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Preface

Purpose

The purpose of the Electrical Engineering – A Pocket Reference is to provide the basics of
electrical engineering and electronics in a single handy volume.

The book addresses university students in electrical engineering, telecommunications,
computer engineering as well as other engineering disciplines with a minor in electrical
engineering.

The book is a lot more than a collection of equations. It provides concise explanation of
fundamental principles and their application.

The appendix collects useful reference data on standards, electrical, physical and chemical
data on materials, etc. An extensive list of commonly used acronyms is included.

We hope that students will find this book helpful for reviewing classroommaterial, prepare
for exams and understanding fundamental principles.

From the German edition we learned that quite a number of practising engineers keep the
book on their shelves for ready reference.

Organisation

The book is organized the way most electrical engineering curricula are taught. We tried
to avois extensive cross-referencing between chapters. Need-to-know facts are provided
in the context where and how you need them.

An extensive number of figures illustrates basic facts and principles. Numerous tables are
provided to summarize facts and relations.

To make sure each symbol in an equation you look up for reference is well understood,
each chapter provides a list of symbols with their meanings and physical units.

Useful mathematical relations in a notation suitable for their application in electrical engi-
neering are listed in theAppendix. Fourier transforms are given in both (ω and f) notations
to avoid confusion and mistakes by converting one into another.

An extensive index helps to find subject matters easily, entries for overview tables are
highlighted in bold print.

No electrical device functions without a power supply. The last chapter gives an insight
into state-of-the-art power supply technology drawing on all previous chapters. This is a
useful source of information for novices and practising engineers.
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The book is the result of collaborative work of faculty from three European Universities.
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1 DC Systems

1.1 Basic Quantities, Basic Laws

1.1.1 Electric Charge

Système International (SI) unit of charge: C = As (coulomb)

Electricity is based upon the existence of electric charges, which are positive or negative.
A force exists between electric charges, which is described by Coulomb’s law (Sect. 2.1.1).
Like charges repel each other, and unlike charges attract each other.

From the physical point of view, every charge is a multiple of the elementary charge e.
Elementary charge e = ±1.602 · 10−19 coulomb
Electrons carry a negative charge, and protons carry a positive charge. A lack of electrons
in a body means the body is positively charged. Similarly, an excess of electrons means it
is negatively charged.

1.1.2 Electric Current

SI unit of current: A (ampere)

The directed motion of electric charge carriers is called an electric current.

I = dQ

d t
(1.1)

The electric current I in a conductor is the charge dQ passing through the conductor
cross-sectional area during the time interval d t . The current is a Direct current if the
charge passing the conductor per time interval is constant.

DC current: I = dQ

d t
= constant (1.2)

Technical direction of current:

The positive current direction is the motion of the positive charge carriers. This is equiv-
alent to the opposite motion of negative charge carriers. In metal conductors electrons are
the charge carriers. From the physical point of view, the electrons therefore move opposite
the positive current flow (Fig. 1.1).

Fig. 1.1. Definition of the positive current direction

Electric charges always move in a closed loop. This means:

• The electric current always flows in a closed circuit.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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1.1.3 Voltage and Potential

SI unit of voltage: V (volt)

The electric voltage is the force that causes the movement of the charge carriers.

Fig. 1.2. Electrical circuits showing the direction of the voltage and the current

The electric current always flows from the positive terminal to the negative terminal of the
voltage source. Since the current flows in a closed loop, inside the voltage source (e.g. a
battery) the current flows from the negative to the positive terminal (Fig. 1.2).

The potential ϕ is a scalar quantity. Given that one point in space has the potential ϕ = 0,
then all other points in space can be assigned an absolute potential. This potential is
obtained from the energy that has to be provided to move the elementary charge from the
point with ϕ = 0 to the given point. In this physical model, the voltage V is the difference
between two potentials (Fig. 1.3). For this reason voltage is often referred to as potential
difference.

V21 = ϕ2 − ϕ1 (1.3)

Fig. 1.3. Relationship between voltage and potential: a for arbitrary points; b in a circuit

1.1.4 Ohm’s Law

The current flowing through a load is dependent on the driving voltage. Provided the
properties of the load are independent of the current flowing through it and the voltage
applied to it, Ohm’s law holds:

V ∝ I,

or V = R · I (1.4)

The current changes proportionally with the voltage. The constant R relating current and
voltage is called the electric resistance.
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1.1.5 Resistance and Conductance

SI unit of resistance: � (ohm), 1 � = 1
V

A

SI unit of conductance: S (siemens), 1 S = 1
A

V
The relationship between current and voltage is described by the quantities resistance R

and conductance G (Fig. 1.4).

V = R · I, or R = V

I

I = G · V, or G = I

V

(1.5)

Fig. 1.4. Resistance and conductance as electrical circuit symbols

1.1.6 Temperature Dependence of Resistance

For real resistors a change in the temperature causea a change in resistance.The relationship
between both values is linear to a first approximation. The relationship is described by the
temperature coefficient α (K−1).

If the resistor R1 is heated from temperature ϑ1 to temperature ϑ2, then the change in
resistance is given by:

�R = R1α(ϑ2 − ϑ1) (1.6)

At a temperature ϑ2 the resistance is:

R2 = R1 [1+ α(ϑ2 − ϑ1)] (1.7)

The temperature coefficient α is often given for a temperature of ϑ = 20◦C. This value is
sufficient for calculations for temperatures up to approximately 200◦C. For most resistive
materials (apart from certain semiconductors), α has a positive value. This means that the
resistance increases with temperature.

Example: For aluminium and copper is α = 0.004 K−1. For a temperature change of
�ϑ = 100 K the resistance of aluminium or copper wire therefore changes by
40%.

For calculations over larger temperature ranges, the nonlinearity ofR = f (ϑ) can be taken
into account by including a squared term with the coefficient β. In this case, R = f (ϑ) is
represented by:

R2 = R1
[
1+ α(ϑ2 − ϑ1)+ β(ϑ2 − ϑ1)

2
]

(1.8)
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1.1.7 Inductance

SI unit of inductance: H (henry), 1 H = 1
Vs

A

Fig. 1.5. Inductance as a circuit symbol

• For an inductance L the voltage v is proportional to the rate of change of the current i.

v = L
di

d t
, i = 1

L

t1∫
t0

v d t + I0 , L = v d t

di
(1.9)

The current flowing at the beginning of the integration interval is called I0. If a constant
voltage is applied to an inductance, the current increases linearly (Fig. 1.6).

Fig. 1.6. Time progression of the current in an inductance when a constant voltage has been applied

• In an inductance the current cannot change instantaneously, while the voltage can change
instantaneously.

• The current in an inductance is proportional to the time-integral of the applied voltage.

The inductive component is called the inductor, choke or coil.

1.1.8 Capacitance

SI unit of capacitance: F (farad), 1 F = 1
As

V

• In a capacitance C the current i is proportional to the rate of change of the voltage v.

Fig. 1.7. Capacitance as a circuit symbol
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i = C
dv

d t
, v = 1

C

t1∫
t0

i d t + V0 , C = i d t

dv
(1.10)

The voltage applied across the capacitance at the beginning of the integration interval isV0.
If a capacitance is supplied with a constant current, the voltage increases linearly (Fig. 1.8).

Fig. 1.8. Time progression of the voltage across a capacitance with a constant current flowing through it

• The voltage across a capacitance is continuous (cannot change instantaneously), while
the current can change instantaneously.

The capacitive component is called the capacitor.When a current flows into a capacitance
it can be said that the capacitor is being charged.

1.1.9 Ideal Voltage Source

A voltage source drives an electric current (Fig. 1.9).

Fig. 1.9. Ideal voltage source

• The ideal voltage source supplies a voltage VS, which is independent of the current I .

1.1.10 Ideal Current Source

• The ideal current source supplies a current IS, which is independent of the applied
voltage V (Fig. 1.10).

Fig. 1.10. Ideal current source
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1.1.11 Kirchhoff’s Law

Kirchhoff’s laws describe the behaviour of current and voltage in electrical circuits. An
electrical circuit can be represented by an equivalent circuit diagram. A circuit consists
of branches, nodes and loops∗ (Fig. 1.11). Connection points are referred to as nodes. A
branch joins two nodes, and a closed loop is formed with individual branches.

Fig. 1.11. Typical circuit of branches, nodes and loops

1.1.11.1 Kirchhoff’s First Law (Current Law)

• The sum of all currents at a node is always equal to zero.

∑
n

In = 0 (1.11)

Expressed differently, this means that the sum of currents flowing into a node is equal to
the sum of currents flowing out of the node. This yields for the circuit given in Fig. 1.11:

I1 − I2 − I3 = 0

Kirchhoff’s current law is easier to understand if it is remembered that current always
flows in a closed loop. This means that no extra current can ‘join’ the current path.

1.1.11.2 Kirchhoff’s Second Law (Voltage Law)

• The sum of all voltages in a loop is always equal to zero.

∑
m

Vm = 0 (1.12)

For the circuit given in Fig. 1.11 this yields:

− VS + V1 + V2 = 0, and
− VS + V1 + V3 = 0, and

V2 − V3 = 0

∗ The term mesh may be used instead of loop.
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1.1.12 Power and Energy

SI unit of power: W (watt), 1 W = 1 VA

SI unit of energy: J (joule), 1 J = 1 Ws

The instantaneous power is defined as:

p(t) = i(t) · v(t) (1.13)

Inmost technical applications the average power P is important. For example, the average
power loss in a diode yields the heat dissipation in the diode.

P = 1

T

T∫
0

i(t) v(t) d t (1.14)

For DC this simplifies to:

P = V · I (1.15)

The electrical energy W is the integral of the power over time:

W =
t2∫

t1

p(t) d t =
t2∫

t1

i(t) v(t) d t (1.16)

For DC this simplifies to:

W = P · (t2 − t1) = V · I · (t2 − t1) (1.17)

Note: Power and energy relate the electrical SI units with the mechanical and ther-
modynamic SI units, respectively. All calculations in systems with mechanical
and thermodynamic quantities on one side and electrical quantities on the other
side are done via this relationship.

Example: What current is necessary to heat 1 l of water in 10 min from 0◦C to 100◦C
using 230 V? (Remember, 1 J/s= 1 V·A.)

W = 100 kcal = 418.7 kJ = 0.116 kWh

W = V I t

I = W

V · t =
418.7 kJ

230 V · 600 s
= 3.0 A

1.1.12.1 Energy and Power in a Resistor

In a resistor electric energy is converted into thermal energy. For resistors v ∝ i, therefore:

p(t) = v(t) i(t) = i(t)2R = v(t)2

R
(1.18)

The resulting change in resistance caused by the heating is neglected here.
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The average power is:

P = 1

T

T∫
0

v(t) i(t) d t = 1

T

T∫
0

i(t)2R d t = 1

T

T∫
0

v(t)2

R
d t (1.19)

For DC this simplifies to:

P = V · I = I 2 · R = V 2

R
(1.20)

Example: Amotor delivers mechanical energy of P = 500 W at 230 V.What is the value
of the equivalent resistor that represents the power consumption of this motor,
assuming that the motor is loss-free?

P = V 2

R
⇒ R = (230 V)2

500 W
= 106 �

The energy W that is converted into heat in a time interval can be calculated as:

W =
t2∫

t1

p(t) d t (1.21)

For DC it holds that:

W = V · I · (t2 − t1) = I 2 · R · (t2 − t1) = V 2

R
(t2 − t1) (1.22)

1.1.12.2 Energy in an Inductor

An ideal inductor absorbs and releases electrical energy. No energy is transformed into
heat. The energy is stored in the magnetic field (see Sect. 2.3.16).

For the energy stored in an inductor, it holds in general that:

W =
t1∫

t0

v(t) i(t) d t +W0

The starting energy in the time interval under consideration is W0. With v = L di/ d t and
W0 = 0, it follows that:

W =
∫

L
di

d t
i d t = L

∫
i di = 1

2
L i2

W = 1

2
L i2 (1.23)

For DC this is

W = 1

2
L I 2 (1.24)

• The energy stored in an inductor is proportional to the inductance and to the square of
the current flowing through it.
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1.1.12.3 Energy in a Capacitor

An ideal capacitor absorbs and releases electrical energy. No energy is transformed into
heat. The energy is stored in the electric field (see Sect. 2.1.12).

For the energy stored in a capacitor, it holds in general that:

W =
t1∫

t0

v(t) i(t) d t +W0

The starting energy in the time interval under consideration is W0. With i = C dv/ d t and
W0 = 0, it follows that:

W =
∫

C
dv

d t
v d t = C

∫
v dv = 1

2
C v2

W = 1

2
C v2 (1.25)

For DC this is

W = 1

2
C V 2 (1.26)

• The energy stored in a capacitor is proportional to the capacitance and to the square of
the voltage across it.

1.1.13 Efficiency

The efficiency η is defined as the ratio of the effective (useful) power Pout to the total
power Ptotal.

η = Pout

Ptotal
= Pout

Pout + Ploss
(1.27)

Example: A motor consumes a power of P = 230 V · 5 A and delivers a torque of
M = 2.5 Nm at n = 3000 rpm (rounds per minute).
The efficiency is:

η = Pout

Ptotal
= Mω

V I
=

M
2�

60
n

V I
= 0.68 = 68%

Next, the efficiency of a real voltage source with a load resistor is calculated. The load
resistor RL corresponds to the effective power, and the source resistor RS corresponds to
the power loss (Fig. 1.12).

Pout = V · I, Ptotal = VS · I, Ploss = I 2 · RS

η = V I

VSI
=

VS
RL

RS + RL

VS

RS + RL

VS
VS

RS + RL

= RL

RS + RL

• The smaller the source resistance, the higher the efficiency! If the source resistance of
a voltage source is zero then the efficiency has a value of 1 (Fig. 1.13).
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Fig. 1.12. Real voltage source with a load resistor

Fig. 1.13. Efficiency and supplied power for a real voltage source

1.1.14 Maximum Power Transfer

In some cases the efficiency is not as important as the voltage source delivering maximum
power. This is true, for example, for many sensors and for audio systems, where the signal
power is very low and the power loss is unimportant.

The useful power Pout that is delivered by a voltage source with source resistance RS is:

Pout = V I = VS
RL

RS + RL

VS

RS + RL
= V 2

S

RL

(RS + RL)2

With dPout/ dRL = 0, the load resistance RL at which the useful power Pout reaches a
maximum can be determined:

dPout

dRL
= 0 = V 2

S

(RS + RL)2 − 2RL(RS + RL)

(RS + RL)4

This yields:

RL = RS (1.28)

This is known as impedance matching.

The efficiency is then:

η = RL

RS + RL
= 1

2
= 50% (1.29)

• With a load of RL = RS, a voltage source delivers the maximum power. The efficiency
is then 50%.
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1.2 Basic Circuits

1.2.1 Real Voltage and Current Sources

1.2.1.1 Real Voltage Source

The terminal voltage of a real voltage source (e.g. a battery) depends on the current being
drawn from it. The terminal voltage decreases as the output current increases.A real voltage
source can often be described by an equivalent circuit, as shown in Fig. 1.14, and consists
of an ideal voltage source VS and a source resistor RS in series.

Fig. 1.14. Equivalent circuit of a real voltage source

Fig. 1.15. Current–voltage diagram of a voltage source with a source resistance

Calculation of the current–voltage characteristic can be done through application of Kirch-
hoff’s voltage law:

−VS + I · RS + V = 0

V = VS − I · RS (1.30)

This equation describes a linear relationship, that is, the voltage V decreases linearly with
increasing current I . Nonlinearities of a real voltage source are not considered in this
equivalent circuit. However, in most cases, this equivalent circuit is a good representation
of a real voltage source.

• In the open-circuit case (i.e. I = 0), V = VS can be measured at the terminals of the
equivalent voltage source.

• In the case of a short circuit (i.e. V = 0), the current is:

I = Is/c = VS

RS

Is/c is known as the short-circuit current.

• The lower the source resistance RS, the more similar the real voltage source is to an
ideal voltage source.
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1.2.1.2 Real Current Source

The current delivered by a real current source is dependent on the applied voltage. The
current decreases as the resistance of the load increases. For example, a photodiode is a
current source for which incoming light causes a current to flow that is almost independent
of the applied voltage.A real current source often can be described in the equivalent circuit
in Fig. 1.16. It consists of an ideal current source IS in parallel with a source resistor RS.

Fig. 1.16. Equivalent circuit of a real current source

Fig. 1.17. Current–voltage diagram of a current source with internal resistance

If the load has a large resistance, then a large voltage appears at the terminals. The higher
the voltage V , the more the source resistance RS drains the current, which is therefore lost
at the terminals.

Calculation of the current-voltage characteristic can be done through application of Kirch-
hoff’s current law:

−IS + V

RS
+ I = 0

I = IS − V

RS
(1.31)

This equation describes a linear relationship in which the current I decreases linearly with
increasing voltage V . Nonlinearities of a real current source are not considered in this
equivalent circuit. However, in most cases this equivalent circuit is a good representation
of a real current source.

• For a short circuit (V = 0), the current I = IS.

• For an open circuit the entire current IS flows through the internal resistance. Then the
voltage is:

V = Vo/c = ISRS

Vo/c is the open-circuit voltage.

• The higher the source resistance RS, the more similar the real current source is to an
ideal current source.
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1.2.1.3 Voltage–Current Source Conversion

Current and voltage sources have an identical linear voltage–current behaviour, which is
shown as a negatively sloped line on a V –I -graph. Therefore a real current source can be
regarded as a voltage source with a high internal resistance, and a real voltage source can
be regarded as a current source with a low internal resistance (Fig. 1.18).

Fig. 1.18. Changing from voltage to current sources and vice versa

1.2.2 Circuit Elements in Series and Parallel

• Series combination: Circuit elements in series experience the same current flow.

• Parallel combination: Circuit elements in parallel experience the same applied voltage.

1.2.2.1 Series Combination of Resistors

A series combination of resistors R is shown in Fig. 1.19. Application of Kirchhoff’s
voltage law yields:

V = IR1 + IR2 + · · · + IRn = I (R1 + R2 + · · · + Rn) = I · Rtotal

Rtotal = R1 + R2 + · · · + Rn (1.32)

Fig. 1.19. Series combination of resistors

1.2.2.2 Parallel Combination of Resistors

A number of resistors R combined in parallel is shown in Fig. 1.20. Application of Kirch-
hoff’s current law yields:

I = V

R1
+ V

R2
+ · · · + V

Rn
= V

(
1

R1
+ 1

R2
+ · · · + 1

Rn

)
= V

1

Rtotal

1

Rtotal
= 1

R1
+ 1

R2
+ · · · + 1

Rn
(1.33)



14 1 DC Systems

Fig. 1.20. Parallel combination of resistors

For the parallel combination of two resistors:

1

Rtotal
= 1

R1
+ 1

R2
, Rtotal = R1R2

R1 + R2
(1.34)

• The resulting resistance of a parallel combination of resistors is smaller than either of
the individual resistances.

1.2.2.3 Series Combination of Conductances

For a number of conuctances G combined in series (Fig. 1.21), the application of Kirch-
hoff’s voltage law yields:

V = I

G1
+ I

G2
+ · · · + I

Gn
= I

(
1

G1
+ 1

G2
+ · · · + 1

Gn

)
= I

1

Gtotal

1

Gtotal
= 1

G1
+ 1

G2
+ · · · + 1

Gn
(1.35)

For the series combination of two conductances:

1

Gtotal
= 1

G1
+ 1

G2
, Gtotal = G1G2

G1 +G2
(1.36)

• The resulting conductance of a series combination is smaller than either of the individual
conductances.

Fig. 1.21. Series combination of conductances

1.2.2.4 Parallel Combination of Conductances

The parallel combination of a number of conductancesG is shown in Fig. 1.22.Application
of Kirchhoff’s current law yields:

I = V G1 + V G2 + · · · + V Gn = V (G1 +G2 + · · · +Gn) = V ·Gtotal

Gtotal = G1 +G2 + · · · +Gn (1.37)
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Fig. 1.22. Parallel combination of conductances

1.2.2.5 Series Combination of Inductances

For a number of inductancesL combined in series (Fig. 1.23), the application ofKirchhoff’s
voltage law yields:

v = L1
di

d t
+ L2

di

d t
+ · · · + Ln

di

d t
= (L1 + L2 + · · · + Ln)

di

d t
= Ltotal

di

d t

Ltotal = L1 + L2 + · · · + Ln (1.38)

Fig. 1.23. Series combination of inductances

1.2.2.6 Parallel Combination of Inductances

For a parallel combination of inductances L (Fig. 1.24), application of Kirchhoff’s current
law yields:

i = 1

L1

∫
v d t + 1

L2

∫
v d t + · · · + 1

Ln

∫
v d t + I01 + I02 + · · · + I0n

=
(

1

L1
+ 1

L2
+ · · · + 1

Ln

)∫
v d t + I01 + I02 + · · · + I0n

= 1

Ltotal

∫
v d t + I0

1

Ltotal
= 1

L1
+ 1

L2
+ · · · + 1

Ln
(1.39)

Fig. 1.24. Parallel combination of inductances
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For the parallel combination of two inductances:

1

Ltotal
= 1

L1
+ 1

L2
, Ltotal = L1L2

L1 + L2
(1.40)

• The resulting inductance of a parallel combination is smaller than either of the individual
inductances.

1.2.2.7 Series Combination of Capacitances

For capacitances C combined in series (Fig. 1.25), the application of Kirchhoff’s voltage
law yields:

v = 1

C1

∫
i d t + V01 + 1

C2

∫
i d t + V02 + · · · + 1

Cn

∫
i d t + V0n

=
(

1

C1
+ 1

C2
+ · · · + 1

Cn

)∫
i d t + V01 + V02 + · · · + V0n

= 1

Ctotal

∫
i d t + V0

1

Ctotal
= 1

C1
+ 1

C2
+ · · · + 1

Cn
(1.41)

Fig. 1.25. Series combination of capacitances

For the series combination of two capacitances:

1

Ctotal
= 1

C1
+ 1

C2
, Ctotal = C1C2

C1 + C2
(1.42)

• The resulting capacitance of a series combination is smaller than either of the individual
capacitances.

1.2.2.8 Parallel Combination of Capacitances

For a parallel combination of capacitances C (Fig. 1.26), the application of Kirchhoff’s
current law yields:

i = C1
dv

d t
+ C2

dv

d t
+ · · · + Cn

dv

d t
= (C1 + C2 + · · · + Cn)

dv

d t

Ctotal = C1 + C2 + · · · + Cn (1.43)
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Fig. 1.26. Parallel combination of capacitances

1.2.3 Star–Delta Transformation (Wye–Delta Transformation)

A star–configuration can be transformed into an equivalent delta–configuration and vice
versa (Fig. 1.27).† This can be necessary when calculating complex circuits of resistors in
order to reduce the calculation to those of series and parallel combinations.

Fig. 1.27. Star–delta transformation

In a star–delta transformation:

R23 = R2 + R3 + R2R3

R1
,

R31 = R1 + R3 + R1R3

R2
,

R12 = R1 + R2 + R1R2

R3

(1.44)

In a delta–star transformation:

R1 = R31R12

R12 + R23 + R31
,

R2 = R23R12

R12 + R23 + R31
,

R3 = R23R31

R12 + R23 + R31

(1.45)

† In American literature the termWye may be used instead of star.
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1.2.4 Voltage and Current Divider

1.2.4.1 Voltage Divider

If the same current flows through two resistors (Fig. 1.28), then:

I = V1

R1
= V2

R2
= V

R1 + R2

Fig. 1.28. Voltage divider

The voltage-divider rule follows from this:

V1

V2
= R1

R2
,

V1

V
= R1

R1 + R2
,

V2

V
= R2

R1 + R2
(1.46)

• In a series combination the individual voltages are proportional to the resistances they
appear across. This also holds for series combinations of more than two resistors.

1.2.4.2 Current Divider

If the same voltage is applied across two conductances or resistances (Fig. 1.29), then:

V = I1

G1
= I2

G2
= I

G1 +G2

Fig. 1.29. Current divider

The current-divider rule follows from this:

I1

I2
= G1

G2
,

I1

I
= G1

G1 +G2
,

I2

I
= G2

G1 +G2
(1.47)

• In parallel combinations the individual currents are proportional to the conductances
they flow through. This also holds for combinations of more than two conductances.

Replacing the conductances with resistances gives:

I1

I2
= R2

R1
,

I1

I
= R2

R1 + R2
,

I2

I
= R1

R1 + R2
(1.48)

• The individual currents behave inversely to the individual resistances.
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1.2.4.3 Capacitive and Inductive Dividers

Examples of capacitive and inductive dividers along with their respective voltage and
current relations are shown in Fig. 1.30. The specifications given in Fig. 1.30 are valid
provided that before the voltage v or the current i are applied, the circuit elements were
energy-free, i.e. Vn(t = 0) = 0, and in(t = 0) = 0.

Fig. 1.30. Capacitive (top) and inductive (bottom) dividers

1.2.5 RC and RL Combinations

This section concerns the settling processes that occurwhen aDCvoltage or aDC current is
applied to a circuit containing an inductance or a capacitance next to a resistance. Processes
like this can be described with first-order differential equations.

A linear first-order differential equation has the following form:

q(t) = τ · dy

d t
+ y (1.49)

The solution of the inhomogeneous differential equation is combined from the solution

of the homogeneous equation

(
0 = τ · dy

d t
+ y

)
plus any special solution (for example,

in the case of the step response, the special solution may be obtained by examining the
system behaviour as t →∞).

The solution of the inhomogeneous differential equation is then:

y(t) = y(t)homogeneous + y(t)special (1.50)

The coefficient τ is called the time constant.

The solution of the first-order homogeneous differential equation is

y(t)homogeneous = K1 · e−
t
τ (1.51)

The constant K1 is evaluated from the starting conditions of the system, that is, y(t = 0).
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Example: Calculation of the step response of an RC low-pass filter:

Fig. 1.31. Series combination of R and C as a low-pass filter

Applying Kirchhoff’s voltage law to the system shown in Fig. 1.31, it can be
seen that

VS = iR + Vout , with i = C
dVout

d t
.

The inhomogeneous differential equation follows from this:

VS = RC︸︷︷︸
τ

dVout

d t
+ Vout

The solution of the inhomogeneous differential equation is:

Vout(t) = Vout(t)homogeneous + Vout(t)special = K1 · e−
t

RC + VS

Given the starting condition Vout(0) = 0, K1 can be calculated:

0 = K1 + VS ⇒ K1 = −VS

The solution of the inhomogeneous differential equation is therefore:

Vout(t) = −VS · e−
t

RC + VS = VS

(
1− e−

t
RC

)

Fig. 1.32. Step response of Vout(t)

• Constant τ is called the time constant. At the time τ the function value has reached 63%
of its final value. After 5τ , the function value is within 1% of its final value (Fig. 1.32).
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1.2.5.1 Series Combination of R and C Driven by a Voltage Source

The switch is closed at time t = 0. The capacitor is assumed to be uncharged at this time.

Application of Kirchhoff’s voltage law leads to the differential equation:

VS = iR + 1

C

∫
i d t

The solution of the differential equation is given by:

i(t) = VS

R
· e− t

RC ,

VC(t) = VS

(
1− e−

t
RC

)
,

VR(t) = VS · e−
t

RC , τ = RC

(1.52)

The capacitor is charged via the resistor. Since the voltage across the capacitor increases
during the charging process, the voltage across the resistor decreases. The current is pro-
portional to the voltage VR and therefore also decreases (Fig. 1.33).

Fig. 1.33. Series combination of R and C driven by a voltage source

1.2.5.2 Series Combination of R and C Driven by a Current Source

A series combination of a resistor and a capacitor driven by a current source is shown in
Fig. 1.34. The switch is toggled at time t = 0. The capacitor is assumed to be uncharged
at this time.

Fig. 1.34. Series combination of R and C driven by a current source
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Application of Kirchhoff’s voltage law yields:

v = ISR + 1

C

∫
IS d t

Solution:

v(t) = ISR + 1

C
IS t (1.53)

1.2.5.3 Parallel Combination of R and C Driven by a Current Source

The parellel combination of a resistor and a capacitor is shown in Fig. 1.35. The switch is
toggled at time t = 0. The capacitor is assumed to be uncharged at this time.

Fig. 1.35. Parallel combination of R and C driven by a current source

Application of Kirchhoff’s current law leads to the differential equation:

IS = v

R
+ C

dv

d t

Solution of the differential equation gives:

v(t) = ISR

(
1− e− t

RC

)
,

iR(t) = IS

(
1− e−

t
RC

)
,

iC(t) = IS · e−
t

RC , τ = RC

(1.54)

1.2.5.4 Parallel Combination of R and C Driven by a Voltage Source

Theoretically, the voltage across the capacitor has to change in an infinitely short time.
Therefore the current iC = C · dv/ d t should be an infinitely high value. In practice such
circuits lead to the destruction of the switch (Fig. 1.36).

Fig. 1.36. Parallel combination of R and C driven by a voltage source
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1.2.5.5 Series Combination of R and L Driven by a Voltage Source

Application of Kirchhoff’s voltage law to a resistor and a capacitor in series driven by a
voltage source leads to the differential equation:

VS = iR + L
di

d t

Solution of the differential equation yields:

i(t) = VS

R

(
1− e

− t
L/R

)
,

VR(t) = VS

(
1− e

− t
L/R

)
,

VL(t) = VS · e−
t

L/R , τ = L

R

(1.55)

The voltage VL = VS is applied at time t = 0. The current i increases at a rate of
di/ d t = VS/L. Therefore, the voltage drop across R increases, and VL and di/ d t

decrease (Fig. 1.37).

Fig. 1.37. Series combination of R and L driven by a voltage source

1.2.5.6 Series Combination of R and L Driven by a Current Source

Toggling the switch shown in Fig. 1.38 can be considered an attempt to create an in-
finitely large di/ d t . This would result in an infinitely high voltage across L, which is not
achievable in reality.

Fig. 1.38. Series combination of R and L driven by a current source
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Fig. 1.39. Switching off a resistive–inductive load

Very high values of di/ d t result when switching off a resistive–inductive load (Fig. 1.39).

At the time t = 0 the current VS/R is flowing. Opening the switch results in a current
change of di/ d t → −∞. Therefore vL → −∞. Kirchhoff’s voltage law applied to the
loop gives VS = vSwitch + vR + vL. This shows that not only vL but also vSwitch increases
greatly, but vR and VS have finite values. In practice, this results in the destruction of the
switch. To avoid this, a diode can be added to the circuit, called a free-wheeling diode.

1.2.5.7 Parallel Combination of R and L Driven by a Voltage Source

A resistor and an inductor connected in parallel and driven by a voltage source are shown
in Fig. 1.40. Application of Kirchhoff’s current law for this circuit yields:

i(t) = VS

R
+ 1

L

∫
VS d t

Solution:

i(t) = VS

R
+ VSt

L
(1.56)

Fig. 1.40. Parallel combination of R and L driven by a voltage source

1.2.5.8 Parallel Combination of R and L Driven by a Current Source

A resistor and an inductor are combined in parallel and driven by a current source are
shown in Fig. 1.41. The switch is closed at t = 0. At this time the current iL is assumed to
be zero. Application of Kirchhoff’s current law leads to the differential equation:

IS = v

R
+ 1

L

∫
v d t
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Solution of the differential equation yields:

v(t) = ISR · e−
t

L/R ,

iL(t) = IS

(
1− e

− t
L/R

)
,

iR(t) = IS · e−
t

L/R , τ = L

R

(1.57)

After toggling the switch a current IS flows through resistor R. The current iL increases by
a factor di/ d t = ISR/L. While iL increases iR decreases until the inductance has taken
over the entire current IS. Then v = 0 because iR = 0 (Fig. 1.41).

Fig. 1.41. Parallel combination of R and L driven by a current source

1.2.6 RLC Combinations

This section deals with transients that appear when applying a DC voltage or DC current
to a circuit containing inductances and capacitances. Systems containing two independent
energy storage components can oscillate, depending on the damping of the system. Induc-
tances and capacitances are independent energy storage components in this sense. This
kind of process is described by second-order differential equations.

A linear second-order differential equation with constant coefficients has the form:

q(t) = 1

ω2
0

d2y

d t2
+ 2D

ω0

dy

d t
+ y (1.58)

The solution of the inhomogeneous differential equation is combined from the solution of
the homogeneous differential equation:

1

ω2
0

d2y

d t2
+ 2D

ω0

dy

d t
+ y = 0

and any special solution. In order to calculate the step response, it is easiest to regard
y(t →∞).

The solution of the inhomogeneous differential equation is then:

y(t) = y(t)homogeneous + y(t)special (1.59)
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The coefficientD is called the damping ratio, and the coefficientω0 is called the resonant
frequency: ω0 = 2�f0. Three different cases have to be distinguished for the solution of
second-order homogeneous differential equations:

1. Overdamped case
D > 1:

y(t) = K1e
λ1t +K2e

λ2t , λ1,2 = −Dω0 ± ω0

√
D2 − 1 (1.60)

2. Critically damped case
D = 1:

y(t) = (K1t +K2)e
−Dω0t (1.61)

3. Underdamped case
D < 1:

y(t) = e−Dω0t (K1 cosωt +K2 sinωt) , ω = ω0

√
1−D2 (1.62)

The constants K1 and K2 are determined from the initial conditions, namely y(0) and
y ′(0).

The angular frequency ω is called the natural frequency, which is the frequency of the
fadingoscillation of a damped system. Its value is slightly lower than the resonant frequency
and depends on the damping ratio.

Note: An oscillator with a resonant circuit as a means of frequency determination
oscillates at the resonant frequency. This is because the circuit attenuation is
compensated with an active component (e.g. a transistor), so that D = 0.

In the context of oscillating circuits the following terms are also commonly used:

Loss factor: d = 2D

Quality or Q-factor: Q = 1

2D

Bandwidth: B = ω0

2�
· 2D

1.2.6.1 Series Combination of R, L and C

The entire procedure of solving the differential equation can be explained using the example
of the series combination of R, L and C. This circuit forms a low-pass filter (Fig. 1.42),
and the step response vout(t) is calculated here.

