot-Savart's law 68
bipolar transistor 271 ff
AC equivalent circuit 277
basic circuits 280
characteristics 272
common-emitter circuit 280
critical frequency 276
current gain 274
equivalent circuit, AC 277
equivalent circuit, static 276
Giacoletto equivalent circuit 278
input resistance 275, 279
output resistance 275
overview: basic circuits 296
reverse voltage transfer ratio 276
static equivalent circuit 276
thermal voltage drift 275
unity gain frequency 276
voltages and currents 272
bipolar transistor current sources 296
bipolar transistor differential amplifier
298, 300
differential mode gain 300
black-box 192,220
block diagram 267

Bode plot 269
Boltzmann-constant 533
boost converter 479,494
bootstrap 384
branch 6
bridge circuits 149
balancing condition 149
bridge rectification 472
bridge rectifier 472
bridges see bridge circuits
buck converter 477,494
buck-boost converter 481, 494
Butterworth-filter 351
calculation methods for linear circuits 29 ff
capacitance 4,46
capacitive divider 19
capacitive reactance 123
capacitor 5,122
CAS 442
cascade circuit 202
cascading counters 456
causal signals 208
causal systems 221
CE sign 469
centre frequency 196,361
chain rule 518
characterisation of nonlinear systems 253
characteristic equation of nonlinear systems 253
characteristic expression 435
characteristics of nonsinusoidal waveforms 115
charge 1 electric 1
Chebyshev-filter 351
chemical elements 556
choke 4
current compensated 509
chokes 91
circuit duality 139
circuit symbols 595-600
capacitors 595
connections 600
connectors 600
current sources 596
diodes 597
inductors 596
integrated circuits 600
measurement instruments 598
old symbols 597
relays 598
resistors 595
sensors 600
switches 598
thysistors 597
transformers 596
transistors 598
voltage sources 596
circuits
equivalent 135
circuits with operational amplifiers
335, 336
impedance converter 336
noninverting amplifier 336
class A operation 379
class AB operation 383
biasing 384
class B operation 382
class C operation 382
classes of precision 188
closed-loop gain 323
closed-loop system 323
CMOS 417
CMOS counters 459
CMOS devices
technical data 417
CMRR 301, 332
code
8421-code 452
coercivity 76
coherent units 530
coil 4
colour code
resistor 542
Colpitts oscillator 368
combinational circuit 408,423
combinational logic 423
common mode 299
common-base circuit 294, 297
AC equivalent circuit 295
AC voltage gain 296
high frequencies 296
input impedance 295
output impedance 295
common-collector circuit 291, 297
AC current gain 294
AC equivalent circuit 292
high frequencies 294
input impedance 293
output impedance 293
voltage gain 291
common-drain circuit 316,318
common-emitter circuit $280 \mathrm{ff}, 297$
AC equivalent circuit 282
AC voltage gain 285
at high frequencies 291
input impedance 283
load line 290
operating point 286
output impedance 284
thermal voltage drift gain 289
two-port network equations 281
two-port network parameters 281
common-gate circuit 317,318
common-mode gain $299,301,320,331$
common-mode input resistance 302
common-mode input swing 331
common-mode radio-frequency interference voltage 508
common-mode rejection ratio 301, 321, 332
common-source circuit 310-313,318
AC equivalent circuit 312
feedback capacitance 314
gain 314
input impedance 313
operating point 314
output impedance 313
two-port parameters 311
$y$-parameter 311
commutative law 396
comparators 335
compass needle 66
compensated voltage divider 141
compensation
of reactive current 156
complementary emitter follower 379
biasing 384
bootstrap 384
class AB operation 383
class B operation 379,382
class C operation 382
current-limiting 386
Darlington pair 385
efficiency 381
feedback 387
input and output impedance 380
input signal injection 386
operation classes 383
oscillation 387
output power 380
output voltage limit 380
power dissipation 381
pseudo-Darlington circuit 385
zero stability 387
complex admittance plane 120
complex amplitude 110
complex calculus 105
complex conjugate $101,103,104$
complex exponential function 104
complex Fourier coefficients 212
complex frequency 267
complex function of time 109
complex impedance 116
complex impedances
overview 121
complex normal form 212
complex number arithmetic
overview 107
complex numbers 101 ff
addition 102
Cartesian form 103
division 102
Euler formula 109
exponential form 104
multiplication 102,106
notation convention 101
polar form 103
representations 103, 105
subtraction 102
trigonometric form 103
complex plane 103
complex power 155
complex RMS value 110
complex spectrum 212
composite signal spectrum 219
compression point 257
conductance $3,57,119,122$
complex 119
magnetic 500
conducted-mode interference 508
conductivity 56
confidence intervals 528
constant quantity 112
consumer pointer system 65
continuous mode 478
continuous-mode operation 477
control
current-mode 496
of SMPS 496
PI controller 498
power factor pre-regulator 506
voltage-mode 496
controllable resistor 321
converter
inverting 481,494
convolution 228
rules 228-230
convolution integral 228
convolution product 228
core cross-section
magnetic 499
core length
magnetic 499
corkscrew rule 64,66
corner frequency $147,198,202$
correct current measurement 181
correct voltage measurement 181
cosine function 99,109
basic terms 99
graph 513
with complex argument 109
cosinusoidal waveforms
sum of 100
cotan function
graph 513
coulomb 1
Coulomb integral 44
Coulomb's law 39
counter 447-460
asynchronous 450
BCD 450
binary 450
cascading 456
CMOS 458, 459
decimal 450,453
down 453
overview 458,459
partially synchronous 456
programmable 454
ripple-through 450
semisynchronous 456
TTL 458, 459
up/down 454
coupling coefficient 88
crest factor 115
critical frequency 147,348
critical frequency of transconductance 310
critically damped case 26,27
cross-coil instrument 172
crossover distortion 380,384
crystal oscillator 368
current 1,54
definition 64
electric 1
current amplifier 324
current compensated double choke 509
current density 55
current direction
positive 1
current divider 18
capacitive 19
complex 140
inductive 19
current division 140
current error
with instrument transformers 180
current error circuit 181
current flow
selecting track dimensions 544
current gain 274
AC 274
differential 274
forward 274
static 274
current limiting 386
current measurement
AC 177
DC 174
current mirror 304
current path 182
current sink 417
current source 5, 13,417
conversion into voltage source 13
ideal 5
real 12
voltage-controlled 341
current transformer 179
current-compensated choke 509
current-compensated inductor 510
current-divider rule 18
cutoff frequency $195,196,198,202$
D flip-flop 430, 434, 436
D-input 433
D-latch 430
damped oscillation 108
damping ratio 26,204
critically damped case 26
overdamped case 26
underdamped case 26
Darlington pair 278,385
data selectors 427
data sheets
digital technology 412
DC 1
DC measurement
current 174
voltage 174
DC part 211