Application of Kirchhoff’s voltage law yields: VS = L
di

d t
+R · i+vout.With i = C

dvout

d t
,

the inhomogeneous differential equation is:

VS = LC︸︷︷︸
1

ω2
0

d2Vout

d t2
+ RC︸︷︷︸

2D
ω0

dVout

d t
+ Vout , ω0 = 1√

LC
, D = R

2

√
C

L (1.63)
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Fig. 1.42. Series combination of R, L and C as a low-pass filter

The homogeneous differential equation is:

0 = LC
d2vout

d t2
+ RC

dvout

d t
+ vout (1.64)

One special solution of the differential equation is, for example:

vout, special = vout(t →∞) = vS (1.65)

To determine the coefficients K1 and K2 in the general solution two specific values are
required for vout(t). The initial conditions usually used are:

vout(t = 0) = 0, and
dvout

d t

∣∣∣∣
t=0

= 0 (1.66)

The solutions of the inhomogeneous differential equation are:

1. Overdamped case
D > 1:

vout(t) = vout(t)homogeneous + vout, special

= K1e
λ1t +K2e

λ2t + vS, λ1,2 = −Dω0 ± ω0

√
D2 − 1

K1 and K2 can be determined from the initial conditions: first the derivative dvout(t)/ d t

is calculated, then t = 0 is inserted in vout(t) and in dvout(t)/ d t . This results in two
equations for K1 and K2.

dvout(t)

d t
= λ1K1e

λ1t + λ2K2e
λ2t

vout(t = 0) = 0 
⇒ K1 +K2 + VS = 0

dvout

d t

∣∣∣∣
t=0

= 0 
⇒ λ1K1 + λ2K2 = 0


⇒ K1 = λ2VS

λ2 − λ1
, and K2 = λ1VS

λ2 − λ1

• The solution of the differential equation is:

vout(t) = VS

λ1 − λ2
(λ2e

λ1t − λ1e
λ2t )+ VS (1.67)

2. Critically damped case
D = 1:

vout(t) = vout(t)homogeneous + vout, special = (K1t +K2)e
−ω0t + VS, Dω0 = ω



28 1 DC Systems

K1 and K2 can be calculated from the initial conditions: first the derivative dvout/ d t

needs to be calculated. Then t = 0 is inserted in vout(t) and in dvout/ d t . This results in
two equations for K1 and K2.

dvout

d t
= K1e

−ω0t − (K1t +K2)ω0e
−ω0t

vout(t = 0) = 0 
⇒ K2 + VS = 0

dvout

d t

∣∣∣∣
t=0

= 0 
⇒ K1 − ω0K2 = 0


⇒ K1 = −ω0VS, and K2 = −VS

• The solution of the differential equation for the critically damped case is:

vout(t) = −(ω0VSt + VS)e
−ω0t + VS (1.68)

3. Underdamped case
D < 1:

vout(t) = vout(t)homogeneous + vout, special

= e−Dω0t (K1 cosωt +K2 sinωt)+ VS, ω = ω0

√
1−D2

K1 and K2 can be calculated from the initial conditions: first the derivative of dvout/ d t is
calculated. Then t = 0 is inserted in vout(t) and in dvout/ d t . This results in two equations
for K1 and K2.
dvout

d t
= −Dω0e

−Dω0t (K1 cosωt +K2 sinωt)+ e−Dω0t (−K1ω sinωt +K2ω cosωt)

vout(t = 0) = 0 
⇒ K1 + VS = 0

dvout

d t

∣∣∣∣
t=0

= 0 
⇒−Dω0K1 + ωK2 = 0


⇒ K1 = −VS, and K2 = − D√
1−D2

VS

• The solution for the differential equation for the underdamped case is:

vout(t) = −VSe
−Dω0t

(
cosωt + D√

1−D2
sinωt

)
+ VS (1.69)

Figure 1.43 shows the step responses vout(t) for different system damping ratios.

The level of the step is VS = 1 V in this example, and the resonant angular frequency is
ω0 = 1

s . Small attenuation values (underdamped case) result in high overshooting of vout. In
the case of D = 1, the output voltage reaches the final value quickly without overshooting.
For D > 1, the output voltage approaches the final value slowly (overdamped case). All
functions approach vout(t →∞) = VS.

Note: In electronic systems often D = 1/
√
2. This setting lets the output value

reach the final value much more quickly than with critical damping and has an
overshoot of only 4%.
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Fig. 1.43. Step responses of an LRC low-pass filter using the damping ratio D as a parameter

1.3 Calculation Methods for Linear Circuits

1.3.1 Rules for Signs

An unknown branch of a circuit can act both as a generator and as a load. Generators are
components that supply energy, which can be voltage or current sources.
Loads are components that absorb energy. These are usually resistors, inductors and ca-
pacitors. They may also be components that usually supply energy.A rechargeable battery
can become an absorber whilst being charged.

Generators and loads are distinguished in a circuit by assigning voltage and current direc-
tions. In the generator the current and the voltage point in the same direction. In the load
the current and the voltage have opposite directions (Fig. 1.44).

This convention is used in the following sections for the analysis of circuits.When the exact
nature of an element is unknown (that is, whether it is supplying or absorbing energy),
a nominal direction for the arrows is chosen arbitrarily. At the end of the analysis, if the
solution for the element has a positive sign, then the nominal direction was correct. On the
other hand, a negative sign implies a reversing of the arrows.
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Fig. 1.44. Generator and load

1.3.2 Circuit Calculation with Mesh and Node Analysis

For a known circuit (i.e. all component values are known) Kirchhoff’s laws deliver enough
independent equations as required to calculate all of the currents present. If one or more
values of components are unknown, this lack of information must be compensated for by
the same number of known currents or voltages.
A circuit consisting of n nodes and m meshes delivers (n−1) independent node equations
(Kirchhoff’s first law) and m− (n− 1) independent mesh equations (Kirchhoff’s second
law). There are therefore m independent equations. Equations are independent of each
other if they cannot be generated from a linear combination of the other equations.

Mesh equations, including ideal current sources, do not deliver additional information,
because the voltage drop across the current source is independent of the respective current
source. Branches enclosing current sources are therefore not considered in the number of
branches m.

Nodes: n = 3
Branches: m = 4
Node equations: (n− 1) = 2
I1 − I2 − I3 = 0,

I3 + IS − I4 = 0
Mesh equations:
m− (n− 1) = 2
−VS + I1R1 + I2R2 = 0,
−I2R2 + I3R3 + I4R4 = 0

Fig. 1.45. Example for mesh and node equations

Gauss’s method:

The solutionof a systemofm equationswithmvariables is doneby step-by-step elimination
of the variables until only one variable remains. The elimination is done by scaling and
adding/subtracting two equations.When one variable is known then it can be inserted into
an equation with a further variable, and so on.With this method all variables can be solved
in a stepwise fashion. To make it easier to keep track of the operations, the calculation is
done to a defined scheme (Table 1.1)

Example: Calculation of the current I4 in Fig. 1.45 with Gauss’s method:

Solution:

I4 = R2(ISR1 + VS)+ (R1 + R2)ISR3

R2 R1 + (R1 + R2)(R3 + R4)
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Table 1.1. Solution with Gauss’s method

I1 I2 I3 I4 Right side Operation Eliminated

1 −1 −1 0 0 + 2. line

0 0 1 −1 −IS ×(−R3)+ 4. line I3

R1 R2 0 0 VS

0 −R2 R3 R4 0

1 −1 0 −1 −IS ×(−R1)+ 3. line

0 −R2 0 R3 + R4 ISR3 I1

R1 R2 0 0 VS

0 R1 + R2 0 R1 ISR1 + VS ×R2 I2

0 −R2 0 R3 + R4 ISR3 ×(R1 + R2)

0 0 0 R2 R1+ R2(ISR1 + VS)+
(R1 + R2)(R3 + R4) +(R1 + R2)ISR3

1.3.3 Superposition

According to the principle of superposition in physics it is possible in linear systems (i.e.
where cause and effect are proportional) to determine the effect of one cause independently
fromall other causes and effects.The overall resulting cause is then the sumof all individual
causes.

In the analysis of linear circuits this means that first all (partial) currents are calculated as
caused by the individual voltage and current sources. Then the individual partial currents
are summed, keeping their correct signs, in order to determine the resulting current.When
calculating the partial currents, all voltage sources not under consideration are replaced by
short circuits, and all the current sources not under consideration are taken out (replaced
by open circuits).

Fig. 1.46. Solution using the principle of superposition
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Example: Calculation of the current I4 in Fig. 1.46 with the principle of superposition:
Short circuiting the voltage source VS and applying the current-divider rule
yields for I ′4:

I ′4 = IS

R3 + R1 R2

R1 + R2

R4 + R3 + R1 R2

R1 + R2

Removing the current source IS and applying the current-divider rule yields for
I ′′4 :

I ′′4 = I ′′1
R2

R2 + R3 + R4
= VS

R1 + R2(R3 + R4)

R2 + R3 + R4

· R2

R2 + R3 + R4

The current I4 is then given as:

I4 = I ′4 + I ′′4

1.3.4 Mesh Analysis

Inmesh analysis a ring current is introduced for every independentmesh, and the respective
equation is described. This results in a system of as many equations as there are meshes.
The branch currents are obtained by adding the ring currents while taking into account
their correct signs.

If the mesh contains a current source, the source current can be considered as the mesh
current.

• This method is very suitable for calculating the currents in a circuit.

• The equation system becomes very simple when the circuit contains many current
sources.

Fig. 1.47. Solution method using mesh analyses

Example: Calculation of the current I4 through R4 in the circuit shown in Fig. 1.47:
System of equations:

−VS + I ′1(R1 + R2)− I ′2R2 = 0

−I ′1R2 + I ′2(R2 + R3 + R4)+ ISR4 = 0

It follows then for I ′2:

I ′2 =
VSR2 − ISR4(R1 + R2)

(R1 + R2)(R2 + R3 + R4)− R2
2

The current I4 is then: I4 = I ′2 + IS.
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1.3.5 Node Analysis

In node analysis every node is assigned a potential,where one node is assigned the reference
potential ϕ = 0. Then the independent node equations are formed by expressing the cur-
rents with the node potential differences divided by the respective resistors, In = �ϕ/Rm.
This results in a system of as many equations as there are unknown potentials.

• This method is very suitable for calculating the voltages in a circuit.

• The equation system becomes very simple when the circuit contains many voltage
sources.

Example: Calculation of the voltage V4 across R4 in the circuit in Fig. 1.48:

System of equations:

I1 − I2 − I3 = 0 
⇒ VS − (ϕ1 − ϕ0)

R1
− ϕ1 − ϕ0

R2
− ϕ1 − ϕ2

R3
= 0

I3 + IS − I4 = 0 
⇒ ϕ1 − ϕ2

R3
+ IS − ϕ2 − ϕ0

R4
= 0

with ϕ0 = 0, it follows that:

VS − ϕ1

R1
− ϕ1

R2
− ϕ1 − ϕ2

R3
= 0

ϕ1 − ϕ2

R3
+ IS − ϕ2

R4
= 0

This yields for ϕ2 = V4:

ϕ2 = V4 = R4[VSR2 + IS(R1R2 + R2R3 + R1R3)]

R1R2 + R2R3 + R1R3 + R1R4 + R2R4

Fig. 1.48. Solution method using node analyses

1.3.6 Thévenin’s and Norton’s Theorem

By Thévenin’s theorem every active linear two-terminal network, no matter how many
sources and resistors are interconnected, can be represented by an equivalent circuit, which
contains only one voltage source and one resistor (Fig. 1.49).

By Norton’s theorem every active linear two-terminal network, no matter how many
sources and resistors are interconnected, can be represented by an equivalent circuit, which
contains only one current source and one resistor (Fig. 1.50).
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Fig. 1.49. Thévenin’s theorem

Fig. 1.50. Norton’s theorem

Thévenin’s and Norton’s equivalent circuits, called ‘real voltage source’ and ‘real current
source’ in Sect. 1.2.1 respectively, have the same voltage–current characteristic (Fig. 1.51).

It is a declining straight line, starting with Vo/c, Iout = 0 (o/c stands for open circuit) for
no-load operation and ending with Vout = 0, Is/c (s/c stands for short circuit). The slope
of the line is determined by the internal resistance Rint.

Rint = �Vout

�Iout
= Vo/c

Is/c
(1.70)

Fig. 1.51. Voltage–current characteristic of Thévenin’s and Norton’s equivalent circuit

1.3.6.1 Calculating a Load Current by Thévenin’s Theorem

By Thévenin’s theorem an active two-terminal network can be reduced to its equivalent
circuit, consisting of a voltage source and an internal resistor.

The voltage–current characteristic of the equivalent circuit can be determined very simply:

a) by measuring the open circuit voltage Vo/c with a voltmeter, and by measuring a
second value of the characteristic V1, I1 by loading the circuit (Fig. 1.53). Then

Rint = Vo/c − V1

I1
.
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Fig. 1.52. Voltage–current characteristic

b) by calculating the open circuit voltage Vo/c and the short circuit current Is/c, if the
network is known.

Then Rint = Vo/c

Is/c
.

After Vo/c and Rint are known, the load current can be determined very simply (Fig. 1.53):

Iout = Vo/c

Rint + Rload
, Vout = Vo/s

Rload

Rint + Rload
(1.71)

Fig. 1.53. Loaded Thévenin’s equivalent circuit

Example: Analysing the circuit shown in Fig. 1.54 using Thévenin’s theorem:

Step one: calculate Vo/c using the voltage-divider rule

Vo/c = VS1 · R2

R1 + R2
= 12 V · 20 �

30 �
= 8 V

Step two: calculate Is/c by shorting the output terminals

Is/c = VS1

R1
= 12 V

10 �
= 1.2 A

Fig. 1.54. Application of Thévenin’s theorem to a circuit
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For Rint it follows that:

Rint = Vo/c

Is/c
=

VS1 · R2

R1 + R2

VS1

R1

= R2R1

R1 + R2
= 10 � · 20 �

30 �
= 6.66 �

or directly

Rint = Vo/c

Is/c
= 8 V

1.2 A
= 6.66 �

1.3.6.2 Calculating a Current Within a Network

Thévenin’s theorem can also be used to determine a certain current within a network.
Therefore the network must be divided into two parts, where the current is to be calculated
(Fig. 1.55).

After this, both parts of the divided network can be reduced to Thévenin equivalent circuits:

Then I = V1 − V2

R1 + R2
.

Fig. 1.55. Using Thévenin’s theorem to calculate a certain current

Often the right part of the network is passive, which means that it can be reduced to a
resistor (or in an AC circuit to an impedance). In this case, the calculation follows that
given in Sect. 1.3.6.1.

Example: Calculation of the current I3 for the circuit shown in Fig. 1.56.

Fig. 1.56. Calculation of I3 by Thévenin’s theorem
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First the circuit is divided into two parts at the two points a and b. Then the
left part is converted into an equivalent voltage source, and the right part is
converted into an equivalent resistor:

Vo/c = VS1
R2

R1 + R2
, Rint = R1R2

R1 + R2
, Rload = R3 + R4R5

R4 + R5

I3 is then:

I3 = Vo/c

Rint + Rload
=

VS1
R2

R1 + R2

R1R2

R1 + R2
+ R3 + R4R5

R4 + R5

1.4 Notation Index

C capacitance (F =As/V)
D damping ratio
e elementary or electronic charge (e = ±1.602 · 10−19 As)
f frequency (Hz)
G conductance (S =A/V)
i time variant current (A)
I DC current
Is/c short-circuit current (A)
IS source current (A)
L inductance (H =Vs/A)
n rounds per minute (min−1)
M torque (Nm)
P power (W =VA)
Q charge (As)
R resistance (� =V/A)
RS source or internal resistance (� =V/A)
RL load resistance (� =V/A)
t time (s)
T period length (s)
v time variant voltage (V)
V DC voltage (V)
VS source voltage (V)
Vo/c open-circuit voltage (V)
W energy (Ws = VAs)
α temperature coefficient (k−1)
β temperature coefficient (k−2)
η efficiency
ϑ temperature (◦C)
τ time constant (s)
ϕ potential (V)
ω angular frequency (s−1)
ω0 resonant angular frequency (s−1)
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2 Electric Fields

Electric fields are caused by electrical charges. The state of motion of the charges is
important.The physical phenomenamaybe divided into those caused by stationary charges
and those caused by moving charges. The former are described by an electrostatic field,
the latter by an electric flow field or a magnetic field. Charges in motion cause electric
and magnetic fields. For an electrostatic field to exist alone, the charges must be stationary.

2.1 Electrostatic Fields

Electrostatics describes the relationships between stationary electric charges. The electric
field that is created by stationary electric charges is known as an electrostatic field.

2.1.1 Coulomb’s Law

Electric charges exert forces on each other. Charges with the same sign repel each other,
whereas charges with opposite signs attract each other. The force between two stationary
point charges Q1 and Q2 is defined by Coulomb’s law (point charges are charges with no
spatial volume):

|F | = 1

4�ε
· Q1 ·Q2

r2
, with ε = ε0 · εr (2.1)

ε0: permittivity of free space, ε0 = 8.86 · 10−12 As

Vm
;

εr: relative permittivity;

r: distance between the charges.

The space between the charges is assumed to be an insulator, whose properties are equal
and independent of orientation (that is, isotropic) in all places. In a vacuum εr = 1, which
is also approximately true in air. The force F2 on the point charge Q2 can be represented
by a vector:

�F2 = 1

4�ε
· Q1 ·Q2

r2
· �er (2.2)

The equation is written in spherical coordinates, where the point charge Q1 is in the centre

of the coordinate system. �er is the unity vector
�r
|�r| , which points radially away from the

charge Q1.

• Coulomb’s law is also valid to a good approximation for spheres whose diameters are
small with respect to their separation; r is then the distance between the centre points.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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2.1.2 Definition of Electric Field Strength

The electric field strength may be derived from Coulomb’s law:

�F2 = Q2 · Q1

4�εr2
· �er︸ ︷︷ ︸

�E

= Q2 · �E (2.3)

This defines a field for the point charge Q1, pointing radially away from the charge and
decreasing with the distance squared. This leads to a description of the force on Q2 that
would be caused by an electric field, without explicitly knowing the source of the field (the
charge Q1 in the position r = 0).

• The SI unit of electric field strength is the Volts per Meter,
V

m
.

• When a force is exerted on an electric charge, then the charge is in an electric field.

In general, the force on a point charge in an electric field is given by:

�F = Q · �E (2.4)

This equation is generally valid, independently of how the field strength vector �E was
caused.

Note: The field of the point charge Q for which one wants to calculate the force is
in this model meaningless. It points radially away from (or towards) the point
and exercises no force on the charge.

Note: To calculate the force on an extended charge, it is divided up into infinitesimal
point charges, in order to calculate the resulting force by integration. In the
Cartesian coordinate system the calculation is expressed as:

�F =
∫
Q

�E(x, y, z) dQ(x, y, z)

Of course, the coordinate system that is chosen is suitable to the given problem.

The fields may be visualised by electric flux lines (Fig. 2.1). Lines whose direction at any
point corresponds to the direction of the force on a point charge at that position are used
to represent a field. The density of the field lines is thus a measure of the field strength.

Fig. 2.1. Representation of the force on a charge Q2: a) using Coulomb’s law; b) using the electric field

• An electrostatic field is a source field. Electric flux lines always begin and end on electric
charges.

• The positive direction of the flux lines is defined from positive charges to negative
charges.
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Note: If an electric field is drawn around a single charge (as in the definition of
the electric field strength), then this automatically implies that the opposite
charge is at infinity. This visually simplifies the calculation of the electric field.
Where there are several charges present, then the resulting electric field can be
constructed by the superposition of each individual field at each point in space
(Fig. 2.2).

Fig. 2.2. The resulting electric field of two a) opposite charges b) same-sign charges

2.1.3 Voltage and Potential

The electric voltage is a measure of the work required to move a unit charge in an electric
field from one place to another.

W =
∫
�F d�s =

∫
Q · �E d�s︸︷︷︸

V

= Q · V

• The electric voltage between two points in space is equal to the line integral of the elec-
tric field strength between the two points. The particular path over which the integration
is carried out is irrelevant.

V12 =
∫
s

�E d�s (2.5)

The electric potential ϕ is an absolute scalar quantity. If a point in space is chosen where
the electric potential ϕ = 0 (reference potential), then all other points in space can be
assigned an absolute potential. The potential ϕ = 0 is normally assigned to earth, or is
placed in abstract physical models at infinity. The voltage V in this model is given by the
difference between two potentials (Fig. 2.3a).

V12 = ϕ1 − ϕ2 (2.6)

Areas of equal potential are called equipotential surfaces. The electric field strength and
the electric flux density vectors are perpendicular to these surfaces.An infinitesimal surface
element d �A of the equipotential surface is a vector that is perpendicular to the surface.
The direction of the vector d �A is the same as the direction of the electric field strength
(Fig. 2.3b).
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Fig. 2.3. The voltage V and the potential ϕ in an electrostatic field

2.1.4 Electrostatic Induction

Electrostatic induction is the shift of the mobile charges in a conductor that has been
placed in an electric field. The charges shift so that the electric field strength in the electrical
conductor remains zero.

• An electrical conductor is always internally field-free. (This is strictly valid only in an
electrostatic field, but is also approximately true in low-frequency alternating fields.)

The electric field strength can be experimentally shown with Maxwell’s parallel plates
(Fig. 2.4). When two electrically conducting parallel plates are placed in an electric field,
the mobile charges in the plates shift to the outer surfaces. In Fig. 2.4a, the negative charges
shift left, and the positive shift right. The space inside the parallel plates is field-free. If
the plates are now drawn apart (Fig. 2.4b), the charges remain on the plates and continue
to balance out the field strength between the plates. If the parallel plates are removed from
the field (Fig. 2.4c), then the charges on the parallel plates create a new electric field that
can, for example, be measured in the discharge current.

Fig. 2.4. Maxwell’s parallel plates to demonstrate electric fields

Electrostatic shielding can be used to prevent electrostatic induction by an external field.
A hollow conductor is always internally field-free, as the charges shift to its outer surface
so as to prevent an internal electric field. This is also approximately true when the hollow
conductor does not have a closed outer surface, but rather has a grating structure. Such a
shielding cage is called a Faraday cage, after its inventor (Fig. 2.5a). However, it is also
possible to surround a charge with a hollow electrical conductor to keep the external space
field-free (Fig. 2.5b). An equal and opposite charge to the internal charge gathers on the
inner side of the hollow body. The charge on the outer surface of the hollow body flows
away to earth. The outer space is thus kept field-free.

Note: If there is an alternating field inside the hollow body, then an alternating current
flows on the earth conductor, as in this case the charge on the outer surface of
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Fig. 2.5. Faraday cage

the hollow bodymust continuously change. The fact that this alternating current
creates a magnetic field, which in turn induces a voltage, need not be taken into
account at low frequencies. (The frequency range is not simple to specify, but
for a good short earth conductor can be from 1 to 10 MHz.)

2.1.5 Electric Displacement

The electric displacement is a measure of the electrostatically induced charge after dis-
placement. It is a vector field quantity.

�D = dQ

dA⊥
· �eA⊥ (2.7)

Thus dA⊥ is the surface element of an equipotential surface. The unity vector �eA⊥ points
in the direction of the electric field strength.

• The SI unit of electric displacement is
As

m2
.

• The electric displacement is equivalent to the charge density on the outer surface of a
conductor. In an electrostatic field it is equal to the charge density on an equipotential
surface, if an electrically conducting foil is placed on the surface.

• The electric displacement intersects the equipotential surfaces perpendicularly, as does
the electric field strength.

Example: A point charge Q+ is placed in the centre of a hollow spherical conductor
(Fig. 2.6b). The electric displacement on the inner surface of the hollow sphere

amounts to �D = Q

4�R2
· �er. It is obvious therefore that the opposite charge

Q− is spread over the inner surface of the sphere. Inside the hollow sphere the
equipotential surfaces form concentric shells around the point charge Q+. The
electric displacement inside the sphere can be given in general by

�D(r) = Q

4� r2
· �er.

With spherical coordinates the charge Q+ lies in the centre of this representa-
tion.
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Fig. 2.6. Electric displacement: a) general definition; a) in a hollow sphere

2.1.6 Dielectrics

The space an electrostatic field fills is known as a dielectric. The dielectric field quantities
are the electric field strength �E and the electric displacement �D. In an electrostatic field:

�D = ε · �E (2.8)

where ε is the permittivity (also known as the dielectric constant). For an isotropic di-
electric:

• �E and �D point in the same direction and lie perpendicular to the equipotential surfaces.

• The proportionality factor between the electric displacement and the electric field
strength is the permittivity ε.

The permittivity is derived from the free space permittivity ε0 and the relative permit-
tivity εr ≥ 1 (relative dielectric constant).

ε = ε0 · εr (2.9)

The value of the free space permittivity is:

ε0 = 8.85419 · 10−12 As

Vm
(2.10)

The relative permittivity εr depends on the material in which the field extends. The values
of εr for most dielectrics lie between 1 and 100, but εr can be up to 10 000.

• The relative permittivity is always εr ≥ 1.
• The relative permittivity of a vacuum is εr = 1.
• The relative permittivity of air is εr ≈ 1.
• The relative permittivity of insulators usually lies in the range 2–3.

2.1.7 The Coulomb Integral

The electric field strength at an arbitrary point in space can be calculated with the aid of the
superposition principle. The total field strength is equal to the vector sum of the individual
field strengths from each of the charges.

�D =
∑

i

Qi

4� r2
i

· �eri , or �E =
∑

i

Qi

4�ε r2
i

· �eri (2.11)
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A spatially distributed charge may be considered as a number of spatially distributed point
charges dQi . The resulting field strength is then equal to the integral of the individual field
strengths from each of the point charges dQi .

�D =
∫
Q

dQi

4�r2
· �eri , or �E =

∫
Q

dQi

4�εr2
· �eri (2.12)

This is known as the Coulomb integral.

Example: The calculation of the electric field strength around a straight line charge

λ

(
As

m

)
by using the Coulomb integral:

Fig. 2.7. Calculation of the electric field strength using the Coulomb integral

It can be assumed that the field spreads out radially and symmetrically from
the line charge. If the line charge is rotated about its longitudinal axis, the
field at a fixed point in space will not change for symmetrical reasons. The
calculation can thus be reduced to a planar (two-dimensional) problem. The
spatially distributed point charges may be considered as dQ = λ dx. The
distance from the charge dQ to the point P is given by r = √R2 + x2. The

cosine of the angle α can be represented in Cartesian coordinates as
R√

R2 + x2

(Fig. 2.7). The calculation of the field strength E at the point P :

E = D

ε
=

+∞∫
−∞

λ

4�ε
· dx

R2 + x2
· R√

R2 + x2︸ ︷︷ ︸
cosα

= 2 · λR

4�ε

+∞∫
0

dx

(R2 + x2)3/2
= λ

2�εR

The field components in the x-direction balance each other out. The resulting
field strength points radially away from the line charge.

2.1.8 Gauss’s Law of Electrostatics

Gauss’s law of electrostatics states that the surface integral of the electric displacement
over a closed surface is equal to the charge enclosed.∮

A

�D d �A = Q (2.13)

The vector d �A points out from the surface area.
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Example: The calculation of the electric field strength around a straight line charge λ

using Gauss’s law:

Fig. 2.8. Field calculation for a line charge

A field calculation using Gauss’s law essentially depends on a suitable choice
of the coordinate system. In this particular case a cylindrical coordinate system
is suitable for symmetrical reasons, since the field points radially away from a
line charge. A cylindrical surface is therefore placed around the line charge, as
shown in Fig. 2.8. Gauss’s law states that:∮

A

�D d �A = �D · 2� �R · l = λl ⇒ �D (R) = λ

2�R
· �er

⇒ �E (R) = λ

2�εR
· �er

2.1.9 Capacitance

• In a configuration of two electrodes, the ratio of the charge on the two electrodes to the
voltage between the electrodes is constant. This ratio only depends on the geometry of
the configuration and the dielectric constant of the space between the electrodes.

• The ratio of the charge to the voltage is called the capacitance.

C = Q

V
(2.14)

The SI unit of capacitance is the farad, 1 F = 1
As

V
If field quantities are used to describe Q and V , then C can be calculated as:

C = Q

V
=

∮
A

�D d �A
∫
s

�E d�s
, with �eA||�es (2.15)

Equation (2.15) is valid for the case where the path element ds is perpendicular to the area
element dA. Therefore, in order to evaluate this integral, the field qualities must be known
qualitatively, i.e. the direction of the field strength and the electric displacement must be
known.
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Example: Calculation of the capacitance of a coaxial conductor of length l (Fig. 2.9):

Fig. 2.9. Calculation of the capacitance of a coaxial conductor

Knowledge of the electric field is necessary for the calculation of the capaci-
tance. Equation (2.15) is used, as either a voltage V is applied to, or a charge Q

is placed on, the electrodes. In this case a charge Q is placed on the electrodes,
and the field �E(r) is expressed as a function of this charge. As can be seen,
the charge Q cancels out to yield an expression for C that only depends on the
geometry of the configuration and the material characteristics of the dielectric.

C = Q

V
=

∮
A

�D d �A
∫
s

�E d�s
= Q

r2∫
r1

Q/l

2�εr
dr

= 2�εl

ln
r2

r1

, with �E = Q/l

2�εr
�er

2.1.10 Electrostatic Field at a Boundary

Figure 2.10 shows electrostatic field quantities at a boundary. At the boundary:

�Et2 = �Et1 , and �En2 = ε1

ε2
· �En1 (2.16)

�Dn2 = �Dn1 , and �Dt2 = ε2

ε1
· �Dt1 (2.17)

tan α2 = ε2

ε1
· tan α1 (2.18)

Fig. 2.10. Field quantities at a boundary
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• The tangential component of the electric field strength is constant.
• The normal component of the electric field strength is inversely proportional to the

dielectric constant.
• The tangential component of the electric displacement is proportional to the dielectric

constant.
• The normal component of the electric displacement is constant.

2.1.11 Overview: Fields and Capacitances of Different Geometric
Configurations

Table 2.1. Overview of fields and capacitances
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Table 2.1. (cont.)

Single conductor-earth C = 2�εl

ln

⎡⎣ a

r1
+
√(

a

r1

)2

− 1

⎤⎦
≈ 2�εl

ln
2a

r1

for a � r1

E =
2V

√
a2 − r2

1

a2 − r2
1 − x2

ln

⎡⎣ a

r1
+
√(

a

r1

)2

− 1

⎤⎦
Sphere-sphere

C ≈ 2�ε
1

r1
− 1

2a

E ≈
V

(
1

x2
+ 1

(2a − x)2

)
2

r1
− 1

a

Sphere-infinity

C = 4�εr1 E = V · r1

r2

2.1.12 Energy in an Electrostatic Field

Energy is required to create an electric field, as positive and negative charges must be
separated. A charging current will flow if a voltage is applied to a capacitor in order to
charge it. The energy supplied to the capacitor is stored in the electric field and not, as for
a resistance, transformed into heat. The energy is given by:

W =
t1∫

0

v(t) · i(t) d t︸ ︷︷ ︸
dQ

=
Q1∫
0

v(t) dQ︸︷︷︸
C dV

= C

VC∫
0

v dv = 1

2
C · V 2

C

In general:

W = 1

2
CV 2 = 1

2
QV = 1

2

Q2

C
(2.19)

If the integral quantities Q and V are replaced by the vector quantities �D and �E, this
becomes:

W = 1

2

∮
A

�D d �A ·
∫
s

�E d�s = 1

2

∫
V

�D · �E dV, with �es||�eA (2.20)

The unity vector �es points therefore in the same direction as the unity vector for the area

�eA, so that the integral
∫

ds · dA yields the volume element dV . The energy density of

an electrostatic field is:

dW

dV
= 1

2
�D · �E (2.21)
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2.1.13 Forces in an Electrostatic Field

2.1.13.1 Force on a Charge

The force on a point charge in an electric field is given by:

�F = Q · �E (2.22)

Example: The deflection of an electron after passing through an electric field is given by:

Fig. 2.11. Deflection of an electron passing through an electric field

A force is exerted on an electron during its passage through an electric field
(Fig. 2.11). Because of the negative charge on the electron, the direction of the
force opposes that of the electric field.The speed �v0 of the electronperpendicular
to the direction of the field remains unchanged during passage through the field.
The time the electron requires to traverse the field is t = l/v0.

F = m · a (force = mass × acceleration)

v =
∫

a d t (velocity = time integral of the acceleration)

v1 =
l/v0∫
0

e · E
m

d t = e

mv0
· E · l, tan α = e

m
· E · l

2.1.13.2 Force at the Boundary

Both the boundary between dielectric and the conductive surface of electrodes and also
the boundary between different dielectrics are subject to forces. These forces can be most
easily derived by considering the energy balance between the mechanical, electrical and
field energy. To do this, the boundary is assumed to have shifted infinitesimally and then
the resulting change in the potential energy is calculated. The sum of the energy changes
must be zero:

dWmech + dWfield + dWelectr = 0 (2.23)

In order to carry out this energy balance it is necessary to know which of the changes is
positive and which negative, i.e., which energy increases and which decreases. Consider
the following thought experiment:A voltage source is applied to a parallel-plate capacitor.
The plates of the capacitor are drawn to each other, as they are charged with opposite
charges. Mechanical energy is applied if the plates are pulled apart. The capacitance will
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simultaneously decrease, i.e. the stored field energy
1

2
CV 2 will decrease. The mechanical

energy and the change in the stored field energy are balanced by the energy supplied by
the voltage source. This energy balance can be more concretely stated as:

F · ds + d

(
1

2
CV 2

)
= dQ · V

With Q = C · V , it follows therefore for the force:

F = 1

2
V 2 dC

ds
(2.24)

• The force on the plates of a capacitor is proportional to the change in the capacitance
relative to the imaginary shift of the plates.

For boundaries this means, in general, that:

• The force at a boundary is proportional to the change in the capacitance relative to an
imaginary shift of the boundary.

• The force at a boundary always tries to increase the capacitance.

Note: If a voltage source is not applied to the capacitor plates in the above thought
experiment, but rather they hold the fixed charge Q, then the energy balance
for the virtual shift is different. It then becomes:

F · ds + d

(
1

2

Q2

C

)
= 0

The force is thus:

F = −1

2
Q2 d

ds

(
1

C

)
(2.25)

The applied mechanical energy increases the field energy in this case. (In
the first case with the voltage source the field energy was reduced!) Of

course, both equations for the calculation of the force, F = 1

2
V 2 dC

ds

and F = −1

2
Q2 d

ds

(
1

C

)
, arrive at the same result.

Example: Calculation of the force at the electrodes of a parallel plate capacitor
(Fig. 2.12a):

F = 1

2
V 2 dC

ds
, C = εA

s
,

dC

ds
= −εA

s2
⇒ F = −1

2
V 2 · εA

s2

Another approach is:

F = −1

2
Q2 d

ds

(
1

C

)
,

1

C
= s

εA
,

d

ds

(
1

C

)
= 1

εA

⇒ F = −1

2
Q2 1

εA
= −1

2
V 2 · εA

s2

As expected, both results are equal. The minus sign in the result shows that the
force resists against the plates being drawn apart.
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Fig. 2.12. Forces at boundaries: a) parallel to the flux lines; b) perpendicular to the flux lines

Example: Calculation of the force drawing a dielectric between two capacitor plates
(Fig. 2.12b):

F = V 2

2
· dC

dx
, C = ε1ε0b

a
x + ε0b

a
(h− x),

dC

dx
= (ε1 − 1)

ε0b

a

⇒ F = V 2

2
· (ε1 − 1)

ε0b

a

2.1.14 Overview: Characteristics of an Electrostatic Field

• Conducting media are field-free.
• The electric displacement and the electric field strength point in the same direction in

isotropic materials.

�D = ε · �E
• The electric field is a charge field. Electric flux lines always begin and end on electric

charges. The positive direction is defined from negative to positive charges.
• The surface integral of the electric displacement over a closed surface is equal to the

charge enclosed. This is obviously zero in a charge-free space.∮
A

�D d �A = Q

• A space is charge-free if the divergence of the observed field in this space is zero.

∇ · �E = 0 in a charge-free space.

• If the observed space contains the charge density , then the divergence of �E (Maxwell’s
third equation) is:

∇ · �E = 

ε

• The curl of the electric field is zero at all points. If the integral of the electric field
strength is calculated over a closed loop then the result is always zero, independent of
the integration path chosen.∮

�E d�s = 0, ∇ × �E = 0
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• The electrostatic field is a conservative field. The line integral of the electric field
strength is equal to the voltage (potential difference) between the beginning and end
points of the path. It is therefore not relevant over which path the integration occurs.

2∫
1

�E · d�s = V12 = ϕ1 − ϕ2

• Flux lines pass perpendicularly through the equipotential surfaces. The electric field
strength points in the direction of the greatest voltage change. The field vector points
from higher to lower voltage levels (in the direction of the lower potential).

�E = −∇ · V
• The electrostatic field holds energy:

W = 1

2

∫
V

�D · �E dV

2.1.15 Relationship between the Electrostatic Field Quantities

Q ⇐ Q =
∮
A

�D d �A ⇒ �D

⇑ ⇑
Q = C · V �D = ε · �E

⇓ ⇓
V ⇐ V =

∫
s

�E d�s ⇒ �E

2.2 Static Steady-State Current Flow

The static steady-state current flow describes the motion of charges in an electrical
conductor and its effects when the electrical quantities do not change with time. The

following section makes the assumption that
di

d t
= 0. There are therefore no induced

voltages!

2.2.1 Voltage and Potential

Voltage causes directed charge motion in an electrical conductor. If a voltage is placed on
an electrical conductor then a current I will flow. A voltage can be measured at any point
on the surface of an electrical conductor when a current is flowing in the conductor. A
voltage is also present at each internal point in the conductor, although this is not so easy
to measure.

• The voltage decreases uniformly along the electrical conductor.
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A point can be designated where the potential ϕ = 0. It is then possible to define potential
ϕ at any point in the conductor. The voltage between two points is equal to the potential
difference between the points:

V12 = ϕ1 − ϕ2 (2.26)

Areas with the same voltage or with the same potential are known as equipotential sur-
faces, as in electrostatic fields.

2.2.2 Current

The electric current is the sum of charges that flow through a defined cross section per
unit time:

I = dQ

d t
(2.27)

• The direction of positive current is the direction of motion of the positive charges.
This is opposite to the direction of motion of the negative charges.

• Current always flows in a closed loop.

(See also Sect. 1.1)

2.2.3 Electric Field Strength

The electric field strength describes the change in the electric voltage over a given path.
It is a vector that points in the direction of the greatest change. As the greatest change in
the voltage is perpendicular to the equipotential surfaces, the electric field strength vector
lies perpendicular to the equipotential surfaces (Fig. 2.13).

�E = dV

ds⊥
· �eA⊥ (2.28)

The unity vector �eA⊥ is perpendicular to the equipotential surface, and the path element
ds⊥ passes perpendicularly through the equipotential surface. This may also be written
as:

�E = −∇ · V (2.29)

Fig. 2.13. Electric field strength, equipotential surfaces and electric voltage
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• The direction of the electric field strength is the direction of the greatest change in
voltage.

• The magnitude of the electric field strength yields the change in the voltage over the
path.

The unit of electric field strength is volt per meter,
V

m
. The electric voltage V is the line

integral of the electric field strength:

V12 =
2∫

1

�E · d�s (2.30)

• The electric voltage between two points is equal to the line integral of the electric
field strength between the two points. Therefore, it does not matter over which path the
integration occurs.

Afield is said to be homogeneous if the samefield strength prevails at all points in that field,
i.e. the magnitude and direction at all points are the same. The voltage in a homogeneous
field is:

V12 = �E · �s12 (2.31)

2.2.4 Current Density

The current I is spread out over a conductor. This leads to the definition of current
density �J :

�J = dI

dA⊥
· �eA⊥ (2.32)

Thus dA⊥ is the surface element of an equipotential surface. The unity vector �eA⊥ lies
perpendicular to the equipotential surface.

• The direction of the current density points in the direction of the greatest voltage change.
The current density vector lies perpendicular to the equipotential surface (Fig. 2.14a).

• The magnitude of the current density yields the amount of charge per cross section and
per unit of time that passes through an equipotential surface.

• The current density points in the same direction as the electric field strength.

The unit of current density is amperes per square meter,
A

m2
. The current I is the integral

of the scalar product of the current density and an arbitrary area through which the current
passes.

I =
∫
A

�J · d �A (2.33)

In a homogeneous field this integral becomes (Fig. 2.14b):

I = J · A · cosα (2.34)

where α is the angle between the normal to the area and the current density.
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I =
∫
�J d �A

= J · A · cosα︸ ︷︷ ︸
A⊥

Fig. 2.14. Current density: a) in general; b) in a homogeneous field

2.2.5 Resistivity and Conductivity

The electric field strength is related to the current density by the resistivity  and the
conductivity σ .

�E =  · �J , and �J = σ · �E (2.35)

σ = 1


(2.36)

• The conductivity is the inverse of the resistivity.

• The unit of resistivity is ohm meters, �m.

Note: The unit of resistivity is often given as
�mm2

m
, since the lengths of electrical

conductors are often given inmeters and the cross-sectional area inmillimeter2.
The electrical resistance of a homogeneous conductor may be calculated thus:

R =  · length

cross-sectional area

The unit of conductivity is siemens or mho per meter,
S

m
, or

mho

m
.

• The resistivity and the conductivity are material characteristics of the electrical conduc-
tor (Table 2.2).

• The resistivity and the conductivity are temperature dependent.

Note: The resistivity temperature dependence is given by the temperature coefficient
α. The change in the resistivity with temperature may be calculated from:

 (ϑ2) =  (ϑ1) · [1+ α · (ϑ2 − ϑ1)]

The temperature coefficients of copper and aluminium are α = 0.004 K−1.
Therefore, for a temperature change of 100 K, their resistivity changes by
40%.
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Table 2.2. Resistivity of electrical conductors

Material Conductivity Resistivity
σ (S/m · 10−6)  (� ·mm2/m)

Aluminium 37 0.027
Brass 14.3–12.5 0.07–0.08
Copper 59 0.017
Gold 45.5 0.022
Iron 10–2.5 0.1–0.4
Silver 62.5 0.016

2.2.6 Resistance and Conductance

Voltage is related to current by the electrical resistance R and the electrical conductance
G.

V = R · I, and I = G · U (2.37)

The SI unit of resistance R is the ohm, 1 � = 1V

1A
, while the unit of conductance G is

the mho or Siemens, 1=1 A
1 V. If the integral quantities V and I are represented as vector

quantities, then R and G are calculated as:

R = V

I
=

∫
s

�E d�s
∫
A

�J d �A
, and G = I

V
=

∫
A

�J d �A
∫
s

�E d�s
, with �eA = �es

(2.38)

Equation (2.38) is valid for the casewhere the path element ds lies perpendicular to the area
element dA. To evaluate this integral the field characteristics must be known qualitatively,
i.e. the directions of the field strength and the current density must be known. For an
isotropic conductor material of length l and cross-sectional area A with a homogeneous

field distribution, R =  · l

A
and G = σ · A

l

Example: Calculation of the resistance of a quarter-ring: The contacts are perfect con-
ductors, and the resistance material is isotropic. a) Figure 2.15a: the current is
tangentially injected. The current density lines are tangential to the ring. The
current is equally divided over the cross section. The individual current density
lines may be considered as “current threads” dI . The integration (addition)
of these current threads thus yields the total current I = ∫ dI . Each current
thread dI is defined by the differential conductance dG:

dI = V · dG = V · σ dA

l
= V · σ b

�/2
· dr

r

G = I

V
=
∫

dI

V
=
∫

V

V
· dG =

∫
σ

dA

l
= σ

b

�/2
·

r2∫
r1

dr

r
= σ · b

�/2
· ln r2

r1
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Fig. 2.15. Quarter-ring resistance: a) with tangential and b) with radial current injection

The resistance R is:

R = 1

G
= 1

σ
· �/2

b
· 1

ln (r2/r1)
(2.39)

An alternativemethod comes from analysing the geometry of the configuration:
The total resistance can be considered as a combination of parallel resistors of

length
�

2
r and cross-sectional area b · dr . The partial conductance dG is given

byσ · b

�/2
· dr

r
. The total conductanceG is therefore the integration (summation)

of the partial conductances:

G =
r2∫

r1

σ · b

�/2
· dr

r
= σ · b

�/2
· ln r2

r1

Note: The direction of the field must also be known for this method.

b) Figure 2.15b: the current is injected radially. The current is divided radially
from the inside to the outside of the arc. The current density decreases from
the inside to the outside of the ring, flowing away from the inner contact in
a star-like pattern. The total current must pass through “resistance discs” dR

of cross-sectional area
�

2
r · b and of length dr . The total resistance R can be

considered as a series combination of resistance discs dR. The total resistance
is therefore the integration (summation) of the partial resistances dR:

R =
∫

dR =
∫

 · d l

A
=

r2∫
r1

 · dr

b · (�/2) · r =  · ln (r2/r1)

b · (�/2)

2.2.7 Kirchhoff’s Laws

2.2.7.1 Kirchhoff’s First Law (Current Law)

The electric current always flows in a closed loop. For the current density this means that
the flux lines of the current density always form a closed path. Kirchhoff’s first law states
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that for a static steady-state current flow (Fig. 2.16):∮
A

�J d �A = 0 (2.40)

This can also be written as:

∇ · �J = 0 (2.41)

Fig. 2.16. Illustration of Kirchhoff’s first law (current law)

• The surface integral of the current density over a closed surface is always zero.

• The current density �J is source-free.

2.2.7.2 Kirchhoff’s Second Law (Mesh Law)

The line integral of the electric field strength between two points is equal to the voltage
between those points, independent of the path over which the integration is made. If the
start and end points are the same then the result is obviously zero.∮

s

�E d�s = 0 (2.42)

This can also be written as:

∇ × �E = 0 (2.43)

Fig. 2.17. Illustration of Kirchhoff’s second law (mesh law)

• The line integral of the electric field strength over a closed loop is always zero (Fig.2.17).

• The static steady-state current flow is solenoidal.



60 2 Electric Fields

Fig. 2.18. Field quantities at a boundary

2.2.8 Static Steady-State Current Flow at Boundaries

A static steady-state current flow that passes a material boundary changes its direction
depending on the conductivity of the materials (Fig. 2.18).

�Jn2 = �Jn1, and �Jt2 = 1

2
· �Jt1 = σ2

σ1
· �Jt1 (2.44)

�Et2 = �Et1, and �En2 = 2

1
· �En1 = σ1

σ2
· �En1 (2.45)

tan α2 = 1

2
tan α1 = σ2

σ1
tan α1 (2.46)

At the boundary:

• The normal component of the current density does not change.

• The change in the tangential component of the current density is proportional to the
conductivity.

• The tangential component of the electric field strength does not change.

• The normal component of the electric field strength is proportional to the resistivity.
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2.2.9 Overview: Fields and Resistances of Different Geometric
Configurations

Table 2.3. Overview of fields and resistances

Parallel Plates

R =  · d

A

E = V

d

S = I

A

Parallel plates

R = 1

A
· (1d1 + 2d2)

E1(2) = 1(2)V

1d1 + 2d2

S = I

A

Coaxial cylinders

R =  ·
ln

r2

r1

2�l

E = V

r · ln r2

r1

S = I

2�rl

90◦ arc

R =  · �

2b

1

ln (r2/r1)

E = V

(�/2)r

S = I

br ln (r2/r1)

Concentric spheres

R =  · 1

4�
·
(

1

r1
− 1

r2

) E = V

r2
· r1r2

r2 − r1

S = I

4�r2

Sphere-sphere

R =  · 1

4�

(
1

r1
− 1

2a

) E ≈
V

(
1

x2
+ 1

(2a − x)2

)
2

r1
− 1

a

S ≈
I

(
1

x2
+ 1

(2a − x)2

)
4�



62 2 Electric Fields

Table 2.3. cont.

Sphere-infinity

R = 1

4�σr1

E = V · r1

r2

S = I

4�r2

Parallel conductors

R = 

ln

⎡⎣ a

r1
+
√(

a

r1

)2

− 1

⎤⎦
�σ l

≈  ·
ln

2a

r1

�l
for a � r1

E =
V

√
a2 − r2

1

a2 − r2
1 − x2

ln

⎡⎣ a

r1
+
√(

a

r1

)2

− 1

⎤⎦
S =

I

√
a2 − r2

1

�l
(
a2 − r2

1 − x2
)

2.2.10 Power and Energy in Static Steady-State Current Flow

In a static steady-state current flow electrical energy is converted into heat. The electrical
power is :

P = V · I (2.47)

For a resistance R or a conductance G this becomes:

P = V · I = V 2

R
= I 2 · R, or P = V · I = I 2

G
= V 2 ·G (2.48)

This also holds for each infinitesimal volume element:

dP = dV

ds⊥︸︷︷︸
�E

ds⊥ · dI

dA⊥︸ ︷︷ ︸
�J

dA⊥ = �E · �J · dV (2.49)

Thus ds⊥ and dA⊥ lie perpendicular to the equipotential surfaces. From Eq. (2.49) the
power density of a static steady state current flow is defined as:

dP

dV
= �J · �E (2.50)

The power P is then given by:

P =
∫
V

�J · �E dV (2.51)

The energy is the integral of the power over time:

W =
t2∫

t1

P (t) d t (2.52)
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Note: The static steady-state current flowmakes assumptions for time-invariant quan-
tities. The use of P (t) in the above equations seems to contradict this. However,
for slow time variations of the electric quantities, the magnetic effects can be
ignored (for example, current pinching, skin effect).

Note: If the power is a time-varying periodic progression, then the average power P

is usually used to refer to the power loss. This is calculated as the arithmetic
average of the work done divided by the period:

P̄ = 1

T
·W(T ) = 1

T

T∫
0

P (t) d t (2.53)

2.2.11 Overview: Characteristics of Static Steady-State Current
Flow

• The static steady-state current flow is a conservative field.The line integral of the electric
field strength is equal to the voltage (potential difference) between the beginning and
end points of the path. The path over which the integration is made is therefore not
relevant. The flux lines pass perpendicularly through the equipotential surfaces.

2∫
1

�E · d�s = V12 = ϕ1 − ϕ2, or �E = −∇ · V (2.54)

• The static steady-state current flow is solenoidal. The line integral of the electric field
strength over a closed loop is always zero (Kirchhoff’s second law,

∑
V = 0).∮

�E · d�s = 0, or ∇ × �E = 0 (2.55)

• The static steady-state current flow is source-free. The current always flows in a closed
loop. The surface integral over a closed surface is always zero (Kirchhoff’s first law,∑

I = 0). ∮
A

�J · d �A = 0, or ∇ · �J = 0 (2.56)

• In a static steady-state current flow electrical power is converted into heat:

P =
∫
V

�J · �E dV (2.57)
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2.2.12 Relationship Between Quantities in Static Steady-State
Current Flow

I ⇐ I =
∫
A

�J d �A ⇒ �S
⇑ ⇑

V = R · I �J = σ · �E
⇓ ⇓
V ⇐ V =

∫
s

�E d�s ⇒ �E

2.3 Magnetic Fields

The magnetic field describes the effects of stationary and time-varying currents inside and
outside an electrical conductor. Electric charges in motion are subject to Coulomb forces
and also to other forces caused by the magnetic field. The unit of electrical current can be
defined in terms of the forces in a magnetic field:

• If, for two straight, parallel, infinitely long conductors with negligibly small diameter
separated by a distance of r = 1 m and with the same time-invariant current I flowing
through them, each 1-m conductor length exerts a force F = 2 · 10−7 N on the other,
then the current I has a value of 1 A.

The effect of time-varying currents and time-varying magnetic fields is described in
Sect. 2.3.13.2 by Faraday’s law. Faraday’s law is the basis of many technical applications,
such as, for example, the electric motor, transformers, relays and the electrical energy
supply by rotating generators.

Direction-Pointing Convention

In this book, three-dimensional physical relationships are illustrated when considering
magnetic fields. To do this, the following representation is normally used for directions:

⊗: Direction pointer or vector pointing into the page;

�: Direction pointer or vector pointing out of the page towards the observer.

Direction pointer: Direction convention for scalar quantities, such as current, voltage or
magnetic flux. Vector: Direction convention for field quantities, such as flux density and
magnetic field strength. Cross product, vector product: For example: �F = (�v × �B), or:
“F is equal to v cross B”. The magnitude of �F is

| �F | = |�v| · | �B| · sin α

where α is the angle between vectors �v and �B. The vector �F lies perpendicular to the
plane formed by the vectors �v and �B. The direction of �F can be given by the corkscrew
rule. If a corkscrew is turned over the smallest angle from �v to �B, then the direction of the
corkscrew gives the direction of �F (Fig. 2.19). Source pointer system: If the direction
pointers for V and I in a basic circuit element point in the same directions, then it may be
assumed that the basic element is a source and thus supplies energy. This does not mean
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Fig. 2.19. Corkscrew rule for a cross product, here: �F = �v × �B
that it definitely is a source, which can only be ascertained after some network calculations.
Only if the application of Kirchhoff’s law yields a positive result for current and voltage,
can it be confirmed that the element was indeed a source. If the result is negative, then
the assumption that the element was a source was wrong, and the element is an energy
consumer. Consumer pointer system: If the direction pointers for V and I in a basic
circuit element point in opposite directions, then it may be presumed that the particular
element is a consumer and thus absorbs energy.

2.3.1 Force on a Moving Charge

Moving electric charges exert forces on one another that cannot be explained byCoulomb’s
law. The magnetic force on two point charges in uniform motion on parallel paths, while
at the same height, is given by:

F = μ

4�
· (Q1v1) · (Q2v2)

r2
, with μ = μ0 · μr (2.58)

μ: permeability;

μ0: free-space permeability, μ0 = 4� · 10−7 Vs

Am
= 1.257 · 10−6 Vs

Am
;

μr: relative permeability;

r: distance between the paths.

The permeability is a constant that depends on themedium inwhich the charges aremoving.
In a vacuum and in air the relative permeability is μr = 1.

• For the same sign on the products (Q1 · v1) and (Q2 · v2) the charges are drawn closer,
but for opposite signs the charges are drawn apart (Fig. 2.20).

Fig. 2.20. Force on moving point charges
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2.3.2 Definition of Magnetic Flux Density

The magnetic flux density �B is derived from the force on charges in motion. By definition:

F = (Q1v1) · μ

4�

(Q2v2)

r2︸ ︷︷ ︸
B

= Q1v1 · B

B is the magnetic flux density. Themagnetic flux density is a field quantity with direction,

that is, a vector. The SI unit ofmagnetic flux density is the tesla, 1T= 1 Vs

1 m2
. The direction

of the magnetic flux density can be found using a magnetic dipole (e.g. a compass needle).
The positive direction of magnetic flux density is the direction to which the north pole of
the magnetic dipole points.

Note: The compass needle is a magnetic dipole. The north pole of the compass needle
points north. This means that the geographic north pole actually is the magnetic
south pole of the earth.

Fig. 2.21. a) Compass needle in a magnetic field; b) magnetic flux density around a moving charge

Magnetic fields are illustrated by means of flux lines. To show the field, lines are drawn
whose tangents correspond at each point to the direction in which an infinitesimally small
magnetic dipole would point. The density of flux lines is thus a measure of the magnitude
of the field strength.

• It can be shown experimentally that the magnetic force lines (flux lines) are tangential
in a clockwise sense about the direction of motion of the charge (Fig. 2.21).

• The flux lines in magnetic induction have no beginning or end since they form closed
loops.

Right-hand rule: The direction of the magnetic field around amoving charge or around an
electric current can be found with the right-hand rule. If the right-hand thumb points in the
direction of the moving charge (or in the direction of the current), then the curved fingers
of the right hand show the rotation direction of the field. Corkscrew rule: The direction
of the magnetic field around a moving charge or around an electric current can also be
found with the corkscrew rule. If a corkscrew were turned in the direction of the moving
charge (in the direction of the current), then the rotation direction of the corkscrew is the
direction of the field. The force on a moving charge can be found from the field direction:

�F = Q ·
(
�v × �B

)
(2.59)

• The force on a moving charge is known as the Lorentz force.
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Lorentz Force on a Current Carrying Conductor

The current I can be considered as a directed motion of charges. If a charge quantity �Q

moves in an electrical conductor, then it can be described by �Q = I ·�t . The velocity

of the charges can be written as v = �l

�t
. Therefore:

�Q · v = �Q · �l

�t
= �Q

�t
·�l = I ·�l

Fig. 2.22. Lorentz force: a) moving charge in a conductor; b) force on the conductor

The Lorentz force on a straight current carrying conductor therefore amounts to:

�F = I ·
(�l × �B

)
(2.60)

The vector �l points thus in the direction of the current I (Fig. 2.22).

Example: Calculate the rotation direction and the torque of an electric motor: In a per-
manent magnet electric motor the flux density in the air gap is B = 0.5 T
(permanent magnet: the magnetic field is created by a permanent magnet). The
rotor of the motor has an active length of l = 10 cm (the conductor length
is 10 cm in the magnetic field) and a diameter of d = 10 cm. There are four
current-carrying conductors in the magnetic field on either side (Fig. 2.23a).
Each conductor carries a current of 1 A.

Fig. 2.23. a) Simplified representation of an electric motor; b) system to find the rotation direction

Solution:
The motor turns clockwise (Fig. 2.23b). The direction of force for each of the
current-carrying conductors is clockwise. The torque is:

M = Ftotal·d
2
= 8·I ·s·B ·d

2
= 8·1A·0.1m·0.5

Vs

m2
·0.1 m

2
= 20·10−3 VAs = 20·10−3 Nm

Note: The conversion fromelectrical intomechanical units can be done by considering
the energy: 1 VAs = 1 Ws = 1 J = 1 Nm.



68 2 Electric Fields

2.3.3 Biot–Savart’s Law

Biot–Savart’s law gives the magnetic flux density at any given point, in magnitude and
direction, caused by a moving point charge (Fig. 2.24).

�B = μ

4�
· Q

r2
(�v × �er) (2.61)

where �er is the unity vector in direction �r .

Fig. 2.24. Biot–Savart’s law: a) for a moving charge; b) for a current-carrying conductor

In order to calculate the magnetic flux density caused by a very thin arbitrarily shaped
current-carrying conductor, each infinitesimal current-carrying conductor element dI · �l
is considered as a moving charge Q · �v (see also Sect. 2.3.2). In this case, each conductor
element creates an infinitesimal flux density d �B in the space under consideration. Biot–
Savart’s law states for the current-carrying conductor that:

d �B = μ

4�
· I

r2
·
(
d�l × �er

)
(2.62)

The magnetic flux density �B can be found by integrating according to the superposition

theorem, �B =
∫

d �B.

Example: Calculation of the magnetic field of an infinitely long current-carrying con-
ductor with a negligibly small diameter: Given that the field must be radially
symmetric around the conductor, the evaluation using Biot–Savart’s law can be
treated as a planar problem (Fig. 2.25). In this case, Biot–Savart’s law can be

Fig. 2.25. Field of a straight current-carrying conductor

simplified. Note that from vector algebra |�a × �b| = |�a| · |�b| · sin � �a, �b:

dB = μ

4�
· I

r2
· d l · sin α

with r = √x2 + R2, and sin α = R√
x2 + R2

, then
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B =
+∞∫
−∞

μ

4�
· I

x2 + R2︸ ︷︷ ︸
I/r2

· R√
x2 + R2︸ ︷︷ ︸
sin α

dx = μ · I · R
2�

·
+∞∫
0

(
x2 + R2

)−3/2
dx = μ · I

2�R

The magnetic flux density lies tangentially around the conductor and decreases
in proportion to the distance from the conductor.

Note: Biot–Savart’s law is also valid for the magnetic field strength �H . Since �B =
μ · �H , then:

�H = 1

4�
· Q

r2
(�v × �er) (2.63)

2.3.4 Magnetic Field Strength

The magnetic field strength �H is, after the magnetic flux density �B, the second field
quantity of the magnetic field. The magnetic flux density �B was defined in Sect. 2.3.2
in terms of the force on moving charges. It is dependent on the surrounding medium
through the permeability μ. The magnetic field strength �H is defined independently of the
surrounding medium:

F = (Q1v1) · μ · (Q2v2)

4�r2︸ ︷︷ ︸
B

= (Q1v1) · μ · (Q2v2)

4�r2︸ ︷︷ ︸
H

It follows that:

�H = 1

μ
· �B, or �B = μ · �H (2.64)

The SI unit of magnetic field strength �H is amperes per meter,
A

m
. For isotropic media:

• The cause of the magnetic field strength �H is the moving charge or the electric current I .

• Vectors �B and �H point in the same direction.

• The permeability μ is the proportionality constant between the magnetic flux density
�B and the magnetic field strength �H .

The permeability is formed by the permeability of free space μ0 and the relative perme-
ability μr:

μ = μ0 · μr (2.65)

The value of the permeability of free space is:

μ0 = 4� · 10−7 Vs

Am
= 1.257 · 10−6 Vs

Am
(2.66)

The relative permeability can have values less than one (diamagnetism), and also greater
than one (paramagnetism).

• The relative permeability of a vacuum is μr = 1. This is also the value for air and for
most gases.
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2.3.5 Magnetic Flux

The magnetic flux � is the surface integral of the magnetic flux density.

� =
∫
A

�B d �A (2.67)

The SI unit of magnetic flux is weber, 1 Wb = 1 Vs.

Fig. 2.26. Magnetic flux and magnetic flux density

Note: The magnetic flux density defines the magnetic flux per unit area.

Magnetic flux always forms a closed loop. The surface integral of themagnetic flux density
is always zero (Fig. 2.26).

∮
A

�B d �A = 0 (2.68)

This can also be written as:

∇ · �B = 0 (2.69)

• The magnetic flux density is a solenoidal field.

• Magnetic flux always forms a closed loop.

Flux Linkage

The flux linkage � is the flux encircled by a conductor winding that can consist of more
than one turn. Of particular interest is the special case where N windings of a conductor
are linked N times by the same flux. Then:

� = N ·� (2.70)

The unit of flux linkage is volt seconds, Vs. The flux linkage is the effective flux for the
application of Faraday’s laws. It is used specifically in the calculations for transformers
and electric machines.
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2.3.6 Magnetic Voltage and Ampere’s Law

The magnetic voltage V is the line integral of the magnetic field strength.

V12 =
2∫

1

�H d�s (2.71)

• The magnetic voltage between two points is equal to the line integral of the magnetic
field strength between the points. It is therefore not independent of the path over which
the integration occurs. Depending on how often the current I loops, the result can vary
by n · I , n = ±1, 2, . . . , i (Fig. 2.27).

The SI unit of the magnetic voltage is the ampere, A.

Fig. 2.27. Magnetic voltage V

Ampere’s Law

If the magnetic voltage is calculated over a closed loop, then the result for the magnetic
voltage is equal to the circulating current. Ampere’s law states:∮

�H d�s =
∑

I = � = MMF (2.72)

• The magnetic field strength �H is directly related to the current I .

• The circular integral of the magnetic field strength is equal to the circulated current. If
a current I is circulated n times, then the result of the circular integral is

∑
I = n · I

(Fig. 2.28a).

• If the current flows through a coil with N windings and if the line integral is calculated
for all of the windings, then the result of the circular integral is I ·N (Fig. 2.28b).

• The sum of the circulating currents is known as the magnetomotive force (MMF), or
also as ampere turns �.

If the current
∑

I is described by the current density and the electric flux density, then
Ampere’s law states: ∮

s

�H · d�s =
∫
A

(
�J + d �D

d t

)
d �A (2.73)
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Fig. 2.28. Application of Ampere’s law: a) circular integral enlosing the current I ; b) flux through a coil
with N windings

In this formAmpere’s law is Maxwell’s first equation. This is also written as:

∇ × �H = �J + d �D
d t

(2.74)

• The curl of the magnetic field is not zero.

Ampere’s law permits the calculation of the magnetic field strength in simple geometric
configurations, namely when the flux lines and their direction are known.

Example: Calculation of the magnetic field strength of an infinitely long, straight current-
carrying conductor with a circular cross section (Fig. 2.29): The current density
in the conductor is homogeneous. For symmetry reasons the magnetic field
strength lies tangentially (circularly) around the centre of the conductor. The
calculation can be carried out in two sections: a) inside, and b) outside the
conductor:

a)
∮
�H d�s =

∫
�J d �A, J = I

�r2
1

⇒ H · 2�r = I

�r2
1

�r2

⇒ H(r) = I

2�r2
1

· r , for r ≤ r1

b)
∮
�H d�s = I ⇒ H · 2�r = I

⇒ H(r) = I

2�r
, for r ≥ r1

Fig. 2.29. Magnetic field of a round conductor
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2.3.7 Magnetic Resistance, Magnetic Conductance, Inductance

The magnetic resistance Rm is defined as:

Rm = V

�
(2.75)

• It depends only on the geometric configuration and the permeability.

The unit of magnetic resistance is the inverse henry,
1

H
= A

Vs
. If the quantities V and �

are replaced by vector field quantities, then Rm may be calculated as:

Rm = V

�
=

∫
�H d�s∫
�B d �A

, with �eA‖ �es (2.76)

Equation (2.76) is valid for the casewhere the path element d�s lies perpendicular to the area
element d �A (�eA = �es). To evaluate this integral, the field must be known qualitatively, i.e.
the direction of the magnetic flux density and the magnetic field strength must be known.
For a homogeneousmagnetic material with a homogeneous field distribution, themagnetic
resistance for a length l and a cross-sectional area A is:

Rm = 1

μ
· l

A
= 1

μ0μr
· l

A
(2.77)

• The magnetic resistance is proportional to the magnetic path length and inversely pro-
portional to the cross section of the magnetic resistance.

The magnetic conductance Gm is the reciprocal of the magnetic resistance:

Gm = 1

Rm
(2.78)

The total magnetic resistance of a closed loop is (see also following section):

Rtotal = I ·N
�

(2.79)

The reciprocal of the resistance Rtotal is the magnetic conductance AL:

AL = �

I ·N (2.80)

The unit of AL is the henry, 1 H = 1
Vs

A
.

• The value of AL depends only on the geometric dimensions and the material character-
istics of the configuration (of the magnetic loop).

• For the saturation of ferromagnetic materials, the value of AL decreases with increasing
saturation (the magnetic resistance increases).
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Note: The value of AL is given in data books for cores for the construction of chokes
with its dependence on the air gap, mostly in nH. The bigger the air gap is, the
smaller is the value of AL. It should be mentioned here that most of the energy
in an inductance is stored in the air gap, i.e. the air gap is necessary in a choke
(see Sect. 2.3.16).

Inductance

The inductance L defines the relationship between current and voltage (see Sect. 1.1.7):

With Faraday’s law v = N · d�

d t
(see Sect. 2.3.13.2), the relationship between current and

voltage v = L · di

d t
and the value of AL = �

i ·N follows:

L = N2 · AL (2.81)

The unit of inductance is the henry, 1 H = 1
Vs

A
.

• The inductance L is the product of the value of AL and the square of the number of
windings.

• The inductance depends only on the geometric dimensions and the material character-
istics of the core as well as the number of windings.

The relationship between the inductanceL, the current I and themagnetic flux� is given by

the value ofAL:with AL = �

I ·N and L = N2·AL, it follows that L = N ·�
I

,

or:

L · I = N ·� (2.82)

Note: The value of inductance for ferromagnetic materials decreases with increasing
saturation.

2.3.8 Materials in a Magnetic Field

The permeability μ is determined by the permeability of free-space μ0 and the relative
permeability μr.

μ = μ0 · μr (2.83)

μ0 = 4� · 10−7 Vs

Am
= 1.257 · 10−6 Vs

Am
(2.84)

The relative permeability μr can have values less than one (diamagnetism) or greater
than one (paramagnetism).

• The relative permeability of a vacuum is μr = 1. This is also approximately the value
for air and for most gases.

• Paramagnetic materials concentrate the magnetic flux, while diamagnetic materials
spread the magnetic flux out.
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Materials with μr � 1, known as ferromagnetic materials, are of particular importance.
The characteristics of materials with very high μr are:

• They concentrate the present magnetic flux. This is used, for example, in shielding
(Fig. 2.30).

• Large inductance values can be realised with them.

• For an applied voltage at the winding (and the consequent magnetic flux), only a small
winding current is required (Fig. 2.31).

• For an applied current to the winding (and the consequent magnetic field strength), large
magnetic fluxes or high flux densities can be obtained (Fig. 2.31).

Fig. 2.30. Concentration of a magnetic field by materials with μr � 1, that is, ferromagnetics

Fig. 2.31. Effect of materials with μr � 1 for an applied current and voltage

2.3.8.1 Ferromagnetic Materials

Ferromagnetics: Ferromagnetics are of particular technical importance. Their relative
permeability depends on themagnetic field strength.Values typically used aremuch bigger
than one, amd usually lie between 1000 and 100 000. Weiss domains: Ferromagnetic
materials contain small crystalline magnetic dipoles, whose directions are statistically
distributed in the unmagnetised state. These are known asWeiss domains.With increasing
magnetic field strength the Weiss domains become orientated, i.e. the magnetic path is
shortened, and the magnetic flux density is high. With further increases in field strength
saturation occurs, when practically all Weiss domains are orientated. At this point the flux
density no longer increases in the same manner, but increases approximately with μ0.
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Hysteresis loop: The relationship between the magnetic flux density B and the electric
field strength H for ferromagnetics is represented by the hysteresis loop (Fig. 2.32).