DC systems 1
decibel 193
decimal counter 450,453
decimal prefixes 531
decoder 426
definition
linear systems 220
stable systems 222
time-invariant systems 221
delay distortion 237
delay time 236
delayed output 432,433
delta circuit
transformation into star circuit 17
transformation to a star circuit 137
transformation to a wye circuit 137
delta function 224
spectrum 245
delta-configuration 17
delta-star transformation 137
delta-wye transformation 137
delta-connected generator 161
demagnetisation 77
DeMorgan's rules 398
demultiplexer 427
dependency notation 423-426
depletion 305
derivative
of step function 225
derivatives 108
of elementary functions 519
design of the PI controller 498
diamagnetism 69,74
dielectric constant 44
dielectrics 44
difference amplifier 339
differential amplifier 298
differential amplifier with bipolar transistors
common-mode gain 301
common-mode rejection ratio 301
examples 303
input impedance 302
input offset voltage drift 302
offset current 302
offset voltage 302
output impedance 302
overview 304
differential amplifier with field-effect
transistors 319, 320
common-mode gain 320
common-mode rejection ratio 321
differential mode gain 320
input impedance 321
output impedance 321
overview 321
differential calculus
chain rule 518
division rule 518
product rule 518
differential current gain 274
differential equation, linear 1st-order 19
differential input resistance 275
differential mode 299
differential output resistance 275
differential resistance 262
differential-mode gain 300
differential-mode input impedance 302
differential-mode radio-frequency
interference voltage 508
differentiator 342
digital circuits
CMOS family 417
integration 412
loading of 410
noise margin 410
open collector 420
power loss 412
propagation delay 411
rise time 411
slew rate 412
TTL family 414
voltage levels 409
digital electronics 392 ff
diode 269
dynamic resistance 271
parallel combination 271
Dirac impulse 224
direct current 1
discontinuous mode 478
discontinuous-mode 478
display error 187
classes of precision 188
distortion-free systems 236
distortions
linear 237
nonlinear 253-257
distributive law 397
division rule 518
don't care state 405
down counter 449,453
drain 305
DRAM 441
driver transistors 385

DTL 419
dual 139
dual-tone multi-frequency 553
duality constants 139
duality of circuits 139
duty cycle 477
dynamic component 412
dynamic input 433
dynamic load line 291
dynamic noise margin 411
dynamic RAM 441
dynamic resistance 262
dynamometer 170
EAROM 444
earth leakage current 509
ECC memory 443
ECL 418
edge-triggered flip-flops 434
synthesis of 436
EEPROM 444
efficiency 9
electric charge 1
electric current 1
electric displacement 43
electric field 39
electric field strength 40,54
electric flux lines 40
electric induction 42
electric potential 2
electric resistance 2
electric voltage 2
electrical energy 7
electricity meter 172
electrodynamic instrument 170
electrodynamic ratio meter 172
electron charge 533
electronic realisation of logic circuits 409
electrostatic field 39-53
at a boundary 47
electrostatic induction 42
electrostatic instrument 171
electrostatic movement 171
electrostatic shielding 42
elementary charge 1
elementary signals 222 ff
delta function 224
Dirac impulse 224
Gaussian pulse 223
impulse function 224
rectangular pulse 222
step function 222
triangular pulse 223
EMI suppression chokes 510
emitter follower 291, 297, 376
as power amplifier 376
complementary 379
efficiency 379
input and output impedance 377
operating limits 377
output power 377
power dissipation 378
enable 457
energy 7 ff
in a capacitor 9
in an inductor 8
energy in a magnetic field 90
energy in an electrostatic field 49
energy in static steady-state current flow 62
energy signal 208
energy, normalised 208
enhancement 305
EPLD 445
EPROM 443,445
equipotential surfaces 41,54
equivalent circuit diagram 6
equivalent circuits 135
equivalent parallel circuit 136
equivalent series circuit 136
error limits 188
EU sign of conformity 469
Euler formula 104, 109
European norm
EN55022 507
EN61000 507
EN61000-3-2 504
even function 209
exa 531
exclusive Or 396
exponential form of complex numbers 104
exponential function
complex 107-109
derivations and integrals 108
with complex exponents 108
with imaginary exponent 108
failure in time 371
failure rate 371
fall time 411
fan 371
fan-in 410
fan-out 410
farad 4,46
Faraday cage 42
Faraday's law 95
Faraday's law of induction 84
FAST series 416
feedback 322
feedback capacitance 312
feedback factor 323
feedback, types of 324
femto 531
ferrite 499
ferromagnetics 75
ferromagnetism 75
FET see field-effect transistor
FET current sources 319
field constant
electric 533
magnetic 533
field lines 66
field-effect transistor 305 ff
active range 307
as controllable resistor 321
basic circuits 310,311
critical frequency 310
depletion type 305
enhancement type 305
high frequencies 310
IGFET 306
input impedance 309
insulated gate 305
JFET 305
junction 305
MOSFET 306
n-channel 305
output characteristic 307
output characteristics 307
output resistance 309
overview: basic circuits 318
p-channel 305
pinch-off voltage 307
resistive range 307
symbols 306
threshold voltage 307
transconductance 308
transfer characteristic 307
voltages and currents 305
FIFO 442
filter $194 \mathrm{ff}, 470$
active 348
all-pass 197,348
band-stop 348
bandpass 196,361

Bessel 351, 353
Butterworth 351,352
Chebyshev 351
Chebyshev 0.5 dB 354
Chebeyshev 3 dB 355
coefficients 350
EMI 508
high-pass 195,359
low-pass 195, 349
normalisation of the transfer function 349
order of a 350
overview 194
passive 349
poles 350
rise time 198
stop-band 197
universal 363
with critical damping 351
filter capacitor 471
filter order 202, 348
filter realisation 206
filters 141
finite state machines 464
first-order systems
impulse response 232
step response 232
fit see failure in time
fixed memory see ROM
flash 444
flip-flop
circuit symbols 433
overview 434
flip-flop applications 428
flip-flop transition table 435
flip-flops 428
circuit symbols 433
circuits, overview 438
clocked SR 430
D 430
edge-triggered 434
JK 432
master-slave 431
overview 434
overview, edge-triggered 434
RS 429
SR 429
syntheses 436
triggering 432
flux density 66
flux linkage 70
flyback converter 477,482, 494
follower 336
force
at the boundaries 93
at the boundary 50
in a magnetic field 92
in an electrostatic field 50
on a charge 50
on a current-carrying conductor 67,92
on a moving charge 65
form factor 115
forward converter 477
forward current 270
forward current gain with shorted output 266, 274
forward transconductance 267
forward transconductance with shorted output 267
forward voltage 270
Fourier coefficients 210
complex 212
Fourier series 210
amplitude-phase form 211
application of 217
complex normal form 212
exponential form 212
frequently used 215
overview 213
trigonometric form 210
Fourier transform 242
definition 242
properties, overview 244
symmetry 244
Fourier transforms 241
of elementary signals 245-249
FPGA 446
FPLA 446
FPLS 446
free-wheeling diode 24
frequency 99,113
complex 267
frequency compensation 334
frequency divider 434
frequency domain 242
frequency normalisation 199, 231
frequency response 193, 269
frequently used Fourier series 215
full-bridge push-pull converter 495
full-wave rectification 472
full-wave rectification with dual supply 472
full-wave symmetry 209