Fig. 2.32. Hysteresis loop: a) hysteresis quantities; b) hysteresis loss

Magnetic saturation:

The saturation flux density BS is the flux density that is present after the orientation of all
theWeiss domains. Any further increase in the magnetic field strength only yields a minor
increase in the the flux density. The saturation flux density for iron usually lies in the range
between 1 and 2 Tesla, for ferrites between 0.3 and 0.4 Tesla. Remanent flux density:
The remanent flux density BR is the flux density, which remains after the magnetisation
up to the saturation flux density and the subsequent return to H = 0. In practice it occurs
when a closed ring of constant cross section is magnetised up to the saturation flux density
and then the coil current is switched off. If an air gap is inserted in the magnetic ring, then
the remaining flux density will be smaller (see Sect. 2.3.11). Coercivity: The coercive
magnetic field strength HC is the field strength required to bring the flux density back
to zero after being magnetised up to the saturation flux density. Hysteresis loss, iron
loss: Work must be done to magnetise ferromagnetic materials. The enclosed area of the
hysteresis loop is a measure of the work required. The enclosed area has the dimension

work per unit volume
dW

dV
. It is dissipated as heat during every full passage through the

hysteresis loop. The corresponding work for a given core volume is thus:

W = dW

dV
· V (2.85)

and the power loss at a frequency f :

P = dW

dV
· V · f (2.86)

The hysteresis losses can be found by calculation of the enclosed area of the hysteresis loop
(if they are not known from other sources, e.g. data sheets). At high-frequency magneti-
sation the hysteresis losses can lead to excessive overheating of the material. In this case
the magnetisation level must be decreased. The losses decreases quadratically with the
magnetisation level, i.e. by halving the maximum field strength, the losses are quartered
(Fig. 2.32b).

Note: The expression iron losses also includes the eddy current losses with the hys-
teresis losses.

Soft iron: Soft iron is the name given to a ferromagnetic material that has a narrow
hysteresis curve, i.e. a small enclosed area, and therefore with small hysteresis losses. Soft
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iron materials are used, for example, in transformers and electric machines. Hard iron:
Hard iron is the name given to a ferromagnetic material that has a large hysteresis curve.
They have a high remanence flux density and coercivity. They are suitable for permanent
magnets.

Demagnetisation: There are several ways to demagnetise a core:

• Surpass the Curie temperature. The Curie temperature is the temperature at which the
molecular thermal motion in the material is so great that the fixed orientation of the
Weiss domains cannot be maintained, and they return to a random orientation.

• Demagnetisation through high-frequency withdrawal of the magnetisation level. The
core magnetisation level is controlled at high frequency, while the level is slowly de-
creased. The magnetisation returns slowly to zero.

• By mechanical vibration: mechanical motion can destroy the orientation of the Weiss
domains. Strong blows remove the magnetisation. Modern hard magnetic materials are
occasionally very sensitive to mechanical forces.

2.3.9 Magnetic Fields at Boundaries

A magnetic field that passes a material boundary changes its direction depending on the
permeability of the materials (Fig. 2.33).

�Ht2 = �Ht1, and �Hn2 = μ1

μ2
· �Hn1 (2.87)

�Bn2 = �Bn1, and �Bt2 = μ2

μ1
· �Bt1 (2.88)

tan α2 = μ2

μ1
· tan α1 (2.89)

Fig. 2.33. Field quantities at boundaries

At the boundary:

• The tangential component of the magnetic field strength is constant.

• The normal component of the magnetic field strength is inversely proportional to the
permeability.

• The tangential component of the magnetic flux density is proportional to the permeabil-
ity.

• The normal component of the magnetic flux density is constant.
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2.3.10 The Magnetic Circuit

In analogy to the current circuits in electrical networks, the magnetic circuit is defined
for the magnetic field. The magnetic circuit can, as in electrical networks, be represented
by an equivalent circuit diagram. The magnetic voltage V is put in instead of the electric
voltage V , the magnetic flux � is put in instead of the electric current I and the magnetic
resistance Rm is put in instead of the ohmic resistance R (Fig. 2.34).

Fig. 2.34. Magnetic circuit

For the magnetic circuit with the air gap shown in Fig. 2.34 the following relations may
be written:

• The magnetic flux � forms closed loops.

• For a constant cross section A the magnetic flux density �B is equal in all places to:

B = �

A
. This is true both in the iron and also in the air gap: BFe = Bδ (field widening

in the air gap and field narrowing in the corners of the core are negligible).

• The magnetic field strength �H is bigger in the air gap than in the iron by a factor μr.

B = μ ·H ⇒ B = μ0μr ·HFe = μ0 ·Hδ ⇒ μr ·HFe = Hδ

(2.90)

• The magnetic voltage drop V is equal to the magnetic flux multiplied by the magnetic
resistance:

V = � · Rm (2.91)

• The magnetomotive force I ·N is equal to the sum of the magnetic voltage drops:

I ·N ≈ HFe · lFe +Hδ · δ (2.92)

• The magnitudes of the magnetic resistances Rm are:

RmFe ≈ 1

μ0μr
· lFe

A
, and Rmδ ≈ 1

μ0
· δ

A
(2.93)

• The magnitude of the value of AL is:

AL = μ0 · A(
lFe

μr
+ δ

) (2.94)
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• The magnitude of the inductance L of the circuit is:

L = N2 · AL = N2· μ0 · A(
lFe

μr
+ δ

) (2.95)

• The magnitude of the linked magnetic flux � is:

� = N ·� = L · I (2.96)

Note: The iron path length lFe is divided only byμr in the calculation of the inductance.
Considering that usual values for μr ≈ 1000–10 000, it can be seen that the
inductance mainly depends on the length of the air gap.

Fig. 2.35. a) Air gap outside the winding: large field broadening; b) air gap inside the winding: small field
broadening

Note: The field broadening in the air gap is not insignificant and in practical calcu-
lations should not be ignored. Field broadening causes a much smaller value
of inductance compared to a homogeneous field distribution. This is especially
true when the air gap lies outside the winding (Fig. 2.35a). For this reason, the
air gap lies inside the winding for practical cores (Fig. 2.35b). It is better in any
case to calculate with the measured value of AL from the manufacturer’s data
sheets and not to try to derive this from the core geometry.

Example: The following data are from the datasheet of a core:Value ofAL: AL = 250 nH,
minimum cross-sectional area: Amin = 280 mm2, maximum flux density:
Bmax = 0.3 T Question: What is the maximum inductance L that can be
achieved with this core for a current of I = 2 A, and how many windings
are required? With L = N2 · AL and L · I = N ·� then:

N2 · AL · I = N ·�
The magnitude of the maximum allowable flux is:

�max = Bmax · Amin

Thus the maximum number of windings can be calculated:

N = �max

AL · I =
Bmax · Amin

AL · I = 168

The magnitude of the maximum inductance is:

L = N2 · AL = 7 mH
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2.3.11 Magnetic Circuit with a Permanent Magnet

The purpose of amagnetic circuitwith a permanentmagnet is usually to produce amagnetic
field in an air gap, for example, in a permanently magnetised electric motor, an electric
measurement device or a loudspeaker. The configuration in Fig. 2.36 is used in the analysis
of such a magnetic circuit. A permanent magnet has the air gap as a load, and the magnetic
resistance of the iron is negligible. The application of Ampere’s law yields:∮

�H d�s = HM · lM +Hδ · δ = 0

It follows that:

HM = −Hδ · δ

lM
(2.97)

• The magnetomotive force is zero! Thus the magnetic voltage drops over the permanent
magnet and the air gap are equally large and opposite to one another.

Fig. 2.36. Magnetic circuit with a permanent magnet

The magnetic flux � forms a closed loop. The flux � in the permanent magnet is the same
as in the air gap. It follows that:

� = const. = BM · AM = Bδ · Aδ

and:

BM = Bδ · Aδ

AM
(2.98)

It further holds for the air gap that:

BL = μ0 ·Hδ (2.99)

From Eqs. (2.97)–(2.99) it follows that the load line BM (HM) of the air gap:

BM (HM) = Bδ · Aδ

AM
= Hδ · μ0

Aδ

AM
= −HM · μ0 · Aδ

AM
· lM

δ (2.100)
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BM = −HM · μ0 · Aδ

AM
· lM

δ
(2.101)

The connection of an active element (the permanent magnet) and a passive element (the
air gap) leads to an intersection of the load lines in the graphical solution. This intersection
is the operating point (H0, B0).

• The permanent magnet is loaded by the air gap. The higher the magnetic resistance of
the air gap, the smaller the air gap flux density.

• For small magnetic resistance of the air gap, the operating point moves on the hysteresis
loop of the magnetic material near the remanence flux density, and for large magnetic
resistance it moves near the coercivity.

The flux density and the magnetic field strength in the air gap can be calculated from the
operating point with Eqs. (2.97) and (2.98):

Bδ = B0 · AM

Aδ

and Hδ = −H0 · lM

δ
(2.102)

Note: The minus sign on H0 highlights the fact that in the magnet the magnetic flux
density and the magnetic field strength have opposite directions.

Designing a Permanent Magnet

Question:What size of a permanentmagnet is needed for certain air gap dimensionsAδ and
lδ and a defined air gap energyWδ?The permanentmagnet givesmaximumenergywhen the
product of B0 and H0 in the operating point is a maximum. (For the straight-line hysteresis
curve of a permanent magnet, this maximum lies at B0 = BR /2 and H0 = HC /2). With
the chosen operating point (B0, H0) the required volume VM of the magnet can be found:

Wδ = 1

2
· Hδ︸︷︷︸

B0·AM
Aδ

· Bδ︸︷︷︸
H0· lMδ

= 1

2
B0H0VM ⇒ VM = 2Wδ

B0H0

Equation (2.101) yields the ratio of the magnet’s cross-sectional area AM to the length lM:

AM

lM
= H0

B0
· μ0

Aδ

δ

It follows for the magnet measurements that:

AM = 1

B0
·
√
2Wδ · μ0

Aδ

δ
, and lM = 1

H0
·
√
2Wδ · δ

μ0 · Aδ (2.103)

Note: Besides maximising the air gap energy and minimising the volume of the mag-
net, there are further (if necessary, more important) reasons for the choice of
the operating point. For example, the question of the demagnetisation of a per-
manent magnet by the operating current (or also by a short-circuit current) in
permanently magnetised electric motors.
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2.3.12 Overview: Inductances of Different Geometric Configurations

Table 2.4. Overview of inductances

Parallel round conductors

L = μ

�
· l
(
ln

2a

r1
+ 1

4

)

Parallel rectangular conductors

L = 2μ

�
· l · ln

(
1+ b

b + h

)
, for

{
a � b

a � h

L = μ

�
· l · 2b

h+ b
, for

⎧⎨⎩a � b

a � h

b � h

Coaxial conductor

L = μ0

2�
· l · ln r2

r1

Without internal
conductor
and coating

Toroid

L = μ0R

(
ln

R

d/2
+ 1

4

)

Coil around toroidal core

L = N2 · μrμ0 · b

2�
ln

r2

r1

Solenoid

L ≈ N2 · μ0 · �R
2

l
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2.3.13 Induction

2.3.13.1 Induction in a Moving Electrical Conductor

The induction on a moving charge in a magnetic field, known as the magnetic induction,
can be explained as follows: an electrical conductor ismoved in amagnetic field (Fig. 2.37).
A force �FM, which in Fig. 2.37 points backwards, is exerted on the positive charge carriers
in the electrical conductor. A force that points forwards is exerted on the negative charges.
The positive and negative charge carriers are separated by the Lorentz force. At the same
time, a Coulomb force �FE builds up between the positive and negative charge carriers,
which works against the separation of the charge carriers. In the steady-state case, these
forces balance each other.

�FM = Q ·
(
�v × �B

)
= − �FE = −Q · �E

It follows that:

−
(
�v × �B

)
= �E (2.104)

• The electric field strength in a moving conductor is equal to the cross-product of the
velocity and the magnetic induction.

Fig. 2.37. Moving conductor in a magnetic field

The voltage vi is the line integral of the electrical field strength over the length l of the
moving conductor:

vi =
∫
l

�E d�l =
∫
l

−
(
�v × �B

)
d�l (2.105)

If the electrical conductor is straight and if the vectors �v, �B and �s are each perpendicular
to one another, the calculation is simplified:

vi = l · v · B (2.106)

If a resistance R is connected across the voltage vi, it can be seen that a charge equalisation
in the moving conductor is possible: a current I flows in direction shown in Fig. 2.37. The
conductor loop with the moving conductor becomes a generator.
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2.3.13.2 Faraday’s Law of Induction

Around a time-varying magnetic field there is an electric field.

• The line integral of the electric field strength along a closed loop is equal to the negative
change in the magnetic flux enclosed by the integration path (Fig. 2.38a).

Fig. 2.38. Faraday’s law of induction: a) ; b)

∮
s

�E d�s = − d�

d t
= − d

d t

∫
A

�B d �A (2.107)

This is also written as:

∇ × �E = − d �B
d t

(2.108)

If a conductor loop is placed around the time-varying magnetic flux �, then Faraday’s
law states that the terminal voltage Vi (Fig. 2.38b) is:

vi = − d�

d t
(2.109)

• The induced voltage at the terminals of a conductor loop is proportional to the time
variation in the magnetic flux, which cuts through the conductor loop.

• In Fig. 2.38b the induced voltage vi is in the direction shown, if the change in the
magnetic flux is negative, i.e. if the magnetic flux is decreasing. If the magnetic field is
increasing, then the sign of the induced voltage changes.

If a resistor terminates the conductor loop, then the current flows in the direction shown
in Fig. 2.38b. Lenz’s law: The current always flows in a direction such that its magnetic
field opposes the flux responsible for inducing the voltage.

Note: Lenz’s law is most useful in determining the direction of the induced voltage.
The current that flows when a conductive load is present creates a magnetic
field that opposes the original magnetic field. The direction of the current can
be determined therefore from the right-hand rule. If the direction of the current
is known, then the voltage on the load resistance and and the direction of vi are
also known.
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• If the conductor loop is shorted and if it is an ideal conductor (superconductor), then
the size of the current flowing in it is always large enough to cancel out any change in
the flux in the loop.

If the flux � links the conductor N times, then the magnitude of the induced voltage is
(Fig. 2.38b):

vi = −N · d�

d t
(2.110)

A conductor loop with N windings is known as a coil. The converse of the Faraday’s law
is also true. If a voltage is applied to an ideal conductor loop (with N windings), then the
flux change in it is:

N · d�

d t
= v(t) (2.111)

It can be seen that vi and v have opposite signs, since vi produces energy and v comsumes
energy. The flux � is the integral of the voltage over the time:

N ·�(t1) =
t1∫

0

v(t) d t +�(0) (2.112)

• The magnetic flux in a conductor loop (in a coil, in an inductance) depends only on the

integral of the applied voltage over time
∫

v d t .

Example: The application of the Faraday’s law to coupled coils that are linked by the same
flux: At time t0 the voltage V0 is applied to winding 1. At time t1 switch B is
closed, and at time t2 switch A is opened. Figure 2.39a shows the configuration
and Fig. 2.39b shows the related voltages, currents and magnetic flux. The
solution to the problem could equally be provided by the equivalent circuit in
Fig. 2.39c.

Calculation:

t0 < t < t1 t1 < t < t2 t > t2

v1 is given by V0 v1 is given by V0 � is continuous,

i2(t2) = −N2 ·�(t2)

L2

v1 = V0 v1 = V0 i2 = i2(t2) · e−
t

L2/R

i1 = 1

L1
·

t1∫
t0

v1 d t i1 = 1

L1
·

t2∫
t1

v1 d t + i1(t1) + V2

R

N2

N1
v2 = i2 · R

� = 1

N1

t1∫
t0

v1 d t � = 1

N1

t2∫
t1

v1 d t +�(t1) � = 1

N2

t∫
t2

v2 d t +�(t2)

v2 = −N2
d�

d t
= v1

N2

N1
v2 = −N2

d�

d t
= v1

N2

N1
i1 = 0

i2 = 0 i2 = V2

R
v1 = v2

N1

N2
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Fig. 2.39. Voltages, currents and magnetic flux for coupled coils

Calculation of the Induced Voltage

A change in the magnetic flux linking a conductor loop can come about in two ways: first
if the flux density is time-varying, and second if the enclosed area is changing:

vi = − d�

d t
= − d

d t

( �B · �A) = −( �B · � �A
�t
+ �A · � �B

�t

)
(2.113)

Induction caused by motion as in Fig. 2.37 is also covered by Eq. (2.113). The conductor
motion causes the enclosed area to decrease, so that:

− �B · d �A
d t
=
∫
l

(
d�s
d t
× �B

)
d�l

In this case Faraday’s law states:

vi = −
⎡⎣∫

l

(
�v × �B

)
d�l + �A · � �B

�t

⎤⎦ (2.114)

Example: A conductor loop with N = 200 windings is rotating with an angular speed
of ω = 314 s−1 (radians per second) in a homogeneous magnetic field with
a magnetic flux density of B = 50 mT. The conductor loop dimensions are
10× 10 cm (Fig. 2.40a). What voltage vi can be measured at its terminals?
a) Application of Eq. (2.113):

vi = −N ·
⎛⎜⎝ �B · � �A

�t
+ �A · � �B

�t︸ ︷︷ ︸
=0

⎞⎟⎠ = −N · B · d [A · cosωt]

d t

= −N · B · A · ω︸ ︷︷ ︸
31.4 V

· sinωt︸ ︷︷ ︸
50 Hz

= −31.4 V · sinωt
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b) Application of Eq. (2.114) (motion induction):

vi = −N ·
⎛⎜⎝∫

l

(
�v × �B

)
d�l + �A · � �B

�t︸ ︷︷ ︸
=0

⎞⎟⎠
= −N · ω · b

2︸ ︷︷ ︸
v

·B · sin (ωt) · 2 · l = −31.4 V · sinωt

The direction of the induced voltage in a moving conductor (Fig. 2.40) can be
best determined with Eq. (2.104): �v× �B = − �E. Since �v× �B is a vector product,
the direction of �E and therefore also vi can be determined by the corkscrew rule.

Fig. 2.40. a) Rotating conductor loop in a homogeneous magnetic field; b) change of flux in a coil

Example: A coil with N = 5 windings is linked by B̂ = 1.5 T, f = 50 Hz. Its cross-
sectional area is 200 mm2 (Fig. 2.40b). What is the peak value of the voltage
vi?

vi = −N ·
⎛⎜⎝ �B · � �A

�t︸ ︷︷ ︸
=0

+ �A · � �B
�t

⎞⎟⎠ = −N · A · d(B̂ · sinωt)

d t

= −N · B̂ · A · ω cosωt ⇒ V̂i = 0.47 V

2.3.13.3 Self-Induction

If a current I flows in a conductor loop, then this causes a magnetic flux �. If the current
is switched off, then the magnetic flux is simultaneously removed. The instant that the
current is switched off there is a large rate of change of flux. This flux change creates an
induced voltage at the terminals of the conductor. This process is known as self-induction.

• According to Lenz’s law, the induced voltage opposes the original voltage.

With vi = −N · d�

d t
, and L · I = N ·� then:

vi = −N · d�

d t
= −L · di

d t
(2.115)
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Voltage vi is given in Eq. (2.115). In the instant the current I is turned off,
di

d t
is negative.

The induced voltage in Fig. 2.41a lies across the inductance L.

Fig. 2.41.The induced voltage on an inductance: a) induced voltage polarity;b) switch protection in inductive
circuits

Note: Switching off an inductive current can cause large induced voltages. By exam-
ining the circuit shown in Fig. 2.41b, it can be seen that in the instant the current
is removed that practically all of the induced voltage falls across the switch.
This can cause arcing in the switch and can destroy it. The destruction of the
switch can also be explained by performing an energy analysis: the magnetic
field stores energy. This energy is forced out of the inductor when the switch
is opened. This energy is transformed into heat in the switch and thus can lead
to its destruction. A diode parallel to the inductance or an RC circuit across the
switch gives protection.

2.3.14 Mutual Induction

When a coil’s magnetic flux, or a part thereof, links another coil, this is referred to as
magnetic coupling. In Fig. 2.42 the portion �21 of the magnetic flux �1 links coil 2. The
coupling coefficient is defined to describe this condition: Coupling coefficient k1:

�21 = k1 ·�1 (2.116)

For coil 1 there is a corresponding definition:

�12 = k2 ·�2 (2.117)

The coupling coefficients can be determined from the geometry of the configuration with
the aid of the equivalent magnetic circuit:

�21

�1
= k1 = Rm3

Rm2 + Rm3
, and k2 = Rm3

Rm1 + Rm3

Alternatively, a determination based onmeasurement is also possible: an alternating voltage
V ′
1 is applied to N1, then the voltage V ′

2 is measured, or V ′′
2 is applied to N2 and V ′′

1

is measured. With V2 = N2 · d�21

d t
= N2 · k1 d�1

d t
, and V1 = N1 · d�1

d t
, k1 and the

corresponding k2 are given by:

k1 = V ′
2

V ′
1

· N1

N2
, and k2 = V ′′

1

V ′′
2

· N2

N1

• The coupling coefficients can have a maximum value of 1. For smaller coupling coeffi-
cients the expression ‘loose coupling’ is used.
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Fig. 2.42. Magnetically coupled coils: a) geometric configuration; b) equivalent circuit

Mutual Inductance

The mutual inductances M21 and M12 can be defined as:

M12 = N1 ·�12

I2
, and M21 = N2 ·�21

I1

For isotropic magnetic materials it is always true that:

M21 = M12 = M

With the coupling coefficients k1 and k2 and the individual inductances L1 and L2, the
mutual inductance M can be calculated:

M=√k1 · k2 · L1 · L2 = k ·√L1 · L2, with k = √k1 · k2 (2.118)

where k is the total coupling coefficient.

The mutual inductance is required to describe a magnetically coupled system by Kirch-
hoff’s laws. For two magnetically coupled resistor-terminated coils as given in Fig. 2.42:

v1 = +L1 · di1

d t
+ i1 · R1 −M · di2

d t
,

v2 = −L2 · di2

d t
− i2 · R2 +M · di1

d t

(2.119)

For sinusoidal operation in the complex domain:

v1 = +i1 · (jωL1 + R1)− i2 · jωM ,

v2 = −i2 · (jωL2 + R2)+ i1 · jωM

(2.120)
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2.3.15 Transformer Principle

The transformer is made out of magnetically coupled coils, whose coupling coefficient
k ≈ 1. In Fig. 2.43a a voltage V1 is applied to winding 1. The magnetic flux change in

winding 1 is thus
d�

d t
= V1

N1
. The flux � passes through the iron core and therefore also

links winding 2. The induced voltage in winding 2 is thus V2 = −N2 · d�

d t
.

Fig. 2.43. Principle of the transformer: a) flux linking and winding sense; b) circuit representation of the
winding sense

For correct orientation of the flux direction through winding 2, the voltage V2 for the
winding sense shown in Fig. 2.43a is given by:

V2 = V1 · N2

N1
(2.121)

• The voltage V2 only depends on the voltage V1 and the number of windings.

• The voltages on a transformer are proportional to the number of windings.

The circuit representation of the winding sense is shown in Fig. 2.43b). The winding sense
is given by the dots. For windings with the same sense with respect to the magnetic flux,
the dots are drawn on the same side of the terminals of the inductance. For windings with
an opposite sense, the dots are drawn on different sides of the terminals.

2.3.16 Energy in a Magnetic Field

Like the electrostatic field, the magnetic field stores energy. An inductance’s energy is
stored in its magnetic field. Its magnitude is:

W = 1

2
L · I 2 = 1

2
·N · I ·� (2.122)
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This can also be represented by the field quantities �B and �H :

W = 1

2

∮
s

�H d�s ·
∫
A

�B d �A = 1

2

∫
V

�H · �B dV, with �es‖ �eA (2.123)

The unity vector �es points in the same direction as the unity vector of the normal to the

area �eA, so that the integral
∫

ds dA yields the volume element dV . The magnitude of

the energy density of the magnetic field is:

dW

dV
= 1

2
· �H · �B (2.124)

2.3.16.1 Energy in a Magnetic Circuit with an Air Gap

The magnetic circuit with an air gap is shown in Fig. 2.44. Magnetic circuits, which store
energy, are known as choking coils or chokes. The magnitude of the energy stored by a
choke is:

W = 1

2
· L · I 2 (2.125)

Fig. 2.44. Magnetic circuit with an air gap

This energy is stored in the form of magnetic field energy, both in the iron and also in the
air gap.

W = WFe +Wδ = 1

2
BFe ·HFe · VFe + 1

2
Bδ ·Hδ · Vδ (2.126)

For the same cross-sectional area over the entire magnetic path Bδ = BFe, the magnetic
field strength in the air gap is higher than in the iron by a factor of μr. Recalling that the
relative permeability is usually in the region of μr =1000–10 000 then it can be said to
a good approximation that the magnetic energy is predominately concentrated in the air
gap. The iron path is required in order to concentrate the magnetic flux and thus to create
high magnetic field strength in the air gap. Large amounts of energy for small dimensions
can be achieved using this construction.

• The energy stored in chokes is predominately concentrated in the air gap.

• Actual chokes always have an air gap.
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Note: The air gap in actual chokes is not always realised in the form of a ‘real’ air gap.
In so-called powder cores a loosely glued union of iron powder is ‘distributed’
inside the core.

• A large air gap is required to store a lot of magnetic energy.

If Eq. (2.123) is evaluated, then:

W = 1

2

∮
s

�H d�s
︸ ︷︷ ︸

VFe+Vδ

·
∫
A

�B d �A
︸ ︷︷ ︸

�

= 1

2
· ( VFe︸︷︷︸

�·RmFe

+ VL︸︷︷︸
�·Rmδ

) ·�

It follows that:

• The magnetic energy is divided in proportion to the magnetic resistances.

2.3.17 Forces in a Magnetic Field

For all forces in a magnetic field:

• Forces in a magnetic field always point in the direction that flux lines would seek to
shorten their path (Fig. 2.45).

Fig. 2.45. Forces in a magnetic field

2.3.17.1 Force on a Current-Carrying Conductor

See also Sect. 2.3.2. The magnitude of the force on a straight current-carrying conductor
in a homogeneous magnetic field is:

�F = I ·
(�l × �B

)
(2.127)

The vector �l thus points thus in the direction of the current I (Fig. 2.46).
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Fig. 2.46. Force on a current-carrying conductor

2.3.17.2 Force at the Boundaries

Forces are present at the boundaries between magnetically linked materials of different
permeabilities. The calculation of the forces is most easily carried out by an energy balance
between the mechanical, the electrical and the field energy. The boundary is assumed to
have shifted infinitesimally, and the resulting change in potential energy is calculated. The
sum of the energy changes must be zero:

dWmech + dWfield + dWelectr = 0 (2.128)

In order to be able to evaluate the energy balance, the sign of these energy changes must be
known, i.e. which energy increases and which decreases. Consider the following thought
experiment: The magnetic circuit in the upper left of Fig. 2.45 is supplied by a constant
current, i.e. is connected to a constant current source I0. The yoke is drawn towards the
core. If the yoke is pulled away from the core, then mechanical energy is supplied. The
inductance will simultaneously decreases (the magnetic conductance decreases), i.e. the

field energy stored
1

2
LI 2 decreases. Both energies, the mechanical and the change in the

field energy, are absorbed by the current source. The energy balance above states therefore

with N ·� =
∫

V d t , and L · I = N ·�:

F · ds︸ ︷︷ ︸
dWmech

+ d

(
1

2
LI 2

0

)
︸ ︷︷ ︸

dWfield

= d(I0 · V · t︸︷︷︸
N ·�

)︸ ︷︷ ︸
dWelectr

= d(I0 ·N ·�︸ ︷︷ ︸
L·I0

) = d
(
L · I 2

0

)

It follows that:

F = 1

2
I 2 · dL

ds
(2.129)

• The force on the boundaries in a magnetic configuration is proportional to the change
in the inductance relative to the shift in the boundaries.

• The force on a boundary points in the direction that increases the inductance.
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2.3.18 Overview: Characteristics of a Magnetic Field

• Themagnetic flux density �B and themagnetic field strength �H point in the samedirection
in isotropic materials.

�B = μ · �H (2.130)

• The magnetic flux always forms a closed loop.

• At boundaries of different permeability μ, the normal component of the flux density is
constant and the normal component of themagnetic field strength is variable (it increases
if μ is smaller).

• Themagnetic field is a solenoidal field. The surface integral of themagnetic flux density
over a closed surface area is always zero:∮

A

�B d �A = 0, or ∇ · �B = 0 (2.131)

• The magnetic flux is directly related to the integral of the applied voltage over time:

N ·� =
t1∫

0

v d t +�(0) (2.132)

• Themagnetic field strength is directly related to the electric current.Ampere’s law yields
the relationship: ∮

�H d�s = i ·N (2.133)

• The complete form of Ampere’s law is Maxwell’s first equation and states:

∮
s

�H d�s =
∫
A

(
�J + d �D

d t

)
d �A, or ∇ × �H = �J + d �D

d t (2.134)

• A time-varying magnetic flux induces a voltage in a conductor linked by the flux. If the
conductor loop is linked N times by the flux, then the induced voltage is N times higher.

vi = −N · d�

d t
(2.135)

• The relationship between the electrical quantity I and the flux � is :

L · I = N ·� (2.136)

• The magnetic field stores energy:

W =
∫
V

�B · �H dV (2.137)
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2.3.19 Relationship between the Magnetic Field Quantities

Formulae of a magnetic circuit:

Φ ⇐ � =
∫
A

�B d �A ⇒ �B

⇑ ⇑
I ·N = Rm ·� �B = μ · �H

⇓ ⇓
I ·N ⇐ I ·N =

∮
s

�H d�s ⇒ �H

Faraday’s law:

vi(t) = −N · d�

d t
, or �(t1) = 1

N

t1∫
0

v(t) d t +�(0) (2.138)

2.4 Maxwell’s Equations

The numerous physical phenomena described in the sections on electrostatic fields, static
steady-state current flow and magnetic fields, can be expressed together in four equations,
Maxwell’s equations. Maxwell’s first equation (Ampere’s law):∮

s

�H d�s =
∫
A

(
�J + d �D

d t

)
d �A, or ∇ × �H = �J + d �D

d t
(2.139)

The electric current creates the magnetic field strength. Maxwell’s first equation states
that the circular integral of the magnetic field strength is equal to the enclosed current
(Fig. 2.47). This is independent of whether the current is due to charge carriers or due to
a time-varying alternating electric displacement.

Fig. 2.47. Maxwell’s first equation

Maxwell’s second equation (Faraday’s law):∮
s

�E d�s = − d

d t

∫
A

�B d �A, or ∇ × �E = − d �B
d t

(2.140)
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Fig. 2.48. Maxwell’s second equation

A time-varying magnetic flux density creates an electric field strength. Maxwell’s second
equation states that the circular integral of the electric field strength is equal to the negative
change in the enclosed magnetic flux (Fig. 2.48). Maxwell’s third equation :∮

A

�B d �A = 0, or ∇ · �B = 0 (2.141)

The magnetic flux density is a solenoidal field. Maxwell’s third equation states that the sur-
face integral of the magnetic flux density over an enclosed area is always zero. Maxwell’s
fourth equation (Gauss’s Law):∮

A

�D d �A =
∫
V

 dV, or ∇ · �D =  (2.142)

where : volume charge density. The electric displacement is a charge field. Maxwell’s
fourth equation states that the integral of the electric displacement over a closed surface is
equal to the enclosed charge.

2.5 Notation Index

a acceleration (m/s2)
A area (m2)
AL magnetic conductance of the total magnetic circuit

(H = Vs/A), normally given in (nH)
A⊥ area element of an equipotential surface (m2)
�A area vector perpendicular to the area (m2)
�B magnetic flux density (T =Vs/m2)
BR remanence density (T =Vs/m2)
C capacitance (F =As/V)
�D electric displacement (As/m2)
d separation, distance (m)
e elemental charge, e = ±1.602 · 10−19 As
�e unity vector (index shows the respective quantities, e.g. �er = �r/|�r|
�E electric field strength (V/m)
f frequency (Hz)
F force (N)
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G conductance (S =A/V)
Gm magnetic conductance (H =Vs/A)
�H magnetic field strength (A/m)

HC coercivity strength (A/m)
i time-varying current (A)
I DC current (A)
�J current density (A/m2)
k coupling coefficient
l length (m)
L inductance (H =Vs/A)
m mass (kg)
M mutual inductance (H =Vs/A)
M momentum (Nm)
M subscript: magnet
N number of windings
N magnetic north pole
P power (W =VA)
Q charge (C =As)
r, R radius, distance for polar coordinates (m)
R resistance (� =V/A)
Rm magnetic resistance (1/H =A/Vs)
s path (m)
S magnetic south pole
t time (s)
T period (s)
v time varying voltage (V)
V voltage (V)
Vi induced voltage (V)
v velocity (m/s)
V volume (m3)
V magnetic voltage (A)
W energy (Ws =VAs)
δ air gap length (m)
δ subscript: air gap
ε dielectric constant (As/Vm)
ε0 free-space permittivity, absolute dielectric constant, 8.85 · 10−12 As/Vm
εr relative permittivity, relative dielectric constant
ϑ temperature (K, ◦C)
η charge carrier concentration (As/m3)
σ specific conductance, conductivity (S/m)
λ line charge density (As/m)
μ permeability (Vs/Am)
μ0 permeability of free space, 1.257 · 10−6 Vs/Am
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μr relative permeability
 volume charge density (As/m3)
 specific resistance, resistivity (�m), (�mm2/m)
σ surface charge (As/m2)
ϕ potential (V)
� magnetic flux (Wb =Vs)
� linked magnetic flux (Vs)
ω angular speed or frequency (s−1)
� magnetomotive force, MMF

2.6 Further Reading

Duffin, W. J.: Electricity and Magnetism, 4th Edition
McGraw-Hill (1990)

Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)

Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications, 5th Edition
Prentice Hall (2000)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1998)

Giancoli, D. C.: Physics for Scientists and Engineers, Volume 1, 3rd Edition
Prentice Hall (2000)

Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)

Muncaster, R.: A-Level Physics
Stanley Thornes Ltd. (1997)

Nelkon, M.; Parker, P.: Advanced Level Physics
Heinemann (1995)

Rao, N.N.: Elements of Engineering Electromagnetics, 5th Edition
Prentice Hall (1999)

Someda, C.G.: Elecromagnetic Waves, 1st Edition
Chapman-Hall (1997)



3 AC Systems

AC quantities are described by trigonometric functions, complex numbers and complex
functions. For clarity in graphical representation phasors are used. The mathematical basis
and relations are explained in the following section.

3.1 Mathematical Basics of AC

3.1.1 Sine and Cosine Functions

A sine function is given by
v = v̂ sin ϕ

where v̂ is the peak magnitude or amplitude. The phase ϕ often varies with time

v(t) = v̂ sin(ωt + ϕ0)

here v(t) is called the instantaneous value or transient or actual value of the function.
ω is the angular frequency and ϕ0 the phase shift. The sine function is periodic with a
period of 2� (Fig. 3.1).

Fig. 3.1. Period and phase shift of the sine function; sine and cosine functions

The interval of time between two identical values of the function is called the period T .
The frequency f of the sine function is the inverse of the period.

T = 2�

ω
f = 1

T
ω = 2�f (3.1)

The cosine is a similar function
v = v̂ cosϕ

Both functions are related thus

sin ϕ = cos(�/2− ϕ) (3.2)

cosϕ = sin(�/2+ ϕ) (3.3)

Sine and cosine functions together with the exponential functionwith imaginary exponents
are known as harmonic functions.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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3.1.1.1 Addition of Sinusoidal Waveforms

• The sum (difference) of two sinusoidal waveforms of the same frequency results in a
sinusoidal waveform of the same frequency (Fig. 3.2).