GaAs 419
gain criterion 364
gain frequency characteristic 193
gain margin 335
gain response 193
gain-bandwidth product 333
GAL 446
gallium-arsenide 419
galvanometer 169
gate 305
gates 393
Gaussian distribution 527
Gaussian pulse 223
spectrum 248
Gauss's law 96
Gauss's law of electrostatics 45
general alternating quantity 112
generator 29
generator star point 162
Germanium diode 269
Giacoletto 278
Giacoletto equivalent circuit 278
Gibb's phenomenon 239
Greek symbols 533
group delay 237
guaranteed error limits 188
HAL 445
half-bridge push-pull converter 490, 495
half-wave rectification 472
half-wave symmetry 210
hard iron 77
harmonic 112
harmonic function 99,108
harmonics 210,253
Hartley oscillator 367
heating of components 370
heatsink 371
calculation of 370
henry $4,73,74$
high frequency transformer 499
coupling 503
hysteresis losses 502
minimum number of primary windings 502
windings 502
wire diameter 502
high-frequency transformer 500
high-pass filter 195, 200, 359
circuits 359
transfer function 359
high-speed CMOS series 416
higher-order filters 202
hold time 441
homogeneous field 55
hot-wire measuring system 171
$h$-parameters 265
hybrid-parameters 265
hyperbolic functions 518
addition theorems 518
hysteresis 422
hysteresis loop 76
hysteresis loss 76
hysteresis-circuit 344
ideal bandpass filter 240
ideal low-pass filter 238
step response 238
ideal systems 236
IFL 446
IGFET 305
illegal states 467
imaginary numbers 101
imaginary part 101
imaginary unit 101
powers of 101
impedance 116,117
complex 116
impedance converter 292, 336
impedance matching 10,143
impedance normalisation 231
impedance plane
complex 117
Imperial units 535
implicant 406
impulse function 224
impulse response 226
first-order systems 232
second-order systems 234
impulse response calculation 231
in-phase current 153
in-phase voltage 153
increasing oscillation 108
induced voltage 84
inductance 4,74
induction 83-90
induction in a moving conductor 83
induction instrument 172
inductive divider 19
inductive reactance 122
inductor $4,122,499$
airgap 500
core 500
current-compensated 510
wire diameter 500
input admittance with shorted output 267
input bias current 332
input characteristic 273
input impedance $142,263,321$
input impedance of the differential amplifier 302
input offset voltage 302
input resistance with shorted output 266
input spectrum 231
input vector 465
instantaneous power 7,151
in a three-phase system 165
instantaneous value 99,113
instrument symbols 173
instrumentation amplifier 340
insulated gate field-effect transistors 305
integrals 108
basics 519
definite 524
involving cosine 523
involving exponential functions 523
involving inverse trigonometric functions 524
involving trigonometric functions 521
of elementary functions 520
integrator 341
intercept point 257
interference
conducted-mode 508
intermodulation distortion 255
intermodulation margin 257
internal resistance
in a voltmeter 176
voltage-related 176
inverse trigonometric functions 517
inversion 392
inversion laws 398
inverter 394
controlled 396
inverting amplifier 337
inverting converter 494
inverting Schmitt trigger 344
iron loss 76
JFET 305
JK flip-flop 432,435
Johnson counter 449
joule 7
junction field-effect transistors 305

Karnaugh map 402
KCL 6,58
Kirchhoff's laws 6,58
current law 6,58
first law 6,58
mesh law 59
second law 6,59
voltage law 6,59
Kronecker symbol 215
KVL 6,59
lagging 113
lagging power factor 154
Laplace frequency domain 267
latch 431
latches 428
LCA 446
leading 113
leading power factor 154
least significant bit 462
Lenz's law 84
levels
absolute 549
relative, table 551
lifetime 371
line conductor 159
line current 159
line regulation 496
line spectrum 217
line-to-line voltage 159
linear systems 192,220
linearisation 261
operating point 261
load 29
for instrument transformers 180
of digital circuits 460
load line 290
load regulation 496
load variation 473
loading
of digital circuits 410
logic algebra 392 ff
logic circuits
CMOS family 417
electronic realisation 409
integration 412
loading of 410
noise margin 410
open collector 420
power loss 412
propagation delay 411
rise time 411
slew rate 412