The addition of cosine functions

v1(t) = v̂1 · cos(ωt + ϕ1), v2(t) = v̂2 · cos(ωt + ϕ2)

results in the sum signal vs = v1 + v2

vs(t) = v̂s · cos(ωt + ϕs)

with the parameters

v̂s =
√

v̂2
1 + v̂2

2 + 2v̂1v̂2 cos(ϕ1 − ϕ2) , tan ϕs = v̂1 sin ϕ1 + v̂2 sin ϕ2

v̂1 cosϕ1 + v̂2 cosϕ2 (3.4)

The addition of sine functions

v1 = v̂1 sin(ωt + ϕ1) , v2 = v̂2 sin(ωt + ϕ2)

results in the sum signal vs = v1 + v2

vs = v̂s sin(ωt + ϕs), (3.5)

with the parameters v̂s and ϕs as in Eq. (3.4).

Fig. 3.2. The addition of sinusoidal waveforms results in a sinusoidal waveform

Example: Calculation of the sum of the sinusoidal functions v1(t) = sin(ωt) and v2(t) =
sin
(
ωt + �

2

)
.

According to Eq. (3.4) the amplitude of the sine waveform is

vs =
√
1+ 1+ 2 · cos(0− �/2) = √2 ≈ 1.41

For the phase shift of the sum signal

tan ϕs = v̂2

v̂1
= 1 ⇒ ϕs = �

4
(or 45◦)

The sum signal is therefore

vs(t) =
√
2 · sin

(
ωt + �

4

)
These parameters are shown in Fig. 3.2.
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Note: The calculation becomes considerably easier when the time functions are rep-
resented as phasors. This method is explained in Sect. 3.1.7.

Note: In general, the sum of harmonic functions of different frequencies is not a
harmonic function. It cannot be represented by stationary phasors.

3.1.2 Complex Numbers

The real numbers R are extended to the complex numbers C by joining with the imaginary
numbers. Imaginary unit

j = √−1, j2 = −1

Note: In mathematical literature the imaginary unit is named i. However, in electrical
engineering the letter j is commonly used to avoid confusion with the symbol
for current.

Powers of j

j1 = j j−1 = 1

j
= −j

j2 = −1 j−2 = 1

j2
= −1

j3 = −j j−3 = 1

j3
= j

j4 = 1 j−4 = 1

j4
= 1

j5 = j j−5 = 1

j5
= −j

Imaginary Numbers

An imaginary number is the product of a real number with the imaginary unit. Examples:
5j, 2�j, jb.

• The product of two imaginary numbers is real (since j · j = −1).

Complex numbers can be represented as the sum of a real number x and an imaginary
number jy.

z = x + jy

Notation: To emphasise that the number z is complex, it is represented in this chapter
with an underscore (z).

x is known as the real part of the complex number z: x = Re(z),
y is known as the imaginary part of the complex number z: y = Im(z).

• The imaginary part is a real number.
• Two complex numbers are equal if both their real parts as well as their imaginary parts

are equal.
• Every real number is also complex (with an imaginary part of zero).

For the number z = x + jy the number z∗ = x − jy is called the complex conjugate.

(z∗)∗ = z

For a real number w ∈ R, it follows that w∗ = w.
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The product of a complex number with its conjugate is called the absolute value squared.

z · z∗ = |z|2

It is z · z∗ = x2 + y2 = (Re(z))2 + (Im(z))2

√
z · z∗ = √

x2 + y2 = √|z|2 = |z| is called the absolute value or magnitude of the
complex number z.

• The absolute value is a non-negative real number (positive or zero).

3.1.2.1 Complex Arithmetic

The addition and subtraction of complex numbers is done by adding or subtracting the
relevant components.

If z1 = x1 + jy1, z2 = x2 + jy2

z1 + z2 = (x1 + x2)+ j · (y1 + y2)

z1 − z2 = (x1 − x2)+ j · (y1 − y2)

The multiplication is done like the multiplication of two binomial expressions given that
j · j = −1.

z1 · z2 = (x1 + jy1) · (x2 + jy2) = (x1x2 − y1y2)+ j · (x1y2 + x2 · y1)

The division is done as follows

z1

z2
= x1x2 + y1y2

x2
2 + y2

2

+ j · x2y1 − x1y2

x2
2 + y2

2

Division by a complex number can be transformed into a division by a real number. This
can be done by multiplying the numerator and denominator with the complex conjugate
of the denominator.

z1

z2
= z1

z2
· z∗2
z∗2
= z1z

∗
2

|z2|2
The basic rules for the addition and multiplication of real numbers are also valid for
complex numbers:

z+ 0 = z

z · 1 = z

z · 0 = 0
z1 + z2 = z2 + z1 Commutative laws
z1 · z2 = z2 · z1

z1 + z2 + z3 = (z1 + z2)+ z3 = z1 + (z2 + z3) Associative laws
z1 · z2 · z3 = (z1 · z2) · z3 = z1 · (z2 · z3)

z1 · (z2 + z3) = z1 · z2 + z1 · z3 Distributive law

Division by zero is also not defined for complex numbers.
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3.1.2.2 Representation of Complex Numbers

Cartesian Form

The real and the imaginary parts of the complex number z are interpreted as coordinates of
a point in a plane. This plane is called the complex plane or Argand diagram (Fig. 3.3).
The coordinates z = (x, y) define a phasor.

• In this representation complex conjugate numbers are positioned symmetrically relative
to the real axis.

Fig. 3.3. Complex plane and complex conjugate numbers

Trigonometric or Polar Form

In polar form a complex number is represented by the length r of its phasor and the angle
ϕ between the phasor and the real axis.

Polar coordinate system: (x, y) → (r, ϕ)

The absolute value or magnitude of the complex number r = |z|; the phase, angle or
argument is ϕ.

Fig. 3.4. Trigonometric representation of a complex number

• ϕ is ambiguous. Every rotation of 2� (360◦) leads to the same point. The principal
value of the argument is the angle measured anticlockwise between the phasor and the
positive real axis (Fig. 3.4).

Trigonometric Form

x = r · cosϕ, y = r · sin ϕ

z = r(cosϕ + j · sin ϕ)

= |z|(cosϕ + j · sin ϕ)

Re(z) = |z| · cosϕ, Im(z) = |z| · sin ϕ
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Because of the symmetrical position of the complex conjugate numbers, they differ only
in the sign of the argument (Fig. 3.3).

z∗ = |z| · (cosϕ − j · sin ϕ) = |z| · (cos(−ϕ)+ j · sin(−ϕ))

The absolute values of both numbers are equal

|z| = |z∗|

Exponential Form

The Euler formula
ejϕ = cosϕ + j sin ϕ

leads to a compact representation of complex numbers

z = r · ejϕ = |z| · ejϕ

The absolute value or magnitude of the complex number r = |z|; The phase, angle or
argument is ϕ.

• r is a real number.

• ejϕ is a complex number with an absolute value of one.

|z| = |z · ejϕ| = |z| · |ejϕ| = r · |ejϕ| = r · 1 = r

A complex exponential function with an imaginary exponent is periodic with a period of
2�. The values are located on a unity circle in the complex plane.

Fig. 3.5. Function values of the exponential function with imaginary exponent

Reading the values from Fig. 3.5 leads to:

ej·0 = ej·0
◦ = 1, ej� = ej·180

◦ = −1, ej
�
2 = ej·90

◦ = j, ej
3�
2 = ej·270

◦ = −j

Note: In some literature the versor representation is also used.

|z| · ejϕ = |z| · /ϕ

This reads as: z magnitude versor ϕ. Therefore: 5 � · ej �2 is written as 5 �/
�

2
or 5 �/90◦.
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3.1.2.3 Changing Between Different Representations of Complex Numbers

Changing from (x, y) to (r, ϕ)

r =
√

x2 + y2, ϕ = arctan
(y

x

)
for x �= 0

Note: On calculators the arctan function is labelled tan−1.

Table 3.1. Special Cases, conversion from (x, y) to (r, ϕ)

Real part x Imaginary part y Argument ϕ z

x = 0 y = 0 undefined z = 0

x = 0 y > 0 ϕ = �

2
z positive imaginary

x = 0 y < 0 ϕ = 3�

2
z negative imaginary

x > 0 y = 0 ϕ = 0 z positive real
x < 0 y = 0 ϕ = � z negative real

Changing from (r, ϕ) to (x, y)

x = r · cosϕ, y = r · sin ϕ

Note: Scientific calculators often provide a function to change coordinates from the
polar notation to the Cartesian notation and vice versa.

3.1.3 Complex Calculus

3.1.3.1 Complex Addition and Subtraction

Complex numbers are added by summing their real components and their imaginary com-
ponents, respectively. Therefore the addition of complex phasors can be performed as an
addition of vectors (Fig. 3.6). The subtraction can be done geometrically by the addition
of an inverted orientation of the phasor.

Fig. 3.6. Geometrical addition and subtraction of complex numbers

Note: There is a limitation for the analogy between vectors and phasors. The product
of two complex numbers is neither similar to the scalar product nor the vector
product of two vectors. The absolute value squared is, however, similar to the
scalar product of a vector with itself.

In order to solve problems in electrical engineering, it is often necessary to determine the
absolute values of sums of complex variables (Fig. 3.7). The cosine formula yields

|z1 + z2| =
√

z21 + z22 + 2 cos(ϕ1 − ϕ2)
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Fig. 3.7. Absolute value of the sum of two complex numbers

3.1.3.2 Multiplication of Complex Numbers

The multiplication of a complex number with a (positive) real number α increases its
magnitude by the factor α. The orientation of the phasor is not affected. If α < 1 the
magnitude of the phasor is decreased, and if α < 0 the orientation of the phasor is inverted.
Multiplication of two complex numbers in trigonometric and exponential representation
is given by

z = z1 · z2 = |z1| |z2|ej(ϕ1+ϕ2)

• The absolute value of the product of two complex numbers is identical to the product
of their absolute values. The argument of the product is the sum of their arguments.

r = r1 · r2, ϕ = ϕ1 + ϕ2

The multiplication of a complex number with an absolute value of one |z| = 1 is a special
case. Any complex number with an absolute value of 1 can be represented as

z = ejϕ

For the multiplication of this number with a complex number z1 it follows that

z1 · z = |z1| · |z|︸︷︷︸
=1

·ej(ϕ1+ϕ) = |z1|ej(ϕ1+ϕ)

The absolute value of the product remains unchanged, only the argument is changed. The
phasor is rotated by an angle ϕ. If the argument of the number eϕ is a function of time,
especially a linear function, then the representation is

z1 = ejωt

The parameter ω is called the angular frequency. The product of a complex number z

and a phasor ejωt is equivalent to a rotation of the complex phasor z with the angular
frequency ω, and |z|ejωt is a rotating phasor.

α · z = αx + jαy Cartesian form

= α|z| · (cosϕ + j sin ϕ) trigonometric form

= α · |z| · ejϕ exponential form
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3.1.4 Overview: Complex Number Arithmetic

Table 3.2. Overview of complex number arithmetic

z1, z2 �= 0 Cartesian

z z = x + jy

Re(z) x

Im(z) y

z∗ z = x − jy

z1 + z2 (x1 + x2)+ j(y1 + y2)

z1 − z2 (x1 − x2)+ j(y1 − y2)

|z1 + z2|
√

(x1 + x2)2 + (y1 + y2)2

z1 · z2 (x1x2 − y1y2)+ j(x1y2 + x2y1)

z1

z2

z1z
∗
2

|z2|2
1/z

z∗

|z|2
zn Change to exponential repres.
n
√

z Change to exponential repres.

z1, z2 �= 0 Trigonometric Exponential

z z = |z| · (cosϕ + j sin ϕ) z = |z| · ejϕ
Re(z) |z| · cosϕ |z| · cosϕ

Im(z) |z| · sin ϕ |z| · sin ϕ

z∗ z = |z| · (cosϕ − j sin ϕ) z = |z| · e−jϕ

z1 + z2 Change to Cartesian representation

z1 − z2 Change to Cartesian representation

|z1 + z2|
√

r2
1 + r2

2 + 2r1r2 cos(ϕ1 − ϕ2)

z1 · z2 |z1||z2|
[
cos(ϕ1 + ϕ2)+ j sin(ϕ1 + ϕ2)

] |z1||z2|ej(ϕ1+ϕ2)

z1

z2

|z1|
|z2|

[
cos(ϕ1 − ϕ2)+ j sin(ϕ1 − ϕ2)

] |z1|
|z2|e

j(ϕ1−ϕ2)

1/z
1

|z|(cosϕ − j sin ϕ)
1

|z|e
−jϕ

zn |z|n(cos nϕ + j sin nϕ) |z|nejnϕ

n
√

z n
√|z|

[
cos
(ϕ

n

)
+ sin

(ϕ

n

)]
n
√|z|ej

ϕ

n

3.1.5 The Complex Exponential Function

For real numbers the exponential function can be defined by a power series

ex =
∞∑

n=0

xn

n!
= 1+ x

1!
+ x2

2!
+ x3

3!
+ . . .
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This power series converges for any real number and therefore defines a function f : R →
R. This can be extended to complex numbers. The power series converges for any complex
number. In general, the function value will be complex, which means f : C → C.

Note: For the exponential function ez the representation as exp(z) can also be found.
The latter is preferred when the exponent is a lengthy term.

3.1.5.1 Exponential Function with Imaginary Exponents

The exponential function with purely imaginary exponents has a special significance.
Because of the relation

ejωt = cosωt + j sinωt

the real and the imaginary parts of the function value are defined. The function is periodic
with a period of 2�. The following holds for the derivatives

d

d t
ejωt = jω · ejωt,

d2

d t2
ejωt = −ω2 · ejωt

Because of the second equation the exponential function with imaginary exponents is a
harmonic function like the sine and the cosine functions. It follows for the integrals that∫

ejωt d t = 1

jω
· ejωt,

∫ (∫
ejωt d t

)
d t = −1

ω2
· ejωt

The multiplication of a phasor z with the term ejϕ results in a rotation of the phasor by
an angle of ϕ (Fig. 3.8).

Fig. 3.8. Rotation of a phasor as a result of a multiplication with ejϕ

3.1.5.2 Exponential Function with Complex Exponents

The exponential function with complex exponents s = σ + jω can be separated into a real
exponent and an imaginary exponent.

es = eσ+jω = eσ · ejω

The term ejω is a harmonic function, and the term eσ can be regarded as an amplitude
factor. This becomes clear when examining the function est

f (t) = est = eσ t · ejωt

For σ = 0 the term eσ t = 1.The function is thus a harmonic function of time. For σ < 0 the
term eσ t leads to a damped oscillation. For σ > 0 an exponentially increasing oscillation
is the result (Fig. 3.9).
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Fig. 3.9. Real part of the function eσ t · ejωt for σ = 0, σ < 0 and σ > 0

3.1.6 Trigonometric Functions with Complex Arguments

Sine and cosine functions can be extended to complex arguments like the exponential
function. Their relationships to the exponential function are as follows

cos z = 1

2

(
ejz + e−jz

)
(3.6)

sin z = 1

2j

(
ejz − e−jz

)
(3.7)

Adding Eq. (3.6) to Eq. (3.7) multiplied by j leads to the Euler formula

ejz = cos z+ j sin z

Furthermore
cos2 z+ sin2 z = 1

as for real numbers.

Note: Addition theorems are found in Appendix A. Calculations with trigonometric
functions are often simplified by using the transformations given in Eqs. (3.6)
and (3.7). This eliminates the necessity to use the addition theorems. This par-
ticularly simplifies the calculation of integrals as only products of exponential
functions will occur.

3.1.7 From Sinusoidal Waveforms to Phasors

The trigonometric and the exponential representations of complex numbers lead to a geo-
metric analogy, which can be used to explain many aspects in science.

3.1.7.1 Complex Magnitude

A real harmonic function v(t) = v̂ · cos(ωt + ϕ) can be written as the real component of
a complex function.

v(t) = v̂ · Re{ej(ωt+ϕ)} = Re{̂v · ej(ωt+ϕ)︸ ︷︷ ︸
complex function of time

}

Formally, the latter term in brackets is regarded as a complex function of time, denoted
in this chapter as v.

v(t) = v̂ · ej(ωt+ϕ) = v̂ · ejϕ︸ ︷︷ ︸
complex amplitude

· ejωt = v̂ · ejωt
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The complex amplitude v̂ is a product of the amplitude v̂ and the phase factor ejϕ.

• The absolute value of a complex amplitude equals the real amplitude |v̂| = v̂.

The complex RMS value V maybedefined in analogy to the rootmean square (RMS)value
V of sinusoidal waveforms. The amplitude and the complex RMS value of a sinusoidal
waveform are represented as phasors in the complex plane.

Note: Similarly it is possible to look at a time function as the imaginary part of an
exponential oscillation. Both models have equal qualities, but they must not be
used simultaneously.

Time function as real part
Sinusoidal �→ Phasor

v̂ cos(ωt + ϕ) �→ v̂ · ejϕ
v̂ sin(ωt + ϕ) �→ v̂ · ej(ϕ−�/2)

Phasor �→ Sinusoidal
v̂ · ejϕ �→ v̂ cos(ωt + ϕ)

Time function as imaginary part
Sinusoidal �→ Phasor

v̂ sin(ωt + ϕ) �→ v̂ · ejϕ
v̂ cos(ωt + ϕ) �→ v̂ · ej(ϕ+�/2)

Phasor �→ Sinusoidal
v̂ · ejϕ �→ v̂ sin(ωt + ϕ)

The amplitude v̂ can be replaced by the RMS value V .

Time invariant complex phasors are called operators (e.g. complex impedance).

Table 3.3. Functions and their complex counterparts
Symbol Example Notation
v(t) = v̂ · cos(ωt + ϕ) Time-varying voltage
v̂ = Amplitude

v(t) = v̂ · ej(ωt+ϕ) Complex time-varying voltage
v̂ = v̂ · ejϕ Complex amplitude

V = v̂√
2

RMS value

V = v̂√
2

Complex RMS value

3.1.7.2 Relationship Between Sinusoidal Waveforms and Phasors

The sine function can be regarded as the vertical projection of the rotating phasor.

In the phasor diagram the phasor rotates with a constant angular frequency ω in a math-
ematically positive sense, i.e. anticlockwise. The vertical magnitudes of the phasors are
drawn onto the time axis (Fig. 3.10). A phasor is described by four characteristic values:

• The physical quantity represented by the phasor. Often these are the voltage v or the
current i, but it can also be the flux � and other quantities. The symbol is written next
to the phasor.

• The absolute value of the phasor is represented by the length of the phasor, where either
amplitude or RMS are chosen.

• The phase shift ϕ0 is represented by the orientation of the phasor with respect to the
zero line (which is usually horizontal).
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Fig. 3.10. Phasor diagram and time diagram of the sine function

• The angular frequency of the phasor is equal to the angular frequency of the represented
quantity. In most cases it will be clearly defined by the problem and is not explicitly
noted.

When the angular speed of all concerned phasors is the same (which means that the
frequencies of the sine waves are equal) then only the relative phases of the phasors need
to be considered. This leads to the representation with stationary (i.e. nonrotating) phasors.

Note: The cosine function can be similarly regarded as the horizontal projection of
the phasor.

3.1.7.3 Addition and Subtraction of Phasors

• The sum (difference) of sinusoidal waveforms of the same frequency results in a sinu-
soidal waveform of the same frequency.

Sums and differences of sinusoidal waveforms can be obtained from the phasor diagram
(Fig. 3.11).

Fig. 3.11. Sum and difference of sinusoidal waveforms in the phasor diagram

The sum of the cosine voltages

v1 = v̂1 cos(ωt + ϕ1), v2 = v̂2 cos(ωt + ϕ2)

results in the sum signal vs = v1 + v2

vs = v̂s cos(ωt + ϕs) (3.8)

For the calculation the phasor representation is used.

v1 �→ v1 = v̂1 · ej(ω+ϕ1) �→ v̂1 · ejϕ1, v2 �→ v2 = v̂2 · ej(ω+ϕ2) �→ v̂2 · ejϕ2
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The addition is done using complex notation vs = v1 + v2. The amplitude of the sum
signal vs(t) is obtained from the complex sum amplitude.

v̂s = |v1 + v2| =
√
Re2{vs} + Im2{vs}, tan ϕs = Im{v1 + v2}

Re{v1 + v2}
This leads to the following:

v̂s =
√

v̂2
1 + v̂2

2 + 2v̂1v̂2 cos(ϕ1 − ϕ2), tan ϕs = v̂1 sin ϕ1 + v̂2 sin ϕ2

v̂1 cosϕ1 + v̂2 cosϕ2 (3.9)

Note: In general, the sum of harmonic functions of different frequencies is not a
harmonic function. It cannot be represented by stationary phasors.

3.2 Sinusoidal Waveforms

When considering voltages and currents the following distinctions are made (Fig. 3.12):

Constant quantity: a quantity that is constant over time, v(t) = const.

Example: DC current, DC voltage, magnetic flux of a permanent magnet.

Pulsating quantity: a quantity with changing instantaneous value, but with a constant sign.

Example: Chopped DC voltage, ‘humming’ DC voltage.

Alternating quantity: a time-varying quantity with an average mean (over a longer period)
of zero.

Example: Telephone signals, AC from 230 V mains.

Mixed quantity: a waveform with an alternating instantaneous value and magnitude. The
RMS is not necessarily zero. It is also known as a general alternating quantity.

Periodic quantity: a waveform with a repeating progression after an interval of T .
Definition: A waveform of time is periodic, if there is a T with s(t) = s(t + T )

for all t .
T is called the period of the signal s(t).

Sinusoidal quantity: an alternating waveform with a sinusoidal (i.e. harmonic) progres-
sion. Sinusoidal waveforms are elementary signals in AC. All periodic alternating
signals (and for certain assumptions also nonperiodic signals) can be represented by
sinusoidal signals (Fourier analysis and synthesis).

Fig. 3.12. Comparison of different waveforms: a) DC quantity, b) pulsating DC quantity; c) alternating
quantity (non periodic); d) mixed quantity; e) periodic quantity (nonharmonic); f) sinusoidal quantity
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3.2.1 Characteristics of Sinusoidal Waveforms

Sinusoidal currents and voltages can be represented by

v(t) = v̂ · sinωt, or v(t) = v̂ · cosωt

Fig. 3.13. Harmonic signals

Both signals appear identical. The instantaneous value at time t = 0 is zero in one case,
and the maximum value in the other case (Fig. 3.13). The instantaneous value of the time
signal v(t) varies between the two values v̂ and −v̂. The most positive value is called the
amplitude or peak value. The parameter ω is called the angular frequency or radian
frequency.

The frequency of the signal is

f = ω

2�
, ω = 2�f

The unit of frequency is Hz (hertz), and the unit of the angular frequency is s−1 or rad/s.
The period of the signal is

T = 1

f
= 2�

ω

and is the distance between two consecutive maxima (minima) of the signal.

Example: A sinusoidal AC voltage with an amplitude of 300 V and a frequency of 50 Hz
is measured with an oscilloscope.What is the instantaneous value of the signal
12 ms after the zero-crossing?

v(t) = v̂ · sinωt, v̂ = 300 V, ω = 2� · 50 s−1 ≈ 314.16 s−1

The signal has a zero-crossing at the time t = 0.

v(12 ms) = v̂ · sin(ω · 12 · 10−3 s) = 300 V · sin(3.770) = −176 V

For a single signal the positioning of the zero-crossing, t = 0, can be made by choice.
However, for interrelations between harmonic signals, the phase shift must be known.

v(t) = v̂ · sin(ωt + ϕ0)

At t = 0 the phase shift ϕ0 is present.

The relative phase position is regarded as leading for a positive phase shift ϕ0, otherwise
it is regarded as lagging.

Note: Usually the phase of the voltage is given with respect to the current, i.e. ϕ =
ϕV−ϕI. The phase of the complex impedance and the complex power is defined
likewise. An exception is the complex admittance; its phase is expressed with
respect to the voltage.
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Fig. 3.14. Phase-shifted harmonic signals

Example: Two sinusoidal currents i1 and i2 with the same amplitude have a phase shift
of 30◦. Therefore, i2 is leading i1. What is the instantaneous value of i2 at the
zero-crossing of i1?

i1 = ı̂ · sinωt, i2 = ı̂ · sin(ωt +30◦), i2(t = 0) = ı̂ · sin(30◦) = 0.5 ı̂

For the description of alternating functions further quantities are used. The average or
arithmetic mean is defined as

v̄ = 1

T

t0+T∫
t0

v(τ) dτ = 1

T

T∫
0

v(τ) dτ (3.10)

This value represents the area underneath the time function over one period. Because of the
periodicity of the function, the value v̄ is independent of the starting point t0. For sinusoidal
functions this value is zero.

Fig. 3.15. Visualisation of average, average rectified value and RMS value of sinusoidal functions

The average rectified value is the average of the magnitude of the signal (Fig. 3.15)

|v| = 1

T

T∫
0

|v(τ)| dτ (3.11)

Note: The average rectified value has to be regarded when calculating the charge of
capacitors after rectification, or for electrolytical processes. The dimensioning
of rectifier diodes can also be based on the average rectified value of the current,
as the voltage drop across the diode is nearly constant.

Specifically for sinusoidal voltages (and currents)

|v| = 1

T

T∫
0

v̂ · | sinωt | d t = 2

T
v̂ ·

T /2∫
0

sinωt d t = 1

�
v̂
[
− cosωt

]ωt=�

ωt=0
= 2

�
v̂ ≈ 0.637v̂

The RMS value of anAC voltage is related to the power. In Fig. 3.16 a DC voltage source
with a 1 V terminal voltage causes a power dissipation of P in the resistor R. An AC
voltage source, which causes the same average power dissipation in the same resistor, i.e.
it causes the same temperature increase, has a terminal voltage with an RMS of 1 V. This
definition is independent of the actual shape of the AC voltage.
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The definition of the RMS of a function is

VRMS =

√√√√√ 1

T

T∫
0

v2(t) d t (3.12)

For the special case of sinusoidal voltages and currents the result is

VRMS =

√√√√√ 1

T

T∫
0

(
v̂ sinωt

)2
d t =

√√√√√ 1

T
v̂2

T∫
0

sin2 ωt d t = v̂√
2
≈ 0.707v̂

Fig. 3.16. Concept of the RMS value

The square of the RMS is

V 2
RMS =

v̂2

2
⇒ V 2

RMS

R
= 1

2

v̂2

R
for sinusoidal waveforms

That is, the average dissipated power of an AC voltage source is only half the value of the
dissipation of a DC voltage source whose terminal voltage is the same value as the peak
value of the AC voltage.

For general forms of alternating functions it is always true that:

• The RMS value is always smaller than or equal to the peak value.

Note: The RMS value of the voltage or the current has to be considered for the
correct thermal dimensioning of resistive components. The peak value must
be considered to choose the breakdown voltage of a capacitor or the reverse
voltage of semiconductors.

3.2.2 Characteristics of Nonsinusoidal Waveforms

The crest factor is the ratio of the peak value v̂ to the RMS value VRMS of an alternating
function of any shape.

kc = v̂

VRMS

The form factor is the relationship between the RMS value and the average rectified value.

kf = VRMS

|v̄|
The crest factor and the form factor are characteristic values providing a rough description
of the shape of an alternating function. The ‘flatter’ the shape of the curve, the more the
form factor approaches a value of 1 (from above). Table 3.4 shows crest and form factors
for some selected waveforms.
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Table 3.4. Crest and form factors for selected waveforms

Waveform kc kf

Sine 1.414 1.111

Triangle 1.732 1.155

Square-wave, DC-free 1.000 1.000

Sawtooth 1.732 1.155

Half-wave rectified sine 2.000 1.571

Full-wave rectified sine 1.414 1.111

Three-phase rectified sine 1.190 1.017

Application: The deflection of the pointer of a moving-coil meter with rectifier bridges
is proportional to the average rectified value of the AC. On the contrary,
moving-iron meters display the RMS value. However, the scales of both
instruments are calibrated to the RMS value of a sinusoidal current. There-
fore errors occur when a nonsinusoidal current is measured with a moving
coil meter. This error can be rectified if the form factor of the measuredAC
is known.

Example: A square-wave voltage with a peak value of ±1 V is measured with a moving-
coil meter. The RMS and the average rectified value are 1 V for this waveform.
The deflection of the pointer is proportional to the average rectified value.
A sinusoidal AC voltage with a average rectified value of 1 V has a RMS of
kf · |v̄| ≈ 1.11 V. For the rectangular voltage a moving-coil meter would show
1.11 V , which results in an error of 11%.

Note: In telecommunications additional quantities are commonly used to characterise
the deviation from the sinusoidalwaveform, particularly the nonlinear distortion
factor (total harmonic distortion, THD).

3.3 Complex Impedance and Admittance

3.3.1 Impedance

The complex impedance is defined analogously to the definition of DC resistance as

Z = v

i
= v̂ · ejϕV

ı̂ · ejϕI
= v̂

ı̂
· ej(ϕV−ϕI) (3.13)

Since Z is a complex value, it can be represented in exponential form

Z = Z · ejϕZ (3.14)

The phase angle ϕZ represents the phase shift of the voltage with respect to the current
flowing through the AC impedance. In Cartesian form it is represented as follows:

Z = R + jX (3.15)

with

Z =
√

R2 +X2, ϕZ = arctan

[
Im(Z)

Re(Z)

]
= arctan

(
X

R

)
(3.16)
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R is referred to as resistance;
X is referred to as reactive impedance or reactance;
Z is referred to as impedance.

The unit of impedance is the ohm, �.

• The complex resistance is the ratio of the voltage amplitude to the current amplitude
(or their RMS values) and the phase shift of the voltage relative to the current flowing
through the impedance.

• The impedance is the ratio of the voltage amplitude to the current amplitude (or of their
RMS values), without considering the relative phase value.

The following relationships hold

Z = V
I

(3.17)

R = Z · cosϕZ, X = Z · sin ϕZ (3.18)

The representation of the complex impedance as in Eq. (3.14) leads to a phasor analogy.

Fig. 3.17. Phasor of the impedance and of the voltage and current for an AC impedance

The phasor of the impedance is represented in the complex impedance plane (Fig. 3.17).
According to the expression V = Z ·I , the relationship between voltage and current can be
represented by a phasor diagram. The impedance rotates the voltage phasor by an angle of
ϕZ with respect to the current phasor. The ratio of the absolute values of voltage to current
is Z.

Example: A current i(t) = ı̂ cos(ωt +ϕI) flows through a component with an impedance
Z. How does the time function of the voltage behave?

Change to the phasor representation i(t) �→ I

V = Z · I = Z · ejϕZ · I = Z · I · ejϕZ


⇒ v(t) = Z · ı̂ · ej(ϕZ+ϕI)


⇒ v(t) = Re(v) = Z · ı̂ · cos(ωt + ϕZ + ϕI)

Example: A sinusoidal voltage with an amplitude of 1 V is applied to an impedance of
(4+ j3) � (Fig. 3.18).What are the absolute value and the phase of the current?

The impedance is Z = √
42 + 32 � = 5 �. The current flowing through

the impedance has an amplitude of ı̂ = v̂/Z = 200 mA. The RMS value
is I = ı̂/

√
2 = 141 mA. The phase shift of the voltage with respect to the

current is ϕZ = arctan(3/4) = 0.64 (37◦). The current lags the voltage by 37◦
(ϕI = −37◦).
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Fig. 3.18. Impedance phasor

3.3.2 Complex Impedance of Passive Components

This topic is treated (focusing on time-varying signals) more extensively in Sect. 3.4.

3.3.2.1 Resistor

For the voltage and the current in a resistor R it follows from Ohm’s law

v(t) = R · i(t) across the resistor

If the current i is complex then

Z = v

i
= R · i

i
= R (3.19)

• The complex impedance of the resistor is real and equals R.

3.3.2.2 Inductor

In an inductor the induced voltage is proportional to the change of the current di/ d t .

v(t) = L · di

d t

For i(t) = ı̂ · ejωt is then

v(t) = L · ı̂ d
d t
ejωt = jωL · ı̂ · ejωt

Z = v

i
= jωL (3.20)

• The complex impedance of an inductor is imaginary positive. It is proportional to the
inductance and to the angular frequency.

3.3.2.3 Capacitor

The voltage across a capacitor is proportional to the integral of the current flowing through
the capacitor.

v(t) = 1

C

∫
i(t) d t
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For i(t) = ı̂ · ejωt is then

v(t) = 1
C

∫
ı̂ · ejωt d t = 1

C
1
jω · ı̂ · ejωt

Z = v

i
= −j

1

ωC
= 1

jωC
(3.21)

• The complex impedance operator of the capacitor is imaginary negative. It is inversely
proportional to the capacitance and to the angular frequency.

3.3.3 Admittance

The complex conductance is defined analogously to the definition of the DC admittance.

Y = i

v
= ı̂ · ej(ωt+ϕI)

v̂ · ej(ωt+ϕV)
= ı̂

v̂
· ej(ϕI−ϕV) (3.22)

Because Y is a complex quantity it can be represented in exponential form

Y = Y · ejϕY (3.23)

For the complex conductance the phase angle ϕY represents the phase shift of the current
relative to the voltage in the AC impedance. In Cartesian form it is

Y = G+ jB (3.24)

With

Y =
√

G2 + B2, ϕY = arctan

[
Im(Y )

Re(Y )

]
= arctan

(
B

G

)
(3.25)

G is referred to as conductance;
B is referred to as susceptance;
Y is referred to as admittance.

Sometimes the complex conductance is also called admittance. The unit for the complex
conductance is siemens (S) or mho (�).

• The complex conductance is the ratio of the current amplitude to the voltage amplitude
(or their RMS values) and the phase shift of the current relative to the voltage at the
component.

• The admittance is the ratio of the current amplitude to the voltage amplitude (or their
RMS values) without considering the relative phase value.

The following relationships hold

Y = I
V

(3.26)

G = Y · cosϕY, B = Y · sin ϕY (3.27)

The representation of the complex admittance as in Eq. 3.23 leads to a phasor analogy.
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Fig. 3.19. Phasor diagram of the admittance and of the current and voltage at the AC impedance

The phasor of the admittance is represented in the complex admittance plane. According
to the expression I = Y · V the relationship of voltage and current at the resistor can be
represented by a phasor diagram (Fig. 3.19). The admittance rotates the current phasor by
an angle of ϕY relative to the voltage phasor. The ratio of the absolute values of current to
voltage is Y .

The following relationship between impedance and admittance holds

Y = 1

Z
(3.28)

Therefore

Y = 1

R + jX
= R

R2 +X2
− j

X

R2 +X2
= R

Z2︸︷︷︸
=G

−j
X

Z2︸ ︷︷ ︸
=jB

(3.29)

For the conductance and susceptance it follows directly that

G = R

Z2
, B = − X

Z2
(3.30)

• A positive susceptance is equivalent to a negative impedance and vice versa.