TTL family 414
TTL/CMOS comparison 418
voltage levels 409
logic families 412
logic functions 392
logic high voltage level range 409
logic low voltage level range 409
logic transformations 396
associative law 397
commutative law 396
DeMorgan's rules 398
distributive law 397
inversion laws 398
overview 398
logic variable 392
loop 6
loop analysis 30,32
loop gain 323
Lorentz force 66,67
loss factor 26
low-pass filter 195, 197, 349
calculation 356
circuits 357
ideal 238
low-pass filter, 2nd-order 27
step response 29
low-power Schottky TTL series 416
low-power TTL series 415
lower cutoff frequency 196
LRC low-pass filter 27
LSB 462
LSL 419
LTI systems 222
magnetic circuit 78
magnetic circuit with a permanent magnet 80
magnetic conductance 73,500
magnetic core length 499
magnetic coupling 88
magnetic coupling coefficient 88,89
magnetic dipole 66
magnetic field
direction-pointing convention 64
force at the boundaries 93
magnetic field strength 69
magnetic fields 64-95
magnetic fields at boundaries 77
magnetic flux 70
magnetic flux density 66
magnetic hysteresis 76
magnetic induction 83
magnetic resistance 73
magnetic saturation 76
magnetic voltage 71
magnetomotive force 71
magnitude 102-104
magnitude frequency characteristic 193
magnitude response 193, 197, 201
mains ripple 298
mask programmable 443
master-slave flip-flop 431
mathematical basics 513
maximum power transfer 10
maxterm 406
Maxwell's equations 95-96
1st equation 95
2nd equation 95
3rd equation 96
4th equation 96
Maxwell's parallel plates 42
mean time between failures 371
measurement
AC current 177
AC power 182
AC voltage 177
DC current 174
DC power 181
DC voltage 174
multiphase power 185
power factor 184
reactive power 183,184
reactive power, multiphase 186
RMS 180
measurement error 187 ff
classes of precision 188
current measurement 176
random error 187
systematic error 187
voltage measurement 177
measurement instruments 169-173
bi-metallic 171
cross-coil 172
electrodynamic 170
electrodynamic ratio 172
electrostatic 171
hot-wire 171
induction 172
overview 173
ratiometer moving-coil- 169
reed frequency meter 172
rotary magnet 171
thermal 171
vibration 172
measurement methods
overview 190
measurement range extension
current measurement 174
voltage measurement 175
with an instrument transformer 179
Meissner oscillator 367
memory 439
memory access 440
memory cell 439
memory construction 439
mesh 6
mesh analysis 30,32
mho 57
unit 534
micro cell 547
microdyn cell 547
mignon cell 547
Miller-capacitance 280, 291
minimum number of primary turns 501
minimum overlap of logic terms 407
minterm 406
mixed quantity 112
MMF 71
mode
continuous 478
discontinuous 478
modulo- $(m+1)$ counter 455
mono cell 547
most significant bit 463
moving-coil instrument 169, 174
moving-coil meter 116
moving-iron instrument 171
moving-iron meter 116
MSB 463
MTBF 371
multiplexer 425,427
multiplexor see multiplexer
multiport RAM 442
multivibrator 346,370
mutual inductance 88,89
mutual induction 88
n-channel FET 305
n-phase system 158
Nand gate 395
national approval signs 469
natural frequency 26
naturally occurring constants 533
negative feedback 322-329
closed loop gain 323
critical frequency 328
frequency response 327
gain 328
input and output impedance 326
stability 328
negative frequency spectrum 212
negative logic 409
negative-feedback resistor 286
neper 549
network transformations 135-140
networks at variable frequency 192
neutral conductor 159
node 6
node analysis 30,33
noise margin 410
nominal load 180
noninverting amplifier 336
noninverting Schmitt trigger 345
nonlinear systems 192, 226, 253-257
characterisation 253
characteristic equation 253
definition 253
THD 254
total harmonic distortion 254
nonperiodic signals 208
nonreactive 265
Nor gate 395
normalisation of circuits 231
normalised frequency 199
Norton's theorem 33
notch filter 197
odd function 209
offset current 302
offset voltage 302,330
offset voltage drift 302,331
ohm 3,56,57
Ohm's law 2
one way rectification 472
op-amp 329
open circuit 12
open collector 420
open core 510
open-circuit 11
open-loop gain 323
operating point 261
linearisation at 261
operating point biasing 286
operating point stabilisation 288
nonlinear 290
operational amplifier 329 ff
characteristics 330
CMRR 332
common-mode gain 331
common-mode input swing 331
common-mode rejection ratio 332
compensation 334
critical frequency 333
equivalent circuit 333
frequency compensation 334
gain margin 335
gain-bandwidth product 333
input bias current 332
input impedance 332
instrumentation amplifier 340
offset voltage 330
output impedance 332
output voltage swing 330
phase margin 335
power supply rejection ratio 332
PSRR 332
rail-to-rail 330
single supply 330
slew rate 333
transit frequency 333
operational amplifier circuits
AC voltage amplifier 343
bandpass filter circuit 362
compensation of the input bias
current 338
current source 341
difference amplifier 339
differentiator 342
follower 336
high-pass filter circuits 359
integrator 341
inverting amplifier 337
low-pass filter circuits 357
multivibrator 346
sawtooth generator 346
Schmitt-trigger 344
summing amplifier 338
triangle- and square-wave generator 345
voltage setting 343
Or 444
order of a filter 350
Or function 393
Or gate 395
orthogonal 214
oscillation
amplitude criterion 328
barkhausencriterion 328
phase criterion 328
oscillation criterion 328
oscillator 364-370
Barkhausen criterion 364
Colpitts 368
crystal 368
feedback loop gain criterion with
FET 365
gain criterion 364
Hartley 367
LC 367
Meissner 367
phase criterion 364
phase shifter- 365
Pierce 369
quartz 368
RC oscillators 365
Wien bridge 366
out-of-phase current 154
out-of-phase voltage 154
output admittance with open input 266
output admittance with shorted input 267
output characteristic 273,307
output impedance 142,321
output impedance, equivalent source
resistance 263
output logic 465
output ROM 467
output spectrum 231
output vector 465
output voltage swing 330
overcompensation 157
overdamped case 26,27
overload protection
for moving-coil instruments 176
overshoot 239
overview
AC power 156
basic circuits using field-effect transistor 318
bipolar transistor-basic circuits 296
capacitances of different geometric configurations 48
characteristics of a magnetic field 94
characteristics of a static steady-state current flow 63
characteristics of an electrostatic field 52
complex impedances 121
complex number arithmetic 107
counter circuits, CMOS 459
counter circuits, TTL 459
counters 458
dependency notation 425
differential amplifier with bipolar transistors 304
differential amplifier with field-effect transistors 321
filters 194
flip-flop circuits 438
flip-flops 434
flip-flops, edge-triggered 434
Fourier series 213
inductances of different geometric configurations 82
instruments 173
logic transformations 398
measurement methods 190
notation in data sheets for digital circuits 412
properties of the Fourier transform 244
resistances of geometric configurations 61
series and parallel circuits 134
switched-mode power supplies 494
symbols on measurement instruments 188
three-phase system 164
p-channel FET 305
PAL 444,445
output circuits 446
PAL assembler 463
parallel circuits
transformation to series circuits 135
parallel combination 13-16, 130
of $R$ and $C \quad 22,130$
of $R$ and $L \quad 129$
of $R, C$ and $L \quad 132$
of capacitances 16,19
of conductances 14
of inductances 15,19
of resistors 13
parallel in serial out 447
parallel-equivalent circuit
of a passive component 157
parallel-resonant circuit 132
paramagnetism 69,74
partially synchronous 457
pascal
unit 534
pass-band 194-196
passive 265
passive components 123
parallel combinations 128 ff
series combination of 123-128
passive elements
dual 139
peak magnitude 99
peak value 113,115
period 99,112, 113, 208
periodic
definition 112
periodic quantity 112
periodic signals 208
permanent magnet 80
designing a 81
permeability 69
relative 69
permeability of free space 69
permittivity 44
table 560
peta 531
phase 99,104
phase constant 237
phase criterion 364
phase current 159
phase delay 237
phase distortion 237
phase error
for instrument transformers 180
phase factor 194
phase frequency characteristic 193
phase margin 335
phase position 113
phase response 193, 197, 201, 269
phase shift 99,113
lagging 113
leading 113
phase shifter 146
phase shifter oscillator 365
phase shifting
circuits for 146-149
phase spectrum 212
phase voltage 159
phasor
rotating 110
rotation of 106
phasor diagram 110
phasors 110
multiplication with real number 106
sum of 111
$П$-configuration 145
Pierce oscillator 369
pinch-off voltage 307
PISO 447
PLA 445
PLD 444
PLD types 445
overview 446
point symmetry 209
poles of a filter function 350
polyphase systems 158
POS 401
positive current direction 1
positive edge-triggered 434
positive feedback 322
positive frequency spectrum 212
positive logic 409
potential $2,41,53$
powder core 92
powder-core choke 510
power 7
average 7
average value 152
in a reactive element 151
in a resistor 7
instantaneous 7
measurement in a multiphase system 185
power amplifier 376-388
AC voltage gain 387
current-limiting 386
input signal injection 386
negative feedback 386
power attenuation 549
power factor 153,156
measurement 184
power factor control 504
power factor correction 157
power factor preregulator 477
power in a three-phase system 165
power in static steady-state current flow 62
power loss
in digital logic circuits 412
transistor 273
power matching 264
power measurement 181
AC circuit 182
DC circuit 181
multiphase circuit 185
power signal 208
power supplies 469-475
power supply rejection ratio 332
power transformer 469
internal resistance 470
loss factor 470
no-load voltage 470
primary winding 470
protection 470
rated power 470
rated voltage 470
secondary winding 470
short circuit protection 470
power transistors 385
power, normalised 208
preparatory inputs 432
presettable counter 454
primary switched SMPS 477,482
prime implicant 406
principal value 103,517
principle of superposition
31, 192, 220, 262
probe 141
product of sums $400,401,405$
product rule 518
program ROM 467
programmable counter 449,454
programmable logic device 439
programmable logic devices 444-448
PROM 443-445
propagation delay time 411
pseudo-Darlington circuit 385
pseudo-Darlington pair 279
pseudostatic RAM 442
PSRR 332
pulsating quantity 112
pulse width 240
definition 240
modulator $346,388,496$
push-pull converter 489
push-pull converter with common based transistors 496
push-pull amplifier 379
PWM 346, 388, 496
Q-factor 26,196
quality 26
quality factor 196
quartz oscillator 368
quiescent current 384
Quine-McCluskey minimisation 406
Quine-McCluskey technique 406
radian frequency 113
radio frequency interference radiation

## 507

radio frequency interference suppression
507
radio frequency interference voltage symmetric 509
radio frequency ranges 548
radio noise field strength 507
radio-frequency interference voltage
differential-mode 508
radio-frequency interference 507
radio-frequency interference filter 508, 510
radio-frequency interference meter 508
radio-frequency interference voltage asymmetric 508
symmetric 508
unsymmetric 508
RAM 439
arbiter 442
ECC memory 443
multiport RAM 442
pseudostatic RAM 442
ring memory 442
variations 442
RAM controller 442
RAS 442
ratio instrument 169
electrodynamic 172
ratiometer moving-coil instrument 169
RC combinations 19
RC phase shifter 146
RCL combinations 25
reactance $117,122,123$
capacitive 123
inductive 122
reactive component 152
reactive impedance 117
reactive power 154,156
from 3-voltmeter measurement 184
measurement in a multiphase system 186
measurement in an AC circuit 183
reactive voltage 154
read-only memory 443
read-write memory see RAM
real current 153
real part 101
real power 153,156
measurement in a multiphase system 185
real voltage 153
reciprocal, reversible 265
rectangular pulse 222
spectrum 247
rectangular signal
spectrum 217
rectifier 470
reduced products of sums 404
reduced sum of products 402
reduction of logic functions 402