Furthermore Eq. (3.28) leads to

Y = 1

Z
, and ϕY = −ϕZ (3.31)

• The phase of the complex admittance equals the phase of the negative impedance.

3.3.4 Complex Admittance of Passive Components

From Eq. (3.28) the complex admittances of the resistor, inductor and capacitor are

Resistor: Y = G = 1/R

Inductor: Y = −j
1

ωL

Capacitor: Y = jωC
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3.3.5 Overview: Complex Impedance

Terminology

Symbol Terminology

Z = R + jX (Complex) impedance
Z Impedance
X Reactance
R Resistance

Y = G+ jB (Complex) admittance
Y Admittance
B Susceptance
G Conductance

Impedance and Admittance of Passive Components

Table 3.5. Impedance and admittance of passive components

General expression Resistor R Inductor L Capacitor C

Z = R + jX R jωL − j
1

ωC

R R 0 0

X 0 ωL − 1

ωC

Z = √R2 +X2 R ωL
1

ωC

ϕZ = arctan(X/R) 0 +�/2 −�/2

Y = G+ jB 1/R −j
1

ωL
jωC

G 1/R 0 0

B 0 − 1

ωL
ωC

Y = √G2 + B2 1/R
1

ωL
ωC

ϕY = arctan(B/G) 0 −�/2 +�/2

Y = 1

Z
, Y = 1

Z
, ϕY = −ϕZ

Y = G+ jB, G = R

Z2
, B = −X

Z2
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3.4 Impedance of Passive Components

Passive linear electrical networks are composed of resistors, inductors and capacitors. This
section examines the behaviour of these passive components for sinusoidal voltages and
currents. See Table 3.5 for a summary.

For a resistor R current and voltage are in phase. The resistance is

Z = |Z| =
∣∣∣∣vi
∣∣∣∣ = R

For the conductance therefore

Y = 1

Z
= 1

R
= G

For an inductor L the induced voltage is proportional to the rate of change of current
di/ d t

v(t) = L · di

d t

For a sinusoidal current

v(t) = L · d

d t
(ı̂ sinωt) = ı̂ ωL cosωt = ı̂ ωL sin

(
ωt + �

2

)
• The voltage across an inductor leads the current by 90◦ or �/2, see Fig. 3.20.

Fig. 3.20. Voltage and current in an inductor

The inductive reactance XL is
XL = ωL

For DC voltage the impedance of an ideal inductor is zero. It increases linearly with the
frequency. The complex impedance is

Z = jXL = jωL (3.32)

For the admittance

Y = 1

Z
= 1

jωL
= −j

1

ωL
(3.33)

For a capacitor C the voltage is the integral of the current flowing through the capacitor

v(t) = 1

C

∫
i(t) d t

Differentiation of both sides of the equation leads to

dv

d t
= 1

C
· i(t) ⇒ i(t) = C · dv

d t
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For a sinusoidal voltage

i(t) = C · d

d t
(v̂ sinωt) = v̂ ωC cosωt = v̂ ωC sin

(
ωt + �

2

)
• The voltage across a capacitor lags the current by 90◦ or �/2 (ϕV = −90◦), see Fig. 3.21.

Fig. 3.21. Voltage and current in a capacitor

The capacitive reactance XC is

XC = − 1

ωC

For DC voltage the impedance of an ideal capacitor is infinite. It decreases in inverse
proportion to the frequency. For the complex impedance it follows that

Z = jXC = −j
1

ωC
(3.34)

For the admittance

Y = 1

Z
= jBC = jωC (3.35)

3.5 Combinations of Passive Components

3.5.1 Series Combinations

3.5.1.1 General Case

Fig. 3.22. Series combination of passive components

Figure 3.22 shows the general case of a series combination of passive components. For
AC currents and voltages (in analogy to DC)

V = I · Z

The notation shows clearly that these are complex values. The same current flows through
all components. For the total impedance Z it follows that

Z = Z1 + Z2 + · · · + Zn
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As complex numbers are added by summing up the real parts and the imaginary parts, the
resistive part and the reactive part of the impedance can be added separately

Z =
n∑

i=1

Re(Zi)+ j
n∑

i=1

Im(Zi) =
n∑

i=1

Ri + j
n∑

i=1

Xi

3.5.1.2 Resistor and Inductor in Series

The current flowing through both components is identical. For the resistor, the current and
voltage are in phase; for the inductor the voltage leads the current by 90◦ or �/2. The
terminal voltage of the combination is the sum of the partial voltages (Fig. 3.23).

Fig. 3.23. Series combination of resistor and inductor

The phasor diagram yields (using the Pythagorean theorem)

V =
√

V 2
R + V 2

L =
√

I 2R2 + I 2X2
L = I ·

√
R2 +X2

L

XL is the inductive reactance.
V

I
=
√

R2 +X2
L

The ratio V/I is called the impedance Z

Z = |Z| =
√

R2 +X2
L

This result can be obtained directly by examining the impedance phasors in the complex
impedance plane (Fig. 3.24b).

• The phase of the voltage relative to the current lies between 0◦ and 90◦ (�/2). The larger
the resistive part in the series combination, the closer the phase value is to zero.
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Fig. 3.24. a RMS phasors of the voltages; b phasor in the complex impedance plane

The phase can be obtained from the phasor triangle

tan ϕ = VL

VR
= XL

R
= ωL

R

In complex notation the complex impedances can be simply added

Z = R + jXL = R + jωL (3.36)

with

Z = |Z|ejϕ

Z = |Z| =
√

R2 +X2
L =

√
R2 + (ωL)2

ϕ = arctan

(
XL

R

)
= arctan

(
ωL

R

) (3.37)

3.5.1.3 Resistor and Capacitor in Series

The current flowing through both components is identical. For the resistor, the current
and voltage are in phase, for the capacitor the voltage lags the current by 90◦ or �/2. The
terminal voltage of the combination is the sum of the partial voltages (Fig. 3.25).

Fig. 3.25. Series combination of resistor and capacitor

The phasor diagram yields (using the Pythagorean theorem)

V =
√

V 2
R + V 2

C =
√

I 2R2 + I 2X2
C = I ·

√
R2 +X2

C

where XC is the capacitive reactance. The impedance Z follows as

Z = |Z| =
√

R2 +X2
C
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This result can be obtained directly by examining the impedance phasors in the complex
impedance plane (Fig. 3.26b).

Fig. 3.26. a) RMS phasors of the voltages; b) phasor in the complex impedance plane

• The phase of the voltage relative to the current lies between 0◦ and −90◦ (−�/2). The
larger the resistive part in the series combination, the smaller is the phase value.

The phase can be obtained from the phasor triangle

tan ϕ = VC

VR
= XC

R
= − 1

ωRC

In complex notation the complex impedances can be simply added

Z = R + jXC = R − j
1

ωC
(3.38)

with

Z = |Z|ejϕ

Z = |Z| =
√

R2 +X2
C =

√
R2 +

(
1

ωC

)2

ϕ = arctan

(
XC

R

)
= − arctan

(
1

ωRC

) (3.39)

3.5.1.4 Resistor, Inductor and Capacitor in Series

Note: In practice a series combination of a pure capacitance and a pure inductance
does not occur. This is because real components such as coils and capacitors
always exhibit losses, which can be modelled as a resistor in series.

Fig. 3.27. Series combination of a resistor, an inductor and a capacitor

The arrangement shown inFig. 3.27 is called a series-resonant circuit. The current flowing
through all three components is identical. For the resistor current and voltage are in phase.
For the inductor the voltage leads the current by +90◦ �/2, while for the capacitor the



3.5 Combinations of Passive Components 127

voltage lags the current by −90◦ −�/2. Consequently, the voltages across L and C have
opposite signs. The terminal voltage of the combination is the sum of the partial voltages.

Fig. 3.28. RMS phasors of the voltages in the series-resonant circuit

The phasor diagram yields (Fig. 3.28)

V =
√

V 2
R + (VL + VC)2 =

√
I 2R2 + I 2(XL +XC)2

where XL is the inductive reactance, and XC is the capacitive reactance. The impedance Z

follows as

Z = |Z| =
√

R2 + (XL +XC)2, XL = ωL, XC = − 1

ωC

The reactances XL and XC have opposite signs. Depending on the values of the capacitor
and the inductor, either the capacitive or the inductive reactance dominates, as shown in
Fig. 3.29.

Fig. 3.29. Phasor diagrams for different reactance values of XL, XC

• The phase of the voltage relative to the current in the series-resonant circuit lies between
−90◦ and +90◦ (±�/2). If the capacitive reactance dominates, the circuit behaves like
an RC combination; if the inductive reactance dominates, the circuit behaves like an RL
combination.

The phase ϕ can be obtained from the phasor diagram

tan ϕ = VL + VC

VR
= XL +XC

R
=

ωL− 1

ωC

R
= ω2LC − 1

ωRC

In complex notation

Z = ZR + ZL + ZC = R + j(XL +XC) = R + j

(
ωL− 1

ωC

)
(3.40)
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with

Z = |Z| · ejϕ

Z =
√

R2 + (XL +XC)2 =
√

R2 +
(

ωL− 1

ωC

)2

ϕ = arctan

(
XL +XC

R

)
= arctan

⎛⎜⎝ωL− 1

ωC

R

⎞⎟⎠
(3.41)

The reactances vary with the frequency. The inductive reactance increases proportionally
with the frequency, while the capacitive reactance decreases inversely with the frequency.
At the resonant frequency both reactances are equal in magnitude, but have an opposite
sign. As they cancel each other out at this frequency, only the resistance appears at the
terminals of the combination. At resonance the voltages across L and C have the same
magnitude.

|VL| = |VC|, |XL| = |XC|, XL +XC = 0 ⇒ ωrL = 1

ωrC

The equality of the magnitudes of the reactances at the resonant frequency leads to

ωr = 1√
LC

⇒ fr = 1

2�

1√
LC

• Below the resonant frequency the circuit behaves like a resistor–capacitor combina-
tion, and above the resonant frequency it behaves like a resistor–inductor combination
(Fig. 3.30).

Fig. 3.30. Reactance and impedance of the series-resonant circuit with frequency

3.5.2 Parallel Combinations

3.5.2.1 General Case

Figure 3.31 shows the general AC case of parallel combinations of passive components.
Similar to the DC case the alternating current and voltage are related by using the admit-
tance

I = V · Y
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Fig. 3.31. Parallel combination of passive components

The notation clearly shows that these are complex quantities. Each circuit element has
the same voltage drop across its terminals. This leads to a general expression for the total
admittance Y

Y = Y 1 + Y 2 + · · · + Y n

As complex numbers are summed by adding the individual real and imaginary components,
the conductive component GS and the susceptive component BS of the admittance can be
added separately

Y =
n∑

i=1

Gi + j ·
n∑

i=1

Bi

The impedance Z of the parallel combination is given by

Z = 1

Y
= 1

Z1

+ 1

Z2

+ . . .
1

Zn

In the special case of only two components in parallel, the resulting expression for the
impedance is analogous to the case of two resistances in parallel

Z = Z1 · Z2

Z1 + Z2

(3.42)

and if the impedance is separated into its conductive and susceptive components Zi =
Ri + j ·Xi

Z = R1(R
2
2 +X2

2)+ R2(R
2
1 +X2

1)

(R1 + R2)2 + (X1 +X2)2
+ j

X1(R
2
2 +X2

2)+X2(R
2
1 +X2

1)

(R1 + R2)2 + (X1 +X2)2

3.5.2.2 Resistor and Inductor in Parallel

Each circuit element has the same voltage drop across its terminals. For the resistor, the
current and voltage are in phase, while for the inductor the current lags the voltage by 90◦

Fig. 3.32. Parallel combination of a resistor and an inductor
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Fig. 3.33. a) RMS current phasor; b) phasor in the complex admittance plane

or �/2 (Fig. 3.32). The total current through the combination is the sum of the current in
the individual branches.

The phasor diagram yields (using the Pythagorean theorem)

I =
√

I 2
R + I 2

L =
√

V 2G2 + V 2B2
L = V ·

√
G2 + B2

L

where BL is the inductive susceptance.

I

V
=
√

G2 + B2
L

The ratio I/V is the admittance Y

Y = |Y | =
√

G2 + B2
L (3.43)

This result can be obtained directly by using phasors in the complex admittance plane
(Fig. 3.33b).

• The phase of the current relative to the voltage lies between 0◦ and −90◦ (−�/2). This
decreases in magnitude as the inductance increases.

The phase difference can be obtained from the phasor diagram

tan ϕY = IL

IR
= BL

G
= − R

ωL

In complex notation the complex admittances can be simply added.

Y = G+ jBL = 1

R
− j

1

ωL
(3.44)

with

Y = |Y |ejϕY

Y = |Y | =
√

G2 + B2
L =

√(
1

R

)2

+
(

1

ωL

)2

ϕY = arctan

(
BL

G

)
= arctan

(
R

ωL

) (3.45)

3.5.2.3 Resistor and Capacitor in Parallel

Each circuit element has the same voltage drop across its terminals. For the resistor, the
current and voltage are in phase, while for the capacitor the current leads the voltage by
90◦ or �/2 (Fig. 3.34). The total current through the combination is the sum of the currents
in the individual branches.
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Fig. 3.34. Parallel combination of resistor and capacitor

The phasor diagram yields (using the Pythagorean theorem)

I =
√

I 2
R + I 2

C =
√

V 2G2 + V 2B2
C = V ·

√
G2 + B2

C

where BC is the capacitive susceptance.

I

V
=
√

G2 + B2
C

The ratio I/V is the admittance Y

Y = |Y | =
√

G2 + B2
C

This result can be obtained directly by using phasors in the complex admittance plane
(Fig. 3.35 b)).

• The phase of the current relative to the voltage lies between 0◦ and −90◦ (−�/2). This
decreases in magnitude as the capacitance decreases.

Fig. 3.35. a) RMS phasor; b) phasor in the complex admittance plane

The phase difference can be obtained from the phasor diagram

tan ϕY = IC

IR
= BC

G
= ωRC

In complex notation the complex admittances can be simply added.

Y = G+ jBC = 1

R
+ jωC (3.46)
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with

Y = |Y |ejϕY

Y = |Y | =
√

G2 + B2
C =

√(
1

R

)2

+ (ωC)2

ϕY = arctan

(
BC

G

)
= arctan (ωRC)

(3.47)

Note: It can be seen that the phase difference ϕY is measured with respect to the
voltage, and ϕY = −ϕv.

3.5.2.4 Resistor, Inductor and Capacitor in Parallel

Note: A parallel combination of a pure capacitance and a pure inductance is not
realistic. Real capacitors and inductors suffer losses, which can be modelled by
a resistor in parallel.

Fig. 3.36. A parallel combination of a resistor, a capacitor and an inductor

The arrangement shown in Fig. 3.5.2.4 is called a parallel-resonant circuit. Each circuit
element has the same voltage drop across its terminals. For the resistor the current and
voltage are in phase. For the inductor, the current lags the voltage by 90◦ or �/2; for the
capacitor, the current leads the voltage by 90◦ or �/2. The currents through L and C have
opposite signs. The total current through the combination is the sum of the current in the
individual branches.

The phasor diagram yields

I =
√

I 2
R + (IL + IC)2 =

√
V 2G2 + V 2(BL + BC)2 = V

√
G2 + (BL + BC)2

whereBL is the inductor susceptance, andBC is the capacitive susceptance. The admittance
Y follows as

Y = |Y | =
√

G2 + (BL + BC)2, BL = − 1

ωL
, BC = ωC

The susceptances BL and BC have opposite signs. Depending on the size of the inductance
or capacitance, either the inductive or capacitive susceptance will dominate, as shown in
Fig. 3.37.

• The phase ϕY of the voltage with respect to the current varies between −90◦ and +90◦
(±�/2). If the capacitive susceptance dominates, the circuit behaves like anRCcombina-
tion; if the inductive susceptance dominates, the circuit behaves like an RL combination.

The phase angle ϕY of the susceptance may be derived from the phasor diagram

tan ϕY = IL + IC

IR
= BL + BC

G
=

ωC − 1

ωL

G
= R

(
ωC − 1

ωL

)
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Fig. 3.37. Phasor diagram for different susceptance values BL, BC

In complex notation

Y = Y R + Y L + Y C = G+ j(BL + BC) = 1

R
+ j

(
ωC − 1

ωL

)
(3.48)

with

Y = |Y | · ejϕY

Y =
√

G2 + (BL + BC)2 =
√(

1

R2

)
+
(

ωC − 1

ωL

)2

ϕY = arctan

(
BL + BC

G

)
= arctan

[
R

(
ωC − 1

ωL

)] (3.49)

The susceptances are frequency dependent. The inductive susceptance decreases with fre-
quency,while the capacitive susceptance increaseswith frequency (Fig. 3.38).At resonance
both susceptances are equal in magnitude, but have opposite signs. As they cancel each
other out at this frequency, only the resistance appears at the terminals of the combination.
At resonance the currents through L and C have the same absolute value.

|IL| = |IC|, |BL| = |BC|, BL + BC = 0 ⇒ 1

ωrL
= ωrC

It can be seen by equating the susceptances at the resonant frequency that

ωr = 1√
LC

⇒ fr = 1

2�

1√
LC

• Below the resonant frequency, the circuit behaves like a parallel resistor–inductor com-
bination, while above the resonant frequency the circuit behaves like a parallel resistor–
capacitor combination.

Fig. 3.38. Susceptance and admittance characteristic curves for a parallel-resonant circuit
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Fig. 3.39. Impedance characteristic curve for a parallel-resonant circuit

3.5.3 Overview of Series and Parallel Circuits

Table 3.6. Series circuit

Phasor diagram Z tan ϕZ = X

R

RL
√

R2 + (ωL)2
ωL

R

RC

√
R2 +

(
1

ωC

)2

− 1

ωRC

LC∗
∣∣∣∣ωL− 1

ωC

∣∣∣∣ ±∞

RLC See series-resonant circuits

√
R2 +

(
ωL− 1

ωC

)2
ω2LC − 1

ωRC

Phase values are given with respect to total current

∗The ideal case is with R = 0. For frequencies below the resonant frequency the phase
shift is ϕ = −90◦; above the phase shift is ϕ = 90◦.

Table 3.7. Series resonant circuit

Frequency Phasor diagram Z ϕZ

f < fr Resistive–capacitive −90◦ to 0◦

f = fr Purely–resistive 0◦

f > fr Resistive–inductive 0◦ to 90◦

Resonant frequency fr = 1

2�

√
1

LC
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Table 3.8. Parallel circuit

Phasor diagram Y tan ϕY = B

G

RL

√
R2 + (ωL)2

ωRL

−R

ωL

RC

√
(ωRC)2 + 1

R
ωRC

LC∗
∣∣∣∣ω2LC − 1

ωL

∣∣∣∣ ±∞∗

RLC See parallel resonant circuit

√
R2(ω2LC − 1)2 + (ωL)2

ωRL

R(ω2LC − 1)

ωL

Phase values are given with respect to total voltage
Note: Z = 1/Y , R = 1/G, ϕZ = −ϕY. ∗Ideally R = ∞.

Table 3.9. Parallel resonant circuit

Frequency Phasor diagram Z ϕZ

f < fr Resistive–inductive 90◦ to 0◦

f = fr Purely resistive 0◦

f > fr Resistive–capacitive 0◦ to −90◦

Resonant frequency fr = 1

2�

√
1

LC

3.6 Network Transformations

3.6.1 Transformation from Parallel to Series Circuits andViceVersa

Any circuit consisting of the series combination of a resistive and a reactive component can
be transformed into a parallel circuit consisting of a conductive and a susceptive component
(Fig. 3.40). If an identical AC voltage causes identical AC currents to flow through two
such circuits, they are known as equivalent circuits (see also Sect. 1.3.6.1).

The equivalence of the circuits implies that their impedances are equal.

Rs + jXs = Z = 1

Gp + jBp
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Fig. 3.40. Transformation of a series circuit into an equivalent parallel circuit and vice versa

Expanding by multiplying the numerator and the denominator by the complex conjugate
of the denominator yields

Rs + jXs = Z = Gp − jBp

G2
p + B2

p

= Gp

G2
p + B2

p

− j
Bp

G2
p + B2

p

Thus the transformation of a parallel circuit to the equivalent series circuit yields the
following for the resistive and reactive components:

Rs = Gp

G2
p + B2

p

, Xs = − Bp

G2
p + B2

p

(3.50)

The transformation of a series circuit into the equivalent parallel circuit therefore implies
the equality of the complex admittances.

Gp + jBp = Y = 1

Rs + jXs

Expanding by multiplying the numerator and the denominator by the complex conjugate
of the denominator yields

Gp + jBp = Y = Rs − jXs

R2
s +X2

s

= Rs

G2
s +X2

s

− j
Xs

R2
s +X2

s

Thus the transformation of a series circuit to the equivalent parallel circuit yields the
following for the resistive and reactive components:

Gp = Rs

R2
s +X2

s

, Bp = − Xs

R2
s +X2

s

(3.51)

or, if expressed in terms of resistive and reactive values,

Rp = R2
s +X2

s

Rs
= Z2

Rs
, Xp = Z2

Xs

• These transformations are valid only for a fixed angular frequency ω. All impedances
are frequency dependent and thus experience different values in the transformed circuit
as the frequency changes.

• The equivalence of the circuits only holds for sinusoidal voltages and currents.

Note: For network analysis series–parallel transformations are unnecessary, if the
basic rules for combining impedances in series and parallel are applied.
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3.6.2 Star–Delta (Wye–Delta) and Delta–Star (Delta–Wye)
Transformations

For very complicated circuits, mesh or nodal analysis is frequently used. Depending on
the type of analysis a star–delta or a delta–star transformation is required.∗

Fig. 3.41. Star–delta and delta–star transformations

For a delta–star transformation, using the notation of Fig. 3.41

Z1 =
Z12 · Z31

Z12 + Z23 + Z31

,

Z2 =
Z12 · Z23

Z12 + Z23 + Z31

,

Z3 =
Z23 · Z31

Z12 + Z23 + Z31

(3.52)

Using the notation for impedance, resistance and reactance that Zi = Ri + j ·Xi

R1 = (R12R31 −X12X31)R + (R12X31 + R31X12)X

R2 +X2

X1 = (R12X31 + R31X12)R − (R12R31 −X12X31)X

R2 +X2

R2 = (R12R23 −X12X23)R + (R23X12 + R12X23)X

R2 +X2

X2 = (R23X12 + R12X23)R − (R12R23 −X12X23)X

R2 +X2

R3 = (R23R31 −X23X31)R + (R31X23 + R23X31)X

R2 +X2

X3 = (R31X23 + R23X31)R − (R23R31 −X23X31)X

R2 +X2

with

R = R12 + R23 + R31, and X = X12 +X23 +X31

∗ In American literature the termWye is used instead of Star.
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For a star–delta transformation, using the notation of Fig. 3.41

Z12 = Z1 + Z2 +
Z1 · Z2

Z3

,

Z23 = Z2 + Z3 +
Z2 · Z3

Z1

,

Z31 = Z1 + Z3 +
Z3 · Z1

Z2

(3.53)

Using the notation for impedance, resistance and reactance that Zi = Ri + j ·Xi

R12 = R1 + R2 + (R1R2 −X1X2)R3 + (R1X2 + R2X1)X3

R2
3 +X2

3

X12 = X1 +X2 + (R1X2 + R2X1)R3 − (R1R2 −X1X2)X3

R2
3 +X2

3

R23 = R2 + R3 + (R2R3 −X2X3)R1 + (R2X3 + R3X2)X1

R2
1 +X2

1

X23 = X2 +X3 + (R2X3 + R3X2)R1 − (R2R3 −X2X3)X1

R2
1 +X2

1

R31 = R1 + R3 + (R1R3 −X1X3)R2 + (R3X1 + R1X3)X2

R2
2 +X2

2

X31 = X1 +X3 + (R1X3 + R1X3)R2 − (R1R3 −X1X3)X2

R2
2 +X2

2

Example: The bridged T-configuration found in filters can be analysed by referring to the
star–delta transformation (Fig. 3.42).

Fig. 3.42. Application of the star–delta transformation

• These transformations are valid only for a fixed angular frequency ω. All impedances
are frequency dependent and thus experience different values in the transformed circuit
as the frequency changes.

• The equivalence of the circuits only holds for sinusoidal voltages and currents, unless
the circuit is purely resistive.
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3.6.3 Circuit Duality

Two passive elements are called dual if the impedance of one of the circuits is proportional
to the admittance of the other for all frequencies. This can be expressed as follows:

Z2 = R2
D · Y 2 ⇐⇒ Y 2 = G2

D · Z2 (3.54)

R2
D and G2

D are real constants and are known as the duality constants. For elementary
impedances the duality relationships in Table 3.10 hold.

Table 3.10. Duality relationships for circuit elements

Passive element Dual element

Resistance R Resistance R2
D/R

Inductor L Capacitor C = L/R2
D

Capacitor C Inductor L = R2
DC

Voltage source VS, RS Current source IS = VS/RS, GS = 1/RS

Current source IS, GS Voltage source VS = ISGS, RS = 1/GS

short circuit Open circuit

There are also duality relationships for active elements. A voltage source with a voltage of
VS and an internal resistance of RS is dual to a current source with a current of IS = VS/RS.
The current source has an admittance in parallel with the value GS = 1/RS.

The following quantities are dual pairs: voltage to current, resistance to admittance.Where
the same current flows through two elements in a circuit, then in the dual circuit the voltage
across the two elements will be the same and vice versa. The circuits given in Table 3.11
are dual.

Table 3.11. Duality relationships for circuits

Circuit Dual circuit

Series circuit Parallel circuit
Series-resonant circuit Parallel-resonant circuit
Longitudinal resistor Transverse resistor
Longitudinal inductor Transverse capacitor
Longitudinal capacitor Transverse inductor
T-configuration �-configuration
Mesh node
Delta circuit Star circuit
Voltage driven Current driven
Current source Voltage source

• When a circuit consists of a voltage source, with an internal resistance RS and a load
resistance RL , the duality constant is given by RD = RS ·RL.Voltage or current sources
can be converted into their dual elements. For circuits that have been designed for open-
or short-circuit operation, RD can be arbitrarily chosen.

Note: The duality constants should be chosen such that resulting quantities can easily
be realised by available components.
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Example: In the circuit shown in Fig. 3.43 a 1MHz source with a 50 � internal resistance
supplies a 50 � load. The circuit should be transformed into an equivalent
circuit with fewer inductors.
In the dual circuit the two series inductors can be replaced by two parallel
transverse capacitors. The capacitor can be translated into a series inductor.
The duality constant is R2

D = RS · RL = 2500 �2. The dual quantities are

CD = L

R2
D

= 8.2 H

2500 �2
= 3.3 nF, LD = C ·R2

D = 2.2 nF ·2500 �2 = 5.5 H

Fig. 3.43. Circuit and dual circuit

3.7 Simple Networks

3.7.1 Complex Voltage and Current Division

Fig. 3.44. Current and voltage division with complex impedances

With current division both impedances have the same alternating voltage across their
terminals (Fig. 3.44). Therefore

I 1

I 2

= Y 1

Y 2

= Z2

Z1

(3.55)

• The total current is divided proportionally to the values of the admittances.

With voltage division both impedances have the same alternating current flowing through
them. Therefore

V 1

V 2

= Z1

Z2

(3.56)

• The total voltage is divided proportionally to the values of the impedances.

For a voltage V applied to a voltage divider, the output voltage V 2 is given by

V 2 = V · Z2

Z1 + Z2

(3.57)
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Note: For the special case where all impedances are purely resistive, the rules for DC
voltage and current division apply.

Note: In general, the voltage-divider ratio is frequency dependent, since the reac-
tive components of the impedance are frequency dependent. Circuits providing
frequency-dependent ratios between the input and output voltages are known
as filters.

For measurement purposes, it is preferable to have a voltage divider with a division ratio
that is independent of frequency. Equation (3.56) yields

V 1

V 2

= Z1

Z2

= Z1 · ejϕ1

Z2 · ejϕ2
= Z1

Z2
· ej(ϕ1−ϕ2)

This ratio is thus frequency independent only when it is real, which means that the expo-
nential expression must be real. For angles ϕ between −90◦ and +90◦, this means that
ϕ1 = ϕ2. This also means that

X1

R1
= X2

R2
⇒ R1

R2
= X1

X2
(3.58)

• The voltage ratio is thus frequency independent if the resistive and reactive components
of the voltage divider are in the same ratio. Put another way, the respective time constants
τ = R · C or L/R of the impedances must be equal.

Application: In oscilloscope measurements, the truest possible representation of the sig-
nal is required.

Fig. 3.45. Oscilloscope on a voltage source with an internal resistance, and the equivalent circuit

The AC voltage source with the internal resistance RS is loaded by the
input resistance Rin of the oscilloscope. The unavoidable capacitance of
the cable lies in parallel. Thus for sources with high source resistances the
voltage divider ratio falls off at higher frequencies. This can be seen in the
circuit diagram in Fig. 3.45. This can be remedied by use of a probe with
a compensated voltage divider (Fig. 3.46).

By equalising the capacitance in the probe, equal time constants (phase
angles) R1C1 = R2C2 of the two RC parallel circuits can be achieved.
This means a frequency-independent voltage-divider ratio. The increased
voltage-divider ratio (usually 10 : 1) with a probe can be compensated in
the oscilloscope by higher amplification. Simultaneously, the probe raises
the input resistance of the measurement system by the division ratio.
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Fig. 3.46. An oscilloscope probe and the equivalent circuit

3.7.2 Loaded Complex Voltage Divider

The relationship defined in Eq. (3.56) is valid for unloaded voltage division, that is, open
circuit.

Fig. 3.47. Loaded voltage division on a voltage source with an internal resistance, and its equivalent circuit

In a real application a voltage divider is supplied by a voltage source with an internal
resistance RS and loaded by ZL (Fig. 3.47). The voltage source is loaded by the input
impedance of the voltage divider and load circuit. The load sees a voltage source with a
complex internal impedance, which corresponds to the output impedance of the voltage
divider.

The input impedance is

Zin = Z1 + Z2||ZL = Z1 +
Z2 · ZL

Z2 + ZL

The output impedance Zout of the voltage divider is given by

Zout = Z2||(Z1 + RS) = Z2 · (Z1 + RS)

Z1 + Z2 + RS

In the unloaded configuration, the open-circuit voltage of the voltage divider for a voltage
source V S, is defined as

V∞ = V S ·
Z2

Z1 + Z2 + RS
The short-circuit current is

I 0 =
V S

Z1 + RS
The output impedance Zout is therefore given by

Zout =
Open-circuit voltage

Short-circuit current
= V∞

I 0

(3.59)

The voltage source of the equivalent circuit ‘seen’ by the load is defined as

V E = V S ·
Z2||ZL

Z2||ZL + Z1 + RS



3.7 Simple Networks 143

3.7.3 Impedance Matching

In RF communications it is important that the signal source and the load have the same
impedance in order to avoid reflections over the connecting medium.

Fig. 3.48. Impedance matching for RS > RL

To that end, the circuit in Fig. 3.48 can be used. It is suitable when the internal impedance
of the source is higher than the load impedance. The impedances must be so chosen so
that the input impedance of the circuit with the load connected is the same as the internal
impedance of the voltage source. On the other hand, the output impedance of the circuit
must be the same as that of the load. For the standard situation where loads and source
impedances are real

Zin = R12 + R3||RL = R12 + R3 · RL

R3 + RL
, Zout = R3(R12 + RS)

R3 + R12 + RS

To match the impedances the following must hold (Fig. 3.49):

Zin = RS, and Zout = RL

From these conditions, the resistances may be derived

R12 = RS ·
√
1− RL

RS
, and R3 = RL√

1− RL

RS

, for RS > RL

(3.60)

The voltage ratio

V1

V2
= RS

RL

(
1+

√
1− RL

RS

)
= 1

1−
√
1− RL

RS

(3.61)

is always greater than 1 for the condition that RS > RL, so that the circuit attenuates the
signal. Without changing the functionality of the circuit, the resistance R12 can be divided
between the two symmetrically placed resistors R1 and R2. Fig. 3.50 shows an example.

For the case where the load resistance is higher than the source resistance of the voltage
source, the circuit in Fig. 3.49 is suitable. Here the transverse resistance is in parallel with
the input terminals of the circuit.

The input and output impedance of the circuit are given by

Zin = R3||(R12+RL) = R3 · (R12 + RL)

R3 + R12 + RL
, Zout = R12+ (R3||RS) = R12+ R3 · RS

R3 + RS
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Fig. 3.49. Resistance matching for RL > RS

Fig. 3.50. Resistive circuit to match a source with an internal resistance of 240 � to a load of 120 �

From the conditions for impedance matching where Zin = RS and Zout = RL, the resis-
tances are given by

R12 = RL ·
√
1− RS

RL
, and R3 = RS√

1− RS

RL

for RL > RS

(3.62)

The voltage ratio

V1

V2
= 1+ R12

RL
= 1+

√
1− RS

RL
(3.63)

is always greater than 1, so the network attenuates the signal. Without changing the func-
tioning of the circuit, the resistance R12 can be divided between the two symmetrically
placed resistors R1 and R2. An example is given in Fig. 3.51.

Fig. 3.51. Resistive circuit to match a source with an internal resistance of 60 � to a load of 240 �

Note: To reduce the losses in the resistive components, transformers are frequently
used for impedance matching.
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3.7.4 Voltage Divider with Defined Input and Output Resistances

Voltage dividers can be realised using T-configurations or ���-configurations, which load
the source with an input impedance that is equal to the load resistance RL, while showing
the load a source with a given internal resistance (Fig. 3.52).

Fig. 3.52. T-configurations and �-configurations and their symmetrical variations

For a predetermined voltage ratio of a = V1

V2
> 1 (attenuation), the values of the

T-configuration are given by

R1 = R2 = RL · a − 1

a + 1
, for a > 1 and RS = RL

R3 = RL · 2a

a2 − 1

For a ���-configuration

R1 = R2 = RL · a + 1

a − 1
, for a > 1 and RS = RL

R3 = RL · a2 − 1

2a

Note: Both circuit types are dual to each other or form a dual pair with the duality
constant RSRL.

Example: A T-configuration and a �-configuration are required that divide the terminal
voltage by a factor of a = 5 for a source with an internal resistance of 600 �

and a load of 600 � (Fig. 3.53).

Fig. 3.53. T- and �-configurations as a 1 : 5 voltage divider for a 600 � source and a 600 � load
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3.7.5 Phase-Shifting Circuits

The phase shift between two sinusoidal waveforms is

tan ϕ = imaginary part of AC quantity

real part of AC quantity

The conditions for a phase shift of 45◦, 90◦ or 180◦ are relatively easy to formulate.