Karnaugh map 402
Quine-McCluskey technique 406
reed frequency meter 172
register 447
relative bandwidth 196
relative permeability 69
relative permittivity 44
relative quantities 532
reliability 371
remanent flux density 76
reset 434
resistance $3,57,117$
temperature dependency of 3
resistive component 152
resistivity 56,559
resistor standard series 541
resonance 128
resonant circuit 26
resonant converter 477,491
resonant frequency $26,128,133$
reverse current 270
reverse transconductance with shorted input 267
reverse voltage transfer ratio with open input 266
reverse voltage-transfer ratio 276
right-hand rule 66
ring memory 442
ripple voltage 471
ripple-through counter 450
rise time 199, 411
RL combinations 19
RMS 170
RMS measurement 180
RMS value 114,115
ROM 439, 443
root mean square (RMS) 115
rotary magnet instrument 171
rotating phasor 106
rotation 106, 108
RS flip-flop 429
RS232 552
RTL 419
saturation flux density 76
sawtooth generator 346
sawtooth signal
spectrum 218
Schmitt trigger 422
schmitttrigger 344
Schottky TTL series 415
second-order systems
impulse response 234
step response 234
secondary switched SMPS 477
selecting track dimensions for current flow 544
self reciprocal function 249
self-induction 87
semi-synchronous counters 447
semiconductor memory 439
semisynchronous 457
sequential circuit 423
sequential logic 423
synthesis of 460
serial in parallel out 447
series and parallel circuits
overview 134
series circuits
transformation to parallel circuits 135
series combination 13-16
of $R$ and $C \quad 21,125$
of $R$ and $L \quad 124$
of $R, C$ and $L \quad 126$
of $R, L$ and $C \quad 26$
of capacitances 16,19
of conductances 14
of inductances 15,19
of resistors 13
series combination of AC impedances 123
series equivalent circuit
of a passive component 157
series-resonant circuit 126
set 434
settling processes $19 \mathrm{ff}, 25 \mathrm{ff}$
settling time 239
seven-segment code 458
shape factor 196
shielding 42
electrostatic 42
magnetic 75
shift register 447
short circuit 11
short-circuit current 11
shortening minterms 407
shunt resistor 174
SI base units
definition 530
Si function 239
SI units in electrical engineering 532
siemens $3,56,57$
signal-to-intermodulation ratio 255
signals and systems 208
signum function 246
spectrum 246
Silicon diode 269
sinc function
definition 238
sine function 99,109
basic terms 99
with complex argument 109
single-transistor forward converter 486, 495
sinusoidal quantity 112
sinusoidal waveforms
sum of 100
SI system 530
skin effect 503
slew rate 333,412
small signal 261
small-signal amplifier 271,305
small-signal current gain 274
small-signal equivalent circuit 262
SMPS 476
snubber circuit 484
soft iron 77
soft-iron instrument 171
SOP 400
source 305
source field 40
source follower 316,318
source pointer system 64
source resistance 11,12
specific resistance
table 559
specific thermal capacity 375
spectrum
composite signal 219
delta function 245
Gaussian pulse 248
of elementary signals 245-249
of harmonic functions 249
rectangular pulse 247
sawtooth signal 218
signum function 246
step function 246
triangular pulse 247
SR flip-flop 429,434,436
clocked 430
SR flip-flop with clock input 430
SRAM 441
standard distribution 527
standard series
IEC 541
standard TTL series 415
star circuit
transformation to a delta circuit 137
star-configuration 17
star-connected generator 162
star-delta start 164
star-delta transformation 17,138
start
star-delta 165
state memory 465
state vector 465
static component 412
static load line 290
static RAM 441
static steady-state current flow 53-64
at boundaries 60
step function 222
spectrum 246
step response $19 \mathrm{ff}, 29,227$
first-order systems 232
second-order systems 234
step response calculation 231
step-down converter 477
step-up converter 479
stop-band 194-196
stop-band filter 197
sum of products 400
summary of Fourier transforms 250 ff
summation point 267
summing amplifier 338
superposition 31
susceptance 119
switched mode power supplies
control of 496
overview 494
primary switched 477,482
radio frequency interference radiation 507
radio frequency interference suppression 507
secondary switched 477
switched-capacitor filter 363
switched-mode amplifiers 388
switched-mode power supplies 476
symbols on measurement instruments 188
symmetric function 209
symmetric radio frequency interference voltage 509
symmetric radio-frequency interference voltage 508
symmetrical 265
synchronous counters 447,455
synchronous sequential logic 464
synthesis of combinational circuits 408
system response 226
impulse reponse 226
step response 227
to arbitrary input signals 228
systems
linear, definition 220
stable, definition 222
time-invariant, definition 221
T flip-flop 434, 437
table
Fourier expansion into a series 215
Fourier transforms 250 ff
T-configuration 145
temperature calculation for components 373
temperature coefficient 3
temperature coefficient of the input offset voltage 302
tera 531
tesla 66
unit 534
THD 254
THD, $n$th order 255
thermal capacity 374
thermal compound 371
thermal impedance
transient 375
thermal instruments 171
thermal paste 371
thermal resistance 373
thermal voltage 270
thermal voltage drift 275
thermal voltage drift gain 289
Thévenin's theorem 33
Thévenizing 35
three-ammeter method 183
three-phase supplies 158
three-phase system 159
overview 164
three-phase systems 159
three-voltmeter method 183
three-wattmeter circuit 187
threshold voltage 270,307,409
temperature dependency 270
time constant 19,147
time scaling of signals 225
time shift of signals 225
time-bandwidth product 239
time-invariant systems 221
toggle 450
toggle flip-flop 432
total harmonic distortion 116,254
total harmonic distortion attenuation 255
total harmonic distortion, $n$th order 255
track dimensions for current flow 544
transconductance 275,308
transconductance amplifier 324
transfer characteristic 273,307,409
transfer function
$192,197,200,230,231,267$
definition 230
transformer 90
rated voltage 471
transient 99
transient thermal impedance 375
transimpedance amplifier 324
transistor characteristics 272
base 272
collector 272
emitter 272
transistor-transistor logic 414
transit frequency 333
transition combinational circuit 465
transparency
in flip-flops 431
tri-state $422,424,447$
triangle- and square-wave generator 345
triangular pulse 223
spectrum 247
triggering of flip-flops 432
trigonometric functions 513
addition theorems 515
inverse 517
products 516
properties 513
true RMS measurement 180
truth table 392
TTL 414
basic structure 416
TTL devices
technical data 415,416
two-port network 265
active 265
asymmetrical 265
linear 265
nonreactive 265
passive 265
reversible 265
symmetrical 265
two-port network equations 265
two-port network parameters 265
two-terminal network 264
two-tone signal 255
two-transistor forward converter 488, 495
two-wattmeter method 186
uncertainty principle 240
underdamped case 26,28
uninterruptable power supplies 469
unit 531
units
decimal prefixes 531
unity gain frequency 276
universal filter 363
unsymmetric radio-frequency
interference voltage 508
up counter 449
up/down counter 449,454
upper cutoff frequency 196
UPS 469
useful Fourier series 215
V. 24552