Table 3.12. Phase-shifting conditions

Phase shift Condition
45◦ = +/4 Re(V 2) = Im(V 2)
−45◦ = −/4 Re(V 2) = − Im(V 2)
90◦ = +/2 V 2 = jV 1 · k
−90◦ = −/2 V 2 = −jV 1 · k
180◦ = + V 2 = −V 1 · k

In Table 3.12 k is thus a positive real constant, dependent on the R, L, C components of
the circuit.

3.7.5.1 RC Phase Shifter

To achieve a phase shift of 45◦ between the input and output voltage waveforms, an RC
configuration can be used (Fig. 3.54).

Fig. 3.54. RC phase shifter for 45◦

The output voltage V 2 is given by

V 2 = V 1 ·
R

R − j
1

ωC

= V 1 ·
ωRC

ωRC − j

Separating into real and imaginary components

V 2 = V 1 ·
ωRC(ωRC + j)

(ωRC)2 + 1
= V 1 ·

ω2R2C2 + jωRC

ω2R2C2 + 1

For a phase shift of 45◦ Re(V 2) = Im(V 2) must apply.

ω2R2
45C

2 = ωR45C ⇒ R45 = 1

ωC
(3.64)

The voltage ratio in this situation is given by

|V 2|
|V 1|

=

∣∣∣∣∣∣∣
R45

R45 − j
1

ωC

∣∣∣∣∣∣∣ =
∣∣∣∣ 1

1− j

∣∣∣∣ = 1√
2
≈ 0.707
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Note: The value ω = 1

RC
is known as the corner or critical frequency, and R ·C is

known as the time constant of the RC configuration.

A phase shift of 90◦ cannot be achieved with a simple RC configuration, as the resistance
would have to be zero (R = 0). Two cascaded RC configurations can resolve this problem
(Fig. 3.55). If the circuit is considered a voltage divider, then after some calculation with
the capacitor impedance ZC

V 2 = V 1 ·
R2

Z2
C + 3RZC + R2

(3.65)

The condition that V 2 should be shifted by 90◦ with respect to V 1 means that V 1 = jkV 2.
By expanding Eq. (3.65) in j, it can be reduced to the following:

V 2 = jV 1

R2

j (Z2
C + R2)︸ ︷︷ ︸
real

+j 2 RZC︸︷︷︸
imaginary

The expression in brackets in the denominator must disappear if the fraction is to be real.

Z2
C + R2 = 0 ⇒ with ZC = −j

1

ωC
: R90 = 1

ωC
(3.66)

The voltage ratio in this situation is given by

|V 2|
|V 1|

= ωRC

2
= 1

2
(3.67)

Fig. 3.55. RC phase shifter for 90◦ (left) and 180◦ (right)

A phase shift of 180◦ can be achieved with a three-stage RC configuration (Fig. 3.55). The
fairly complicated analysis of the circuit under the condition that V 2 = −kV 1 leads to the
following result:

R180 = 1√
6ωC

The voltage ratio in this situation is given by

|V 2|
|V 1|

= 1

29
(3.68)

Note: In order to achieve defined phase shifts, all-pass or AC bridges are employed.
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3.7.5.2 Alternative Phase-Shifting Circuits

For suitable values, the circuit shown in Fig. 3.56 causes a phase shift of the current I2 by
90◦ with respect to the voltage across the circuit.

Fig. 3.56. Circuit for a phase shift of the current I2

The total voltage across the circuit is

V = V 1 + V 2 = (I 2 + I 3)(R1 + jωL1)+ I 2(R2 + jωL2)

The same voltage appears across the resistor R3 as appears across R2L2, so I 3 can be
equated as follows:

I 3 · R3 = I 2(R2 + jωL2) ⇒ I 3 = I 2
R2 + jωL2

R3

V = I 2

(
R1 + R1R2

R3
+ j

ωR1L2

R3
+ jωL1 + j

ωR2L1

R3
− ω2L1L2

R3
+ R2 + jωL2

)
The expression in parentheses must be purely imaginary if the current is to lag by 90◦.
Therefore all real components must disappear.

R1R3 + R1R2 − ω2L1L2 + R2R3 = 0

For

R3 = ω2L1L2 − R1R2

R1 + R2
(3.69)

a current lag of /2 in the branch will be achieved.

The circuit shown in Fig. 3.57 also achieves a phase shift of the current through L2, in that
the parallel resistor in Fig. 3.56 is replaced by a low-loss capacitor. A 90◦ phase shift of
the inductor current with respect to the total voltage is achieved for

C = R1 + R2

ω2(L1R2 + L2R1)
(3.70)

Fig. 3.57. Circuit for a 90◦ phase shift of the inductor current with respect to the total voltage

A curiosity ofAC analysis is the circuit shown in Fig. 3.58.A sinusoidal voltage is applied
to the circuit. The resistance R2 should be chosen such that the ammeter deflection does
not change while throwing the switch.
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Fig. 3.58. AnAC paradox

A constant deflection of the meter means that themagnitude ofAC current is equal in both
cases. The impedance of the circuit when the switch is open is given by

Z∞ = R1 + jωL ⇒ Z2
∞ = R2

1 + (ωL)2

When the switch is closed

Z0 = R1+ jωL · R2

jωL+ R2
= R1R2 + jωL(R1 + R2)

jωL+ R2
⇒ Z2

0 =
R2

1R
2
2 + ω2L2(R1 + R2)

2

ω2L2 + R2
2

By equating both quadratic equations for the impedance, the requirement for the closed-
switch circuit resistance R2 is given by

R2 = (ωL)2

2R1
(3.71)

Closing the switch changes the phase of the current, but not its magnitude.

3.7.6 AC Bridges

3.7.6.1 Balancing Condition

Several representations of bridge circuits are shown in Fig. 3.59.

Fig. 3.59. Various representations of bridge circuits

The same current flows through the impedances Z1 and Z2 for an unloaded bridge. Both
impedances function as a voltage divider. The same is true for Z3 and Z4. The output
voltage V 2 is the difference between the voltages at the terminals of the voltage divider. It
follows that

V 2 = 0 ⇐⇒ Z1

Z2

= Z3

Z4

(3.72)

Under these conditions, this is known as a balanced bridge (Fig. 3.59).
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The impedance ratio in Eq. (3.72) is complex. Therefore both of the following conditions
must hold

Z1

Z2
= Z3

Z4
, and ϕ1 − ϕ2 = ϕ3 − ϕ4

• A balanced AC bridge must fulfil two conditions, one for the magnitudes and the other
for the phases of the complex impedances.

Note: The balancing condition forAC bridges only holds for a single frequency. Mea-
surement bridges are therefore used onlywith sinusoidalwaveforms. Frequency
independence can be achieved only with special bridge circuits.

3.7.6.2 Application: Measurement Technique

The balanced condition from Eq. (3.72) can be used to determine the value of an unknown
impedance on one of the bridge branches.

Fig. 3.60. Wien bridge to measure a capacitance Cx and its loss resistance Rx

Figure 3.60 shows a Wien bridge for measuring the equivalent circuit of a capacitor. A
null instrument is placed in the diagonal branch (earphones could also be used), so that the
minimum condition can be found. Initially the imaginary part of the unknown impedance
is found by varying R4 to find a minimum in the detector. Then

XCx

XC2

=
1

ωCx

1

ωC2

= C2

Cx

= R3

R4
1. Balance

Then the real part of the impedance can be balanced using R2.

Rx

R2
= R3

R4
2. Balance

The magnitude on the right side of the equation does not change during this adjustment.
The equivalent circuit values of the capacitor are thus

Cx = C2 · R4

R3
, Rx = R2 · R3

R4
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3.8 Power in AC Circuits

3.8.1 Instantaneous Power

The instantaneous power of an AC waveform is given by

p(t) = v(t) · i(t)

3.8.1.1 Power in a Resistance

The current and voltage are in phase on the resistor (Fig. 3.61). For a sinusoidal voltage
instantaneous power is

p(t) = v̂ sinωt · ı̂ sinωt = v̂ ı̂ sin2ωt = V I (1− cos 2ωt)

Here V and I are the RMS values of the voltage and current. The instantaneous power is
a periodic value and is always positive in a resistor. The power consumption oscillates at
twice the frequency of the voltage.

Fig. 3.61. Current, voltage and instantaneous power for a resistance

3.8.1.2 Power in a Reactive Element

The voltage on a capacitor leads the current by 90◦ (ϕ = −/2), where ϕ is the phase angle
of the voltage, relative to the current. The product p(t) = v(t)i(t) has thus both positive
and negative values.

The positive and negative parts of the power curve are equal in magnitude (Fig. 3.62, left).
The capacitor temporarily stores energy and gives it back to the source in the following
quarter period. A mixed result exists in the case of a capacitive–resistive load (Fig. 3.62,
right). One part of the power is consumed in the resistive component of the load, while the
other part flows back to the source. The power in an inductive and an inductive–resistive
load produces an analogous result.

For sinusoidal current the instantaneous power can be written as

p(t) = V I · cosϕ︸ ︷︷ ︸
constant

−V I · cos(2ωt − ϕ)︸ ︷︷ ︸
varying



152 3 AC Systems

Where ϕ is the phase difference of the voltage with respect to the current.

• The instantaneous power has a constant component and a component which varies at
twice the frequency of the current or voltage waveforms.

Fig. 3.62. Current, voltage and instantaneous power in a capacitor and in a resistive–capacitive load

Alternatively, the instantaneous power can be represented by

p(t) = V I cosϕ[1− cos 2ωt︸ ︷︷ ︸
resistive component

]− V I sin ϕ sin 2ωt︸ ︷︷ ︸
reactive component

(3.73)

The first term, known as the resistive component, is always positive. The second term
alternates between positive and negative values and is known as the reactive component
(Fig. 3.63).

Fig. 3.63. Separation of the instantaneous power into a resistive and a reactive component

3.8.2 Average Power

The average power is defined as

P = p̄ = 1

T

t+T∫
t

p(t) d t (3.74)

When reference is made to power in circuit theory, usually the average power is meant.
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3.8.2.1 Real Power

The real power for sinusoidal current and voltage waveforms is given by

P = V · I · cosϕ (3.75)

where V and I are the RMS values of the voltage and current. The expression cosϕ is
known as the power factor. The unit of real power is the watt (W).

• For purely resistive circuits (ϕ = 0) the power factor cosϕ = 1, and the real power is
P = V I .

• For purely reactive circuits (ϕ = ±90◦) the power factor cosϕ = 0, and the power is
thus zero.

• For resistor–capacitor and resistor–inductor loads (−90◦ < ϕ < 90◦) the real power is
positive.

• The real power can be converted into other forms of power (heat, mechanical power,
etc.).

When a complex circuit is represented by its parallel equivalent circuit of a resistance and
a reactance the power factor cosϕ can be modelled in relation to the current. This is known
as in-phase or real current (Fig. 3.64).

Ireal = I · cosϕ (3.76)

P = Ireal · V, P = V 2

Rp
(3.77)

• The real power is given by the product of the in-phase current and the RMS voltage.
This approach can only be used on parallel combinations, where all of the components
experience the same voltage across their terminals.

Fig. 3.64. In-phase currents and voltages for the equivalent circuit of a complex circuit

When a complex circuit is represented by its series equivalent circuit of a resistance and a
reactance the power factor cosϕ can be modelled in relation to the voltage. This is known
as in-phase or real voltage.

Vreal = V · cosϕ (3.78)

P = Vreal · I, P = I 2 · Rr (3.79)

• The real power is given by the product of the in-phase voltage and the RMS current.
This approach can only be used for series combinations, where the same current flows
through all of the components.

Note: The real power is not the product of the in-phase current and the in-phase
voltage. These quantities are derived from and applied to different equivalent
circuits.
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3.8.2.2 Reactive Power

The reactive power is defined as

Q = V · I · sin ϕ (3.80)

V and I are the RMS values of the voltage and current, and ϕ is the phase difference of
the voltage with respect to the current. The factor sin ϕ is known as the leading or lagging
power factor.† The unit for reactive power is the volt–ampere reactive (VAR).

• For purely resistive impedances (ϕ = 0) the reactive power is zero.

• The reactive power in an inductive–resistive load is positive, while in a capacitive–
resistive load it is negative.

• Reactive power cannot be converted into other forms of power.

When a complex circuit is represented by its parallel equivalent circuit of a resistance and
a reactance the power factor sin ϕ can be modelled in relation to the current. This is known
as reactive or out-of-phase current (Fig. 3.65).

Ireact = −I · sin ϕY (3.81)

Q = −Ireact · V, Q = V 2

Xp
(3.82)

• The reactive power is given by the product of the negative reactive current and the RMS
voltage. This approach can only be used on parallel combinations, where all of the
components experience the same voltage across their terminals.

Note: The negative sign on the reactive current comes from the fact that in the parallel
equivalent circuit the phase is expressedwith respect to the voltage (ϕY = −ϕZ).

Fig. 3.65. Out-of-phase currents and voltages for the equivalent circuit of a complex circuit element

When a complex circuit is represented by its series equivalent circuit of a resistance and a
reactance the power factor sin ϕ can be modelled in relation to the current. This is known
as reactive or out-of-phase voltage.

Vreact = V · sin ϕ (3.83)

Q = Vreact · I, Q = I 2 ·Xr (3.84)

• The reactive power is given by the product of the out-of-phase voltage and the RMS
current. This approach can only be used for series combinations, where the same current
flows through all of the components.

Note: The reactive power is not the product of the out-of-phase current and the out-of-
phase voltage. These quantities are derived from different equivalent circuits.

† For inductive loads this is the lagging power factor, whereas for capacitive loads this the leading power factor.
Lagging and leading describe the lagging or leading of the current with respect to the voltage.
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3.8.2.3 Apparent Power

The apparent power is defined as

S = V · I (3.85)

V and I are the RMS values of the voltage and the current, and ϕ is the phase difference
of the voltage with respect to the current. The unit of apparent power is the volt–ampere
(VA). Thus

P = S · cosϕ, Q = S · sin ϕ (3.86)

This relation can be best represented geometrically (Fig. 3.66).

Fig. 3.66. Phasor triangle of the resistive, reactive and apparent power for a resistor–capacitor load and a
resistor–inductor load

It can be seen from the phasor diagram that

S =
√

P 2 +Q2 (3.87)

• Apparent powers from elements with different power factors cannot be added. On the
contrary, resistive and reactive powers must be added independently. This yields the
overall apparent power.

3.8.3 Complex Power

Complex power is defined as

S = V · I ∗ (3.88)

• The complex power is the product of the voltage and complex conjugate of the current.

S = V ejϕV · Ie−jϕI = V Iej(ϕV−ϕI) = V Iejϕ

where ϕ represents the phase shift of the voltage with respect to the current. It follows that

S = V I cosϕ︸ ︷︷ ︸
P

+jV I sin ϕ︸ ︷︷ ︸
Q

and thus

S = P + jQ, S = |S| =
√

P 2 +Q2 (3.89)
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• The real power is the real part of the complex power.

• The reactive power is the imaginary part of the complex power.

• The apparent power is the magnitude of the complex power.

Fig. 3.67. The complex power in a phasor diagram

As for other complex quantities, the complex power can be represented by a phasor diagram
(Fig. 3.67).

3.8.4 Overview: AC Power

Table 3.13. Summary for AC power

Load P = S cosϕ Q = S sin ϕ S cosϕ

Purely inductive 0 Positive Q 0

Resistor–inductor Positive Positive
√

P 2 +Q2 0 to 1

Purely resistive Positive 0 P 1

Resistor–capacitor Positive Negative
√

P 2 +Q2 0 to 1

Purely capacitive 0 Negative Q 0

S =
√

P 2 +Q2 (3.90)

P = S · cosϕ (3.91)

Q = S · sin ϕ (3.92)

Q = P · tan ϕ (3.93)

P =Q · cot ϕ (3.94)

tan ϕ = Q

P
(3.95)

3.8.5 Reactive Current Compensation

The power factor specifies the fractional contribution of real power P to the apparent
power S.

Although the reactive current does not contribute to transferable power, it must nonetheless
be transported from the7 supply to the load. In order to get useable power from the power
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Table 3.14. Summary for equivalent circuits

Parallel equivalent circuit Series equivalent circuit

Configuration

Complex impedance Z = R + jX

Complex admittance Y = G+ jB

Impedance magnitude Z = √R2 +X2

Admittance magnitude Y = √G2 + B2

Real impedance R = Z cosϕ = Vreal/I

Real admittance G = Y cosϕY = Ireal/V

Reactance X = Z sin ϕ = Vreact/I

Susceptance B = −Y sin ϕY = −Ireact/V

Complex power S = Y ∗V 2 = (G− jB)V 2 S = ZI 2 = (R + jX)I 2

Real power P = IrealV = I 2
real/G = V 2G P = VrealI = V 2

real/R = I 2R

Reactive power Q = −IreactV = −I 2
react/B = −V 2B Q = VreactI = V 2

react/X = I 2X

Apparent power S = V I = V

√
I 2
real + I 2

react S = V I = I

√
V 2
real + V 2

react

Power factor cosϕ = G/Y cosϕ = R/Z

In-phase current Ireal = I cosϕY = GV

In-phase voltage Vreal = V cosϕ = RI

Reactive current Ireact = −I sin ϕY = −BV

Reactive voltage Vreact = V sin ϕ = XI

source efforts must be made to minimise the reactive current. These actions are known as
power factor correction (Fig. 3.68).

Fig. 3.68. Principle of power factor correction

A reactance is placed in parallel with the load and absorbs all of the reactive current. A
capacitor is used for the resistive–inductive loads most often encountered. The reactive
current of the capacitor must be equal in magnitude to that of the load. The effect is that the
reactive current is diverted from the load to the compensation element, and thus the supply
is no longer loaded (Fig. 3.69). If the reactive current of the compensation element exceeds
that of the load, then this is known as overcompensation. In practice, compensation is
designed for a power factor of about cosϕ = 0.9.

Example: A motor with 230 V/16 A/cosϕ = 0.8 should be compensated by a capacitor.

A real current of 16 A · cosϕ = 12.8 A flows through the motor. The reactive

current is Ireact =
√

I 2 − I 2
real =

√
162 − 12.82 = 9.6 A. The reactive current
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Fig. 3.69. Power and current phasor diagram for reactive current compensation

must be absorbed by the capacitor. Its reactance is XC = 230 V/9.6 A = 24 �.
It follows therefore for a frequency of 50 Hz a capacitor of C = 1/XC · ω =
(24 � · 2 · 50 s−1)−1 = 133 F. For compensation of a power factor of
cosϕ = 0.9 a reactive current of only 6.2 A must be compensated, for which
a capacitor of 86 F suffices.

Note: The power factors of transformers and motors decline when they are unloaded.
The reactive currents are caused by the buildup and reduction of the magnetic
fields.

3.9 Three-Phase Supplies

3.9.1 Polyphase Systems

Figure 3.70 shows a circular arrangement of several coils, in whose centre a permanent
magnet is rotating at a constant angular velocity. An alternating voltage is induced in each
of the coils with the same frequency and a constant phase shift with respect to each other.

Fig. 3.70. Basic arrangement to produce constant-frequency alternating voltage in a polyphase system

Such arrangements of alternating voltage generators, conductors and loads are known as
polyphase systems. For n voltages there is an n-phase system. If the voltages have the
samemagnitude and frequency and a constant phase shift between them, then the polyphase
system is said to be balanced.

The presence of such balanced voltages applies for generators with shifted windings (the
rotating magnet is replaced by a DC excited rotor). Such polyphase voltage systems are
produced by generators with shifted windings, where the voltage is induced by a rotat-
ing magnetic field (e.g. synchronous generators). More recent systems (e.g. uninterrupt-
able power supplies, UPS) produce a three-phase system by using static inverters, using
switching semiconductors. On the other hand, a rotating field can be created by applying
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a polyphase voltage to symmetrically positioned coils, as shown in Fig. 3.70 (this is used
in asynchronous and synchronous motors).

The three-phase system is of particular importance in the distribution of electricity. The
advantages of the three-phase systems are

• fewer power lines compared to three single phase lines (three, four or five power lines
instead of six);

• constant power delivery from the generator for symmetric loads (see Sect. 3.10.1);

• several voltage options available to the user;

• simple motor construction.

3.9.2 Three-Phase Systems

Fig. 3.71. Time variation of the voltages in a symmetrical three-phase system and their RMS values in a
phasor diagram

In a three-phase circuit, only three or four wires must be brought to the user rather than six.
Figure 3.72 shows the representation of the voltage sources and their transmission lines.

Fig. 3.72. Representation of the voltage sources and their transmission lines in a three-phase circuit

The terminal voltages V12 etc. between the line conductors L1, L2 and L3 are known as
line-to-line voltages. The voltages with respect to the neutral conductor N are known
as the phase voltages. The generator voltages V1, V2, V3 of the phase windings are also
phase voltages. Line currents are the currents in the lines, and phase currents are the
currents flowing in the generator windings.

Note: The most commonly used three-phase system in Europe employs voltages of
230 V/400 V.
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In symmetrical three-phase circuits the instantaneous values of the phase voltages may be
represented as

v1(t) = v̂ · cosωt,

v2(t) = v̂ · cos
(

ωt − 2

3

)
,

v3(t) = v̂ · cos
(

ωt + 2

3

)
(3.96)

They are shifted 120◦ (2/3) with respect to each other (Fig. 3.73). The complex RMS
values of the voltages are given by

V 1 =
v̂√
2
,

V 2 =
v̂√
2
· e−j2/3,

V 3 =
v̂√
2
· e+j2/3 (3.97)

Fig. 3.73. Phasor diagram of the phase voltages and line voltages for the arrangement in Fig. 3.72

3.9.2.1 Properties of the Complex Operator a

For convenience in this chapter the complex operator ej2/3 is more compactly represented
as a (Fig. 3.74). When multiplied by a phasor it causes a rotation of 2/3 (120◦) in the

Fig. 3.74. The complex operators a, a2 and a3
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complex plane. Some properties of a are as follows:

a = ej2/3 = 1

2

(
−1+ j

√
3
)
= −1

2
+ j

√
3

2

a2 = ej4/3 = e−j2/3 = 1

2
·
(
−1− j

√
3
)
= a∗ (3.98)

a3 = ej2= 1

By use of the complex operator, the complex three-phase phasor can be written as

V 1 = V 1, V 2 = V 1 · a2, V 3 = V 1 · a (3.99)

• A single application of the complex operator a rotates by 2/3 (120◦), two applications
rotate by 4/3 (240◦) and three applications rotate by 2 (360◦).

1+ a + a2 = 0 (3.100)

More rules applying to a can be derived from Fig. 3.75.

1− a2 = 3

2
+ j

√
3

2
= −j

√
3 · a (3.101)

a2 − a = −j
√
3

a − 1 = −3

2
+ j

√
3

2
= −j

√
3 · a2

Fig. 3.75. Sums and differences of the complex operators

3.9.3 Delta-Connected Generators

In the delta-connected generator the three-phase windings are connected one after the
other in a daisy chain, and the series combination circuit is shorted (Fig. 3.76).The terminals

Fig. 3.76. Two representations of delta-connected generators
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of the phase windings are mounted on a terminal board with standard markings. The phase
windings and the terminal board of a three-phase generator in a delta configuration are
shown in Fig. 3.77.

V 12 = V 1, V 23 = V 2, V 31 = V 3

L1 L2 L3
U1

U1

V1

V1

W1

W1

U2 U2V2 V2W2 W2

Fig. 3.77. Phase windings and the terminal board configuration in a delta-connected generator

• For delta-connected generators the line voltages are equal to the phase voltages
(generator terminal voltages).

The sum of the phase voltages is given by (Fig. 3.78)

V s = V 1 + V 2 + V 3 = V 1 · (1+ a2 + a)︸ ︷︷ ︸
=0

= 0

By inserting Eq. (3.100) the sum of the complex operators in the parentheses disappears.

Fig. 3.78. Phasor diagram of the complex RMS voltages in the symmetrical delta-connected generators

• For ideal symmetrical generator voltages the sum of the voltages is zero. Therefore, for
a short circuit (delta circuit) of the series combination of the phase windings no current
will flow.

3.9.4 Star-Connected Generators

In the star-connected generator one side of each of the phase windings is connected to
the generator star point (Fig. 3.79 and 3.80).

The following holds for the line voltages V 12, etc. (Fig. 3.81)

V 12 = V 1 − V 2 = V 1 · (1− a2) = −j
√
3a V 1 = −j

√
3V 3

V 23 = V 2 − V 3 = V 1 · (a2 − a) = −j
√
3V 1 (3.102)

V 31 = V 3 − V 1 = V 1 · (a − 1) = −j
√
3a2V 1 = −j

√
3V 2
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Equations (3.98), (3.99) and (3.100) are instrumental in solving the above equations.

L1 L2 L3
U1

U1

V1

V1

W1

W1

U2 U2V2 V2W2 W2

Fig. 3.79. Phase windings and terminal board configuration for a star-connected generator

V 1N = V 1

V 2N = V 2

V 3N = V 3

Fig. 3.80. Two representations of star-connected generators

Fig. 3.81. Phasor diagram of line and phase voltages for a symmetrical star-connected generator

• The line voltages exceed the phase voltages by a factor of
√
3 in the symmetrical star-

connected generator.

V1N = V2N = V3N

V12 = V21 = V31 =
√
3 · V1N =

√
3 · V2N =

√
3 · V3N

• The line voltages are, like the phase voltages,phase-shifted by 2/3 (120◦) with respect
to each other.

V 23 = a2 · V 12, V 31 = a · V 12

• The line voltages are phase-shifted by /2 (90◦) with respect to the opposite phase
voltages.

V 12 = −j
√
3V 3, V 23 = −j

√
3V 1, V 31 = −j

√
3V 2

Note: This property is used in the measurement of the reactive power in a three-phase
system. A 90◦ phase-shifted voltage can thus be measured without employing
a phase-shifting circuit.
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3.10 Overview: Symmetrical Three-Phase Systems

Three-phase systems with symmetrical generators and loads are shown in Fig. 3.82 and
summarised in Table 3.15. There are four different combinations of star and delta circuits.
In all cases the line voltage is V , and all load impedances have the same value Z.

Table 3.15. Symmetrical three-phase systems, see Fig. 3.82

generator-load
combination star-star star–delta delta–star delta-delta

phase voltages
V√
3

V√
3

V V

voltage across
the load Z

V1N, V2N, V3N
V√
3

V12, V23, V31

V

V1N, V2N, V3N
V√
3

V12, V23, V31

V

currents through
the load Z

I1N, I2N, I3N
1√
3
· V

Z

I12, I23, I31
V

Z

I1N, I2N, I3N
1√
3
· V

Z

I12, I23, I31
V

Z

line currents
I1, I2, I3

1√
3
· V

Z

I1, I2, I3√
3 · V

Z

I1, I2, I3
1√
3
· V

Z

I1, I2, I3√
3 · V

Z

total real power
V 2

Z
· cosϕ 3 · V 2

Z
· cosϕ

V 2

Z
· cosϕ 3 · V 2

Z
· cosϕ

line voltages V12 = V23 = V31 = V

• Three times more power is transferred to the resistive load in the delta circuit than in
the star circuit.

Fig. 3.82. Symmetrical three-phase systems

Note: This property is used in three-phase motors for the so-called star–delta start.
The motor is started in the star configuration and then switched over to the
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delta configuration. In this manner, unnecessarily high transient currents are
avoided.

• When using the line currents I1, I2, I3 and voltages V12, V23, V31, the configuration of
the generator circuit is irrelevant for the power delivered.

3.10.1 Power in a Three-Phase System

See Sect. 4.4.3.1 on power measurement in three-phase systems.

The average real power delivered by a symmetrical three-phase system is

P = V · I · √3 (3.103)

The instantaneous real power is

p(t) = v2
1(t)

R1
+ v2

2(t)

R2
+ v2

3(t)

R3

where R is the real component of the load impedance. For a symmetrical load R1 = R2 =
R3 = R, the instantaneous power is given by

p(t) = V̂ 2

R
·
[
cos2 ωt + cos2

(
ωt − 2

3


)
+ cos2

(
ωt + 2

3


)]
= V̂ 2

2R
·
[
1+ cos 2ωt + 1+ cos

(
2ωt − 4

3


)
+ 1+ cos

(
2ωt + 4

3


)]
(3.104)

= 3V̂ 2

2R

Fig. 3.83. Instantaneous power delivered by each individual winding of the three-phase system pi(t) and
the total power p(t)

• The total real power delivered by the generator is constant, although the power varies
in each individual winding (Fig. 3.83).

This property has great advantages in the construction of electrical machines, because
this also means that the mechanical torque is constant over a rotation, thus considerably
reducing vibration.

Polyphase systems with constant power delivery are said to be balanced; otherwise they
are said to be unbalanced.

Note: The property of constant power delivery can also be achieved in n-phase sys-
tems.
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3.11 Notation Index

a voltage ratio
a complex operator e j2/3

B susceptance (S)
B bandwidth (Hz)
C capacitor (F)
f frequency (Hz)
fr resonant frequency
G conductance
GS source conductance
i time-varying current
ı̂ peak value of the current
I RMS value of the current
Ic compensation current
Ireact reactive current
Ireal real current
Im() imaginary part
kf form factor
kc crest factor
L1, L2, L3 line
N neutral conductor
p subscript: parallel combination
p instantaneous power (W)
P average power (W)
Q reactive power (VAR)
r subscript: resonant
r magnitude of complex number in polar coordinates
R resistor, resistance
R2

D duality constant (�2)
RL load resistance
Rs series resistor (in Sect. 3.6.1)
RS source resistance
R45, R90 resistance for phase shift of 45◦ or 90◦

R||C R in parallel to C

Re() real part
s subscript: series combination
S apparent power (VA)
S complex power
T period, periodic time
v time-varying voltage
v complex time-varying voltage
v̂ peak value of the voltage
v̂ complex amplitude
v̄ average value
|v| average rectified value
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V RMS value of the voltage
V complex RMS value of the voltage
V1 input voltage
V2 output voltage
V12, V23, V31 line voltages
V1N, V2N, V3N star voltages
VC voltage across a capacitor
VL voltage across an inductor
VR voltage across a resistor
Vreact reactive voltage
Vreal real voltage
VS source voltage
X reactance
XC capacitive reactance
XL inductive reactance
Y admittance
Y complex conductance, admittance
z∗ complex conjugate
Z impedance
Z complex resistance, impedance
Zin input impedance
Zout output impedance
ϕ phase difference (rad)
ϕ0 phase shift
ϕI phase of the current
ϕS phase of the sum signal
ϕV phase of the voltage
ϕY phase difference of the admittance
ϕZ phase difference of the impedance
ω angular frequency (s−1)
ωr resonant frequency (s−1)
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4 Current, Voltage and Power
Measurement

This chapter focuses on themost basicmeasurementmethods for electrical quantities using
electrical measuring instruments.

4.1 Electrical Measuring Instruments

Electrical measuring instruments measure an electrical quantity by deflecting a pointer
using magnetic or mechanical principles.

4.1.1 Moving-Coil Instrument

In a moving-coil instrument a coil turns in the field of a permanent magnet. The current
flowing through the coil creates a torque, which is compensated by a reset spring. The
rotation of the coil is displayed by a pointer. See also Sect. 2.3.17.1 on the force on a
current-carrying conductor in a magnetic field.

Fig. 4.1. Principle of the moving-coil instrument and its circuit symbol

• The scale of a moving-coil instrument is linear for DC.

• The moving-coil instrument displays the arithmetic average value of the current. For
purely AC current the pointer stays at zero.

• Moving-coil instruments with a rectifier display the rectified value.

• The moving-coil instrument is the most sensitive analogue instrument.

Note: Galvanometers are particularly sensitive moving-coil instruments.

4.1.2 Ratiometer Moving-Coil Instrument

The ratiometer moving-coil instrument works on the moving-coil principle, using two
crossed coils mounted on the same iron core at 30◦ to 60◦ with respect to each other. The
coils are configured such that the currents flowing through them exert opposing torques
(Fig. 4.2). The position in which both torques are equal depends on the ratio of the currents
in both coils. For this reason the instrument is known as a ratio instrument.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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Fig. 4.2. Principle of the ratiometer-type moving-coil instrument and its circuit symbol

• The ratiometer-type moving-coil instrument displays the quotients of two coil currents.

• The scale is not linear, but has a wide linear range around the centre of the scale.

4.1.3 Electrodynamic Instrument

The electrodynamic instrument is similar in principle to the moving-coil instrument,
except that the instrument’s field is produced by a second current flowing in ameasurement
coil (Fig. 4.3). This was previously known as a dynamometer.

Fig. 4.3. Principle of the electrodynamic instrument and its circuit symbol for the iron-screened realisation

• The deflection of an electrodynamic instrument is proportional to the product of the
currents in both coils.

• If both coils are excited by sinusoidal currents (of the same frequency), then the display
is proportional to the product of the currents and depends on the relative phase shift.
Maximum deflection occurs for �ϕ = 0◦, whereas there is no deflection for �ϕ = 90◦.

If both measurement coils are connected in series, then the same current flows through
each coil.

• The electrodynamic instrument displays the root mean square (RMS) of the measure-
ment current. The display is then to a large degree independent of the shape of the
waveform. In this mode the scale is quadratic.

The main use for electrodynamic instrumenta is in power measurement. One of the coils
is excited by the measurement current, while the other coil is excited by a current that is
proportional to the voltage.

• The electrodynamic instrument serves as a power meter for both direct and alternating
current and is to a large degree independent of the shape of the waveform.
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4.1.4 Moving-Iron Instrument

The moving-iron instrument (soft-iron instrument) uses the opposing forces on equally
polarised, magnetised soft-iron vanes in the magnetic field of a coil with a measurement
current (Fig. 4.4). By suitably shaping the air gap the scale can cover a wide range.

Fig. 4.4. Principle of the moving-iron instrument and its circuit symbol

Note: Graduations are often extended in the upper region for accurate reading (oper-
ational instruments), or compressed in order to be able to quantitatively deter-
mine overloads.

• The deflection of themoving-iron instrument is independent of the current direction. It is
thus equally suitable for DC andAC (for low frequencies such as the mains frequency).

• The moving-iron instrument is an RMS meter.

• The moving-iron instrument has a high internal power consumption.

• The moving-iron instrument can by its nature withstand high overloads.

Note: In the application of moving-iron instruments as current meters, the display is
independent of the shape of the current waveform. Voltage measurements of
nonsinusoidal waveforms require caution (Sect. 3.2.2). The large inductance
of the meter attenuates the higher frequencies. This is why shunt resistors are
rarely used for range extension. Instead, the current coil may be designed with
several terminals, or, alternatively, a current transformer can be used.

4.1.5 Other Instruments

Rotary magnet instrument: In this case a small permanent magnet rotates in the field
created by a coil carrying the measurement current. The reflex torque is provided by
an additional magnet. The rotary magnet meter is very robust. Unlike the moving-coil
instrument, no current leads are required to the moving parts.