VAR 154
versor 104
vibration instrument 172
volt-ampere 155
volt-ampere reactive 154
voltage $2,41,53$
electric 2
line 159
magnetic 71
voltage amplifier 324
voltage attenuation 549
voltage divider 18
capacitive 19
compensated 141
complex 140
complex loaded 142
inductive 19
with def. i/o-resistances 145
voltage division 140
voltage error
with instrument transformers 180
voltage error circuit 181
voltage gain 291
voltage level 409
voltage measurement
AC 177
DC 174
voltage path 182
voltage regulation 475
voltage regulator
for variable output voltage 475
integrated 475
pulse width modulated 496
voltage setting with defined slew rate 343
voltage source 5,13
conversion into current source 13
ideal 5
real 11
voltage stabilisation 473
analogue 473
with Zener diode 473
voltage transformer 179
voltage variation 473
voltage-divider rule 18
voltage-related internal resistance 176
walking-ring counter 449
watt 7,153
weber 70
unit 534
weighting function 226
Weiss domain 75
Wien bridge 150
Wien bridge oscillator 366
wire diameter 500
wire gauge
American 545
wired AND 420
wired OR 420
work in static steady-state current flow 62
write cycle time 441
write pulse width 441
wye see star
wye circuit
transformation to a delta circuit 137
wye-delta transformation 17,137
wye-connected generator 162
X-capacitor 510
Xor 396
Xor gate 396
Y-capacitor 509
y-parameters 266
ZCS push-pull resonant converter
491,496
ZCS resonant converters 491
Zener diode 473
zero-point
artificial 185
ZVS resonant converters 491


[^0]:    * The term mesh may be used instead of loop.

[^1]:    ${ }^{\dagger}$ In American literature the term Wye may be used instead of star.

[^2]:    * In American literature the term Wye is used instead of Star.

[^3]:    $\dagger$ For inductive loads this is the lagging power factor, whereas for capacitive loads this the leading power factor. Lagging and leading describe the lagging or leading of the current with respect to the voltage.

[^4]:    * SCR: silicon controlled rectifier such as thyristor, triac

[^5]:    * The notation tri-state was originally a trade name. It is more widely used than the notation three-state output