Electrostatic movement: This technique uses the electrostatic force of two capacitor elec-
trodes. It can onlymeasure voltages, but with very small internal power consumption. Its
application is forDCandACvoltagemeasurement (up to theRF range).The electrostatic
instruments measure the RMS values of the voltage.

Thermal instruments: These instruments use the thermal expansion of current-carrying
conductors and are implemented as hot-wire measuring systems or as bimetallic in-
struments. Their characteristics are high internal power consumption and long settling
times. Thermal instruments are RMS meters.

Induction instruments: Two coils shifted 90◦with respect to each other haveAC currents
of the same frequency passing through them.They induce eddy currents in an aluminium
cylinder, which produces a torque on a spring. Induction measurement devices are
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instruments that use the product of the two currents (only forAC currents). The domestic
electricity meter uses an aluminium disc that continuously rotates in the field of a
permanent magnet (Fig. 4.5).

Fig. 4.5. Construction of an induction instrument to measure the electrical work performed

Electrodynamic ratio meter: This instrument is derived from the ratiometer-type
moving-coil instrument seen earlier, but the outer magnetic field is generated by a
second current coil. The pointer deflection depends on the quotients of the moving coil
currents and on the phase of the measurement current with respect to the induction
current. Electrodynamic ratio instruments are mostly used as power factor meters. The
cross-coil instrument uses two right-angled inductor coils instead of the usual cross-
coil. The inductor coils can rotate freely in its rotation field, thus enabling the use of a
360◦ scale.

Vibration instrument: Several tuned steel reeds are spring-mounted in the alternating
magnetic field of a current-carrying coil. The reed, whose resonant frequency corre-
sponds to the actual current frequency, oscillates with the largest amplitude (Fig. 4.6).

Fig. 4.6. Scale of a reed frequency meter
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4.1.6 Overview: Electrical Instruments

A summary of the types of electrical instruments is given in Table 4.1.

Table 4.1. Summary of electrical instruments

Circuit
symbol Instrument Measured quantity Scale function

Moving-coil I, V − α = c · ī
Average value

Moving-coil
with rectifier I, V � α = c · |i|

Rectified value

Moving-coil with
thermoconverter I � α = c · I 2

RMS

Moving-iron I, (V ) � α = f (I 2)
RMS

Moving magnet I, V − α = c · Ī
Arithmetic average value

Ratio moving-coil R − α = f

(
I1

I2

)

Electrodynamic P � α = f (I1 · I2 · cosϕ12)

Electrostatic V � α = f (V 2)
RMS

Hot-wire
bimetallic I � α = f (I 2)

RMS

Induction W ∼ σ = c·
∫

I1·I2·cosϕ12 d t

Electrodynamic
ratio cosϕ ∼ α = f

(
I1

I2
, ϕ13, ϕ23

)

The scale function α represents the relationship between the measured quantities and the
pointer deflection, and c is the respective device constant.
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4.2 Measurement of DC Current and Voltage

4.2.1 Moving-Coil Instrument

The moving-coil instrument is the most used DC measurement instrument because of its
comparatively small internal power consumption and the high accuracy it achieves. The
measured current flows through the instrument coil. Usual measured currents, for which
the instrument displays full-scale deflection, lie between 10 A and 10 mA. The internal
resistance of an unconnected moving-coil instrument is relatively high. Due to this quality
the moving-coil instrument can be used as voltmeter as well. The current through the
measurement coil is proportional to the applied voltage. The scale is calibrated in volts.

VM = IM · RM (4.1)

VM: voltage on the instrument for full-scale deflection;
IM: measurement current for full-scale deflection;
RM: internal resistance of the instrument.

4.2.2 Range Extension for Current Measurements

To extend the measurement range, the measured current is split between the instrument
coil and a parallel shunt resistor RSh. By varying the value of the shunt resistor, different
measurement ranges can be obtained (Fig. 4.7).

Fig. 4.7. Measurement range extension using a shunt resistor

Example: An instrument with IM = 50 A full-scale deflection and internal resistance
RM = 2 k� is to be extended to a measurement range of 10 mA.

The magnitude of the voltage drop on the instrument for full-scale deflection is
100 mV. Therefore the value of the shunt resistor is RSh = 100 mV/9950 A =
10.05 �.

In general,

RSh = IM · RM

I − IM
(4.2)

therefore I is the current for full-scale deflection in the desired measurement range.

If several measurement ranges were desired, the switch would lie in series with the shunt
resistor. In this case, the resistance of the switch would not be negligible because of the
very low impedance of the shunt resistor RSh. This is avoided in the circuit in Fig. 4.8.

Depending on the switch position, the resistors RSh1, RSh1 + RSh2 or RSh1 + RSh2 + RSh3

act as the shunt resistor. The instrument, with some resistors in series, lies in parallel. The
sum of all of the measurement resistances and the internal resistance of the instrument is

RSum = RSh1 + RSh2 + RSh3 + RM
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Fig. 4.8. Current measurement range extension, where the conductivity resistance RC of the switch does not
affect the measurement

In order to determine the individual resistor values,RSum is calculated as follows (Fig. 4.8):

Switch in position 3: The voltage drop on the instrument is equal to the drop over all
the shunt resistors. Therefore, I3 is the current for full-scale deflection in measurement
range 3.

IM · RM = VM = (I3 − IM) · (RSh1 + RSh2 + RSh3)

⇒ RSum = IM·RM
I3−IM

+ RM

Switch in position 1: Equating the voltage drop as before yields

(I1 − IM) · RSh1 = IM · (RSh2 + RSh3 + RM) = IM · (RSum − RSh1)

⇒ RSh1 = IM
I1
· RSum

Switch in position 2:

RSh2 = IM

I2
· RSum − RSh1

Switch in position 3:

RSh3 = IM

I3
· RSum − (RSh1 + RSh2)

Example: An instrument with IM = 500 A and an internal resistance RM = 1 k� is to be
extended to an ammeter with a measurement range I1 = 100 mA, I2 = 30 mA
and I3 = 10 mA. The magnitude of the sum resistance is RSum = 1052.63 �.
The values of the shunt resistors are RSh1 = 5.26 �, RSh2 = 12.28 � and
RSh3 = 35.09 �. The sum resistance value is given to several decimal digits as
the equations require very similar resistance values to be subtracted from each
other.

4.2.3 Range Extension for Voltage Measurements

To measure larger voltages, resistors are used in series with the moving-coil instrument.
For a full-scale deflection at the voltage V , the series resistor R1 is given by

R1 = V

IM
− RM (4.3)

where IM is the current through the instrument at full-scale deflection, and RM is the
internal resistance of the instrument. The internal resistance of the voltmeter (instrument
and series resistance) is often related to the voltage at full-scale deflection.
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• The voltage-related internal resistance is the reciprocal of the instrument current at
full-scale deflection (expressed in �/ V).

Example: A voltmeter is to be realised for the measurement range 10 V, 30 V and 100 V
using a moving-coil instrument with IM = 50 A and RM = 1 k�. The mag-
nitude of the instrument’s voltage-related internal resistance is 20 k�/V. Thus
the total resistance in the measurement range of 10 V is 200 k�, of 30 V is
600 k� and of 100 V is 2 M�. The actual values of the measurement resistors
are given in Fig. 4.9.

Fig. 4.9. Voltmeter with series resistors

4.2.4 Overload Protection

In order to avoid an overload in the moving-coil instrument, it is bridged by two parallel
opposite-sense diodes (Fig. 4.10). If the voltage on the instrument exceeds about 0.7V, the
diodes shunt the excess current away.A fast-blowing microfuse in the current arm handles
longer-lasting overloads.

Fig. 4.10. Overload protection in a moving-coil instrument

4.2.5 Systematic Measurement Errors in Current and
Voltage Measurement

Current Measurement

Fig. 4.11. Systematic measurement error in current measurement
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Without the measurement instrument, the current flowing is I = V/R. By inserting the
ammeter with the internal resistance RM the current reduces to I = V/(R + RM), see
Fig. 4.11.

• In current measurement the current is usually measured too low. The absolute mea-
surement error decreases with decreasing ammeter internal resistance.

The magnitude of the systematic relative measurement error is

�I

I
= − RM

RM + R
≈ −RM

R
, RM � R (4.4)

Example: A systematic measurement error smaller than 1% is achieved if the ammeter
internal resistance is at least 100 times smaller than the resistance in the current
loop.

Voltage Measurement

Fig. 4.12. Systematic measurement error in voltage measurement

By measuring a voltage Vo/c and Rint the voltmeter resistance RM loads the voltage source,
and therefore the terminal voltage decreases a little. The measured voltage is V (Fig. 4.12).

• In voltage measurement the voltage is generally measured too low. The measurement
error decreases with increasing voltmeter internal resistance RM.

The magnitude of the systematic relative measurement error is

V − Vo/c

Vo/c
= RM

Rint + RM
− 1 = −Rint

Rint + RM
≈ −Rint

RM
, RM � Rint (4.5)

Example: A systematic measurement error smaller than 1% is achieved if the voltmeter
internal resistance is at least 100 times higher than the internal resistance of the
voltage source.

4.3 Measurement of AC Voltage and AC Current

4.3.1 Moving-Coil Instrument with Rectifier

The configuration most frequently employed in measuring AC voltages is a moving-coil
instrument equipped with a rectifier (Fig. 4.13).

Thediodes rectify themeasured current. For smallmeasuredvoltages the threshold voltages
of the diodes are noticeable.This effect is less apparent in the circuit on the right in Fig. 4.13.
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Fig. 4.13. Moving-coil instrument with rectifier; left with bridge, right with one-way rectifier

Here a single diode lies in series with the instrument. The replication of the measurement
arm through the resistor RM and the diode D2 ensures that AC current flows through the
configuration.

• Moving-coil instruments with an average-value rectifier display the rectified value.

Note: The scale on instruments are usually calibrated to display the RMS values
for sinusoidal voltages. Measurements of nonsinusoidal waveforms must be
corrected by a form factor (see Sect. 3.2.2).

Example: A rectangular voltage with a peak value ±1 V is measured with a moving-coil
instrument. The RMS and the rectified values are 1 V for this waveform. The
instrument deflection is proportional to the rectified value.

On the other hand, a sinusoidal voltage with a rectified value of 1 V has an RMS
value of kf · |v| ≈ 1.11 V. For the rectangular voltage a moving-coil instrument
displays thus an RMS voltage of 1.11 V. Consequently, there is a systematic
measurement error of 11%.

• For small AC voltages the scale is clearly nonlinear.

Note: TheAC voltage to bemeasured can be increased by transformers. The influence
of the diode’s characteristic curve then decreases. The transformer, however,
limits the frequency range, where the lower limit is approx. 30 Hz and the upper
limit is approx. 10 kHz.

Fig. 4.14. Voltage–current transformation to measure small AC voltages

The circuit in Fig. 4.14 converts the inputAC voltage into a proportional AC current using
the resistance R. The output current of the operational amplifier changes in a manner
such that the voltages on the inverting and the noninverting inputs are always equal. This
conversion to current means that the display is independent of the nonlinearities of the
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diodes. A suitable choice of R allows very small AC voltages (1 mV) to be measured.

iM = |VAC|
R

⇒ Selection: R = VAC

IM
(4.6)

where VAC is the AC voltage for full-scale deflection, and IM is the the instrument current
for full-scale deflection. Measurement range extension can be achieved by inserting a
voltage divider before the converter circuit.

AC currents flowing into the instrument are to be avoided when measuring high-frequency
AC voltages. A peak-value rectifier is set up away from the instrument in a RF probe and
passes only DC voltage to the instrument (Fig. 4.15). The display is suitably calibrated to
be proportional to the peak-to-peak value.

Fig. 4.15. Peak-value rectifier for measuring high-frequency voltages

4.3.2 Moving-Iron Instruments

The simplest instrument for measuring AC voltages and currents is the moving-iron in-
strument. This is an RMS meter, which therefore also displays the correct values for non-
sinusoidal currents. Care must be taken when using it as a voltmeter as its large inductance
attenuates harmonics. Therefore, the instrument must be frequency-compensated.

Moving-iron instruments were frequently used for monitoring machinery, usually in con-
junction with current or voltage transformers.

4.3.3 Measurement Range Extension Using an Instrument
Transformer

Apart from measurement range extension through series and shunt resistors, as outlined
previously, current and voltage transformers also offer the possibility to measure extensive
AC quantities. Instrument transformers have high-tolerance conversion ratios. They also
offer the advantage that the measurement is electrically isolated from the mains.

Voltage transformers step down/up the measured voltage according to the winding ratio.
Common secondary-side voltages are 100 V or 100/

√
3 V for three-phase applications.

The specification is given on the identification plate, e.g. 380 V/100 V. The terminals of
the voltage transformer on the primary side are denoted by U and V , and on the secondary
side by u and v. Unused voltage transformers that are connected on the primary side are
left open-circuit on the secondary side. The primary winding usually consists of many
windings of thin copper wire (high voltage, small current).

Current transformers step down the measurement current in inverse proportion to the
winding ratio. Common secondary side currents are 5 A, and occasionally 1 A. The spec-
ification is given on the identification plate, e.g. 25 A/5 A. The terminals of the current
transformer are denoted on the primary side by K and L, and on the secondary side by k
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and l. Unused current transformers that are connected on the primary side have to be short-
circuited on the secondary side. The primary winding usually consists of few windings
of thick copper wire, which surrounds one or more times the core linking the secondary
coil. A special construction is a hinged version of the current transformer, which can be
looped around the conductor. When used with an ammeter this is known as a clip-on
ammeter.

Note: When using instrument transformers, it is possible to sum up the currents (volt-
ages) of several sections on the display. The secondary side of the instrument
transformer must be connected with the correct poles in parallel for current
transformation, and in series for voltage transformation.

For an instrument transformer a current or voltage error is specified. This is the guaran-
teed upper limit of the error of the secondary side current (voltage) from the correct value.
Because of the (tiny) losses in the transformer, there is a small phase shift of some angular
minutes between the input sinusoidal quantity and the output quantities. This is specified
as the phase error. The phase error is important when two measurement quantities are
related, for example, in power measurement. Instrument transformers must be loaded with
their nominal load to stay within their specified error limit. Current transformers act
at their secondary side like a current source. Therefore the nominal load has a very low
resistance (nearly short-circuit). Voltage transformers act at their secondary side like a
voltage source. Therefore the nominal load has a very high resistance (nearly infinity).

An instrument transformer’s load is often also given as themaximumdeliverable apparent
power in units of VA. For current transformers values are in the range 1–60 VA, and for
voltage transformers 10–300 VA.

4.3.4 RMS Measurement

The scales of most measurement instruments for AC quantities are calibrated for RMS.
But if the measurement device is not a true RMS meter, then the displayed value is correct
only for the waveform the instrument has been calibrated for (normally sinusoidal).

For the measurement of RMS values (so-called true RMSmeasurement) there are different
options.

RMS meters are measurement instruments that measure the RMS value because of their
operating principle. These include:

• moving-iron instruments,

• thermal instruments,

• electrodynamic instruments with both coils in series,

• electrostatic instruments (for voltages).

Moving-coil instrument with thermal transformer: The current to be measured heats
up a resistor, whose temperature is measured by a thermal element. A moving-coil
instrument that is calibrated to give RMS values of the current is connected to this
thermal element (Fig. 4.16).

Instrument with analogue RMS calculator: This circuit is the electronic (analogue) re-
alisation of the defining equation for the RMS value (Fig. 4.17).
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Fig. 4.16. Symbol for a moving-coil instrument with thermal transformer for RMS measurement. In the
configuration on the right the thermal element is isolated from the measurement loop

Fig. 4.17.Principle of the circuit for RMSgeneration of themeasurement quantity.Actual application circuits
are realised in a sightly different manner

Digital measurement devices: The quantity to be measured is sampled, and the sampled
values inserted into the RMS defining equation and calculated by a microprocessor,
before being displayed.

Note: The RMS voltage measurement is often problematic. Voltmeters are used in
parallel and represent a frequency-dependent load. Different frequencies are
weighted in different ways. For this reason the instrument should be frequency-
compensated.

4.4 Power Measurement

4.4.1 Power Measurement in a DC Circuit

The power dissipated in a load can be determined through the measurement of the current
through and the voltage drop across the load.

Fig. 4.18. Determination of the power in a DC circuit: circuit for a) correct current measurement; b) correct
voltage measurement

The voltage error circuit or correct current measurement is shown in Fig. 4.18a. The
voltage actually measured as being across the load is higher by the voltage drop on the
ammeter.

The current error circuit or correct voltage measurement is shown in Fig. 4.18b. The
current actually measured as flowing through the load is higher by the amount flowing
through the voltmeter.
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Note: If the delivered source power is to be precisely measured, rather than the power
dissipated in the load, the circuits in Figs. 4.18a and 4.18b swap roles as sum-
marised in Table 4.2.

Table 4.2. Measurement of DC quantities

Measurement quantity Load Suitable circuit
High ohmic Correct current (a)Load power
Low ohmic Correct voltage (b)
High ohmic Correct current (b)Source power
Low ohmic Correct voltage (a)

To directly display the measurement, electrodynamic measurement instruments are used
as power meters. One of the coils is used as a current path, and the other as a voltage
path. The basic circuit and its systematic error are analogous to the measurement with two
instruments.

Fig. 4.19. Power determination in a DC circuit with a wattmeter: a) configuration for correct current;
b) configuration for correct voltage

Figure 4.19a shows the configuration for correct current,while that inFig. 4.19b shows the
configuration for correct voltage. The comments on measurement with two instruments
apply here as well.

Note: The display on wattmeters shows the product of the currents in the current
and voltage paths. An overload of an individual path is possibly not visible on
the display. For this reason, it must be made sure that neither the current nor
the voltage exceed the permitted values.

Note: In applications where the current flow can reverse (e.g. in rechargeble batteries
with charging circuitry), wattmeters with centred null positions or those with
toggle switches are placed in the path.

4.4.2 Power Measurement in an AC Circuit

In anAC circuit with sinusoidal currents and voltages, the power measurement (Fig. 4.20)
must differentiate between:

• apparent power S = V · I given in VA,

• real power P = V · I · cosϕ given in W,

• reactive power Q = V · I · sin ϕ given in var,
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Here, I and V are the RMS values of current or voltage (sinusoidal quantities!). The
apparent power, like DC power, is determined with a voltmeter and an ammeter, as
shown in Fig. 4.18 and the related comments.

Real power is measured with electrodynamic or induction instruments, that takes into
account the phase shift of current and voltage. As for the DC measurement there is a
correct current and correct voltage measurement configuration (Fig. 4.19).

Reactive power is measured with a wattmeter, in whose voltage path the current is shifted
by 90◦ by a phase-shifting circuit.

Fig. 4.20. Measurement configuration to determine a) the apparent power; b) the real power; and c) the
reactive power

Note: In current loops with a high proportion of reactive power, a wattmeter can be
overloaded without giving any indication on the display. In these cases the
current in the current path must be controlled.

Note: Care must be taken with nonsinusoidal voltages and/or currents! The power
measurement can be in error because:

• any phase-shifting circuit present may only be designed for one frequency,

• in the voltage path the harmonics are very strongly attenuated

This is regularly the case for loads that use SCRs∗, current rectifiers or similar
components.Any power factor measurement is then usually error-prone or even
pointless.

4.4.2.1 Three-Voltmeter Method

A known resistance is inserted before a complex load.

The real power can be calculated from the three measured voltages (Fig. 4.21):

P = V 2
total − V 2

R − V 2
Z

2R
(4.7)

The three-ammeter method works in a similar fashion. A known resistance is inserted
parallel to the complex load.

The real power can be calculated from the three measured currents (Fig. 4.22):

P = R

2
· (I 2

total − I 2
R − I 2

Z

)
(4.8)

∗ SCR: silicon controlled rectifier such as thyristor, triac
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Fig. 4.21. Three-voltmeter method for power determination and the related vector diagram

Fig. 4.22. Three-ammeter method for power determination and the related vector diagram

The reactive power Q can also be calculated from the readings in the three-voltmeter
method, by applying the following relationship

cosϕ = V 2
total − V 2

R − V 2
Z

2 · VR · VZ
, sin ϕ =

√
1− cos2 ϕ, S = VZ · VR

R

which yields

Q =
√
1− cos2 ϕ · VZ · VR

R

4.4.2.2 Power Factor Measurement

The power factor (PF) can be calculated from the apparent power (measured with a volt-
meter and an ammeter) and the real power (measured with a wattmeter).

A directly displayed measurement is carried out by the electrodynamic quotient instru-
ment, as shown in Fig. 4.23.

Fig. 4.23. Power factor measurement with electrodynamic quotient instrument

The application is limited to a narrow frequency range due to the requirement of a phase-
shifting inductance (typically 49.5–50.5 Hz).

The display is approximately proportional to tan ϕ, where ϕ is the phase angle. The scale
is mostly calibrated, however, in values of cosϕ, e.g. (+0.4 capacitive to+0.4 inductive).
The instrument does not have reset/return-to-zero capability, so the display is not defined
for currentless situationa. Some special constructions have a 360◦-scale.



4.4 Power Measurement 185

4.4.3 Power Measurement in a Multiphase System

This section describes the measurement of the

• apparent power with three voltmeters and three ammeters,
• real power with one, two or three wattmeters,
• reactive power with a suitable phase shift of the voltage. No phase shift is required in

a multiphase network, because the 90◦-shifted voltage is available.

4.4.3.1 Measurement of the Real Power in a Multiphase System

Three wattmeters are required for asymmetrical loading in a four-conductor system
(Fig. 4.24). The total real power is the sum of the powers measured on each of the outer
conductors.

P = P1 + P2 + P3 = V1N · I1 · cosϕ1 + V2N · I2 · cosϕ2 + V3N · I3 · cosϕ3

Fig. 4.24. Real power measurement in a four-conductor system with asymmetrical loading

Note: The powersP1 toP3 could also bemeasured step by stepwith a singlewattmeter.

For symmetrical loading V1N = V2N = V3N, I1 = I2 = I3 and cosϕ1 = cosϕ2 = cosϕ3.
For symmetrical loading in a four-conductor system, one wattmeter, whose scale is
suitably calibrated, is sufficient (Fig. 4.25). The power measured by the instrument is PM.
The total power is therefore

P = 3 · PM

Fig. 4.25. Real power measurement in a symmetrically loaded four-conductor system

In a three-conductor system the neutral conductor is missing. An artificial zero-point
can be created for power measurement. The resistance RV + RM is the total resistance of
the wattmeter’s voltage path (Fig. 4.26).
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Fig. 4.26. Real power measurement in a symmetrically loaded three-conductor system with an artificial
zero-point

For asymmetrical loading in a three-conductor system the circuit in Fig. 4.24 is extended
by adding an artificial zero-point. The two-wattmeter method is used for the same purpose
with less handling required (Fig. 4.27, an Aron-circuit).

Fig. 4.27. Real power measurement in an asymmetrically loaded three-conductor system using the two-
wattmeter method

The voltage in the instrument’s voltage path is higher by a factor of
√
3 with respect to the

measurement with the neutral conductor. The real power in the load is equal to the sum of
the displayed values on both wattmeters.

P = PM1 + PM3

Note: A display can be negative for large phase shifts and the signs must therefore be
taken into account. Therefore the correct polarity must be carefully considered.
Wattmeters with central zero-points or toggle switches are used.

4.4.3.2 Measurement of the Reactive Power in a Multiphase System

The measurement of reactive power in a multiphase system is possible without using a
phase-shifting circuit, since the 90◦-shifted voltage is available on other outer conductors.

Fig. 4.28. Reactive power measurement in a symmetrically loaded four-conductor system

The measurement of the reactive power for symmetrical loading is shown in Fig. 4.28 as
an example. The voltage V23 between the outer conductors L2 and L3 is shifted by 90◦ with



4.5 Measurement Errors 187

respect to the voltage V1N . However, it is greater by a factor of
√
3. The total (symmetrical)

reactive power is thus

Qtotal = 3 · Q√
3
= √3 ·Q

The correct reading can be obtained by suitable choice of the series resistors or by using
an instrument transformer with a suitable conversion ratio.

A three-wattmeter circuit permits the measurement of the reactive power for asymmet-
rical loading in which the voltage paths are fed respectively with voltages shifted by 90◦
with respect to the real power measurement (Fig. 4.29). This only produces correct results
provided that the voltage vectors are not shifted by the load.

Fig. 4.29. Reactive power measurement in an asymmetrically loaded three-conductor system (series resistors
are not shown)

The magnitudes of the voltages must be corrected by a factor of
√
3:

Q = 1√
3
· (Q1 +Q2 +Q3)

4.5 Measurement Errors

4.5.1 Systematic and Random Errors

Every measurement process is subject to error. Error sources can be in the measurement
device or in the measurement method, in external quantities such as temperature or stray
fields, as well as in the reading of the device. Errors are classified as systematic or random
errors.

Systematic errors are caused by inadequacies of the measurement devices or an inappro-
priate measurement technique. Such errors are reproducible and can be compensated.

Random errors do not have definite causes. They are normally not the same if the mea-
surement is repeated and therefore cannot be corrected.

• The display error (expressed in %) usually is expressed with respect to the full-scale
value. For scales whose zero-point does not lie at the scales’boundaries, the sum of both
scales’ end values is taken together as the reference value.

Note: Instrumentswith highly nonlinear scales,without a zero-point or reed frequency
meters are not covered by this definition. The reference value then is the true
value or is shown on the instrument.
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4.5.2 Guaranteed Error Limits

Manufacturers of measurement devices guarantee that their instrument’s display error
will not exceed certain limits, under defined environmental and operating conditions. For
measurement instruments classes of precision have been defined (Table 4.3).

Table 4.3. Classes of precision for measurement instruments

Classes of Precision (VDE 0410)
Specification (%)

0.1 0.2 0.5 1 1.5 2.5 5

Example: An instrument of precision class 1.5 with a maximum value of 300 V displays
a measured value of 100 V. How large can the relative error of the display be?
The absolute measurement error can be up to 4.5V. For a display value of 100V

this yields
4.5 V

100 V
= 4.5%

• The measurement range of an instrument should always be chosen so that the meaured
value is in the upper third of the scale.

4.6 Overview: Symbols on Measurement Instruments

A summary of the symbols found on measurement instruments is given in Table 4.4. See
also instrument symbols in Sect. 4.1.6.

Table 4.4. Symbols on measurement instruments

DC instrument

AC instrument

DC and AC

Multiphase instrument with one movement

Multiphase instrument with two movements

Multiphase instrument with three movements

Isolation-testing voltage 500 V

Isolation-testing voltage higher than 500 V, here 2 kV

No voltage testing
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Table 4.4. (cont.)

Perpendicular operation position

Horizontal operation position

Diagonal operation position, specification of the angle of
inclination

Class signs for display error,with respect to themeasurement
range end value

Class signs for display error, with respect to the scale length

Class signs for display error, with respect to the true value

Rectifier in a device (in addition to the instrument symbol)

Electronic circuit in a device

Indication of separate shunt resistance

Indication of separate series resistance

Electrostatic shielding

Magnetic shielding

ast Astatic instrument

Maximum allowable quantity of an interfering field, here
5 mT

Protective conductor termination

Pointer zero-position adjustment

Warning! Follow operating instructions

Testing voltage does not comply with VDE

Danger, high-voltage exposure on instrument
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4.7 Overview: Measurement Methods

CheckTable 4.5 where to find information about themeasurement of the electrical quantity
given in the first column.

Table 4.5. Cross-reference for measuring electrical quantities

Measurement quantity Section
DC current 4.2.2
DC voltage 4.2.3
AC current 4.3.2
AC voltage 4.3.1
RMS 4.3.4
Power in a DC circuit 4.4.1
Real power 4.4.2
Reactive power 4.4.2
Power factor 4.4.2.2
Power in a multiphase circuit 4.4.3.1
Reactive power 4.4.3.1
Impedance 3.7.6.2

4.8 Notation Index

c device constant
cosϕ power factor

Ī arithmetic average value of current
�I systematic current-measurement error
I1, I2, I3 outer conductor currents
IM current through instrument for full-scale deflection
IR current through resistance
IZ current through unknown impedance Z

kf form factor
P real power
PM1, PM2 displayed power
Q reactive power
RA internal resistance of ammeter
Ri internal resistance of voltage source
RM instrument’s internal resistance
RSh shunt resistor
RSum total resistance
RV series resistance
S apparent power

|v| rectified value
V1N, V2N, V3N star voltages
Vo/c open circuit voltage, terminal voltage
VM voltage across instrument for full-scale deflection
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VR voltage across resistor
VZ voltage across unknown impedance Z

ϕ13 phase angle between I1 and I3

σ scale function

4.9 Further Reading

Bently, J. P.: Principles of Measurement, 3rd Edition
Longman (1997)

Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)



5 Networks at Variable Frequency

Often in communications the internal structure of a system is of no particular interest.
It is more interesting to consider the behaviour of the input and output signals, which in
most cases are voltages (Fig. 5.1). The system is described by a function that represents
the transformation of an input signal to an output signal. Such systems are often called
black-box systems.

vout = T (vin)

Fig. 5.1. A system with input and output signals

5.1 Linear Systems

Many systems can be considered linear to a good approximation. It then holds that

T (α · vin) = α · T (vin) (5.1)

• The output signal is proportional to the input signal.

T (v1 + v2) = T (v1)+ T (v2) (5.2)

• Either input signal is treated independently of any other input signal (Fig. 5.2).

Fig. 5.2. Principle of superposition in linear systems

The approach shown in Eq. (5.2) and Fig. 5.2 is called the principle of superposition.

• When linear systems are fed with a harmonic input signal they produce a harmonic
output signal of the same frequency, while amplitude and phase usually change.

Note: Systems that react to harmonic input signals with nonharmonic output sig-
nals are called nonlinear systems. The output signal of such systems contains
components of frequencies different from the input signal.

5.1.1 Transfer Function, Amplitude and Phase Response

The behaviour of linear systems in response to harmonic input signals of different frequen-
cies is described by the transfer function G(ω).

transfer function = output value

input value

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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An independent variable of the transfer function is the (angular) frequency of the harmonic
input signals.

G(ω) = vout

vin
, only for harmonic signals (5.3)

This equation causes trouble for signals at zero-crossings. The following equation is there-
fore more suitable:

vout(ω) = G(ω) · vin(ω) (5.4)

In general, the transfer function is complex valued. This implies that the amplitude as well
as the phase of the input signal is affected.

Example: Figure 5.3 shows a low-pass filter.

Fig. 5.3. Low-pass filter as voltage divider

The transfer function is

G(ω) = vout

vin
= 1/jωC

1/jωC + R
= 1

1+ jωRC

The transfer function is also known as the (complex) frequency response. It can be split
up into the magnitude and the phase components.

G(ω) = |G(ω)| · e jϕ(ω) (5.5)

|G(ω)| or |G(f )| are called the magnitude or gain frequency characteristic, or just
the magnitude or gain response of a system. ϕ(ω) is called the phase frequency char-
acteristic or the phase response. Often G(ω) is represented in a logarithmic form. The
magnitude response can be written as

A(ω) = 20 log10 |G(ω)| (dB) (5.6)

This is a ratio of two values expressed in decibels (dB).

Table 5.1. Typical values of amplification and magnitude response

Typical values
Amplification Magnitude response
v = |G(ω)| A(ω)

1 0 dB√
2 ≈ 3 dB

1/
√
2 ≈ −3 dB

2 ≈ 6 dB
4 ≈ 12 dB
10 20 dB
0.1 −20 dB
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Example: What is the gain of a system with an amplification of 14 dB?
A(ω) = 20 log10 |G(ω)|. The table yields

14 dB = 20 dB− 6 dB⇒ v = 10

2
= 5, G(ω) = 10

A(ω)

20 = 10
14
20 = 5

Note: The following representation is also used in communications:

G(ω) = e−(Ã(ω)+jB(ω)) = e−Ã(ω) · e−jB(ω) (5.7)

In this case Ã(ω) is the attenuation factor, and B(ω) is the phase factor of
a system. Table 5.1 gives some typical values for amplification and magnitude
response.

The transfer function is often represented in a Bode plot, where the gain response is drawn
against the logarithm of the frequency (Fig. 5.4). The phase is represented separately.

Fig. 5.4. Bode plot of the transfer function of the low-pass filter in the previous example

5.2 Filters

Filter circuits are circuits with transfer functions that enable the magnitude and the phase
of the individual frequency components of the input signal to be modified by different
amounts, for example,

• low-pass filters (LPF),
• high-pass filters (HPF),
• bandpass filters (BPF),
• band-stop or notch filters,
• all-pass filters (APF).

Ideally, signals in the pass-band should pass through the filter without being changed.
Signals in the stop-band should be attenuated as much as possible.
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5.2.1 Low-Pass Filter

Figures 5.5 and 5.6 show the schematic symbols and characteristic plots of a low-pass
filter, respectively.

Fig. 5.5. Schematic symbols for low-pass filters

Fig. 5.6.Characteristic plot of the attenuation and themagnitude response of the low-pass filter.The stop-band
is shaded in grey

• At the cutoff frequency fc, the amplitude of the signal is 1/
√
2 = 0.707 times smaller

than for a DC signal. This means that the gain response has decreased to −3 dB, or the
attenuation has a value of 3 dB.

• The pass-band reaches from DC up to the cutoff frequency.

• The stop-band commences for frequencies above the cutoff frequency.

5.2.2 High-Pass Filter

Figures 5.7 and 5.8 show the schematic symbols and characteristic plots of a high-pass
filter, respectively.

Fig. 5.7. Schematic symbols for high-pass filters

Fig. 5.8. Characteristic plot of the attenuation and the magnitude response of the high-pass filter. The stop-
band is shaded in grey
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• At the cutoff frequency fc, the amplitude of the signal is 1/
√
2 = 0.707 times smaller

than for very high frequencies. This means that the gain response has decreased to
−3 dB, or the attenuation has a value of 3 dB.

• The pass-band commences for frequencies above the cutoff frequency.
• The stop-band reaches from DC up to the cutoff frequency.

5.2.3 Bandpass Filter

Figures 5.9 and 5.10 show the schematic symbols and characteristic plots of a bandpass
filter, respectively.

Fig. 5.9. Schematic symbols for bandpass filters

• The bandpass filter has a lower cutoff frequency fcl and an upper cutoff frequency
fcu.

• The centre frequency f0 is the arithmetic mean of both cutoff frequencies.

f0 = fcl + fcu

2

• The bandwidth B is the difference between the two cutoff frequencies.
• The relative bandwidth is the ratio of the bandwidth to the centre frequency expressed

in percent.

Brel = B

f0
· 100%

• The quality factor Q, or Q-factor is the ratio of the centre frequency to the bandwidth.

Q = f0

B

• The shape factor F is a measure of the steepness of the bandpass filter slopes. It is the
ratio of the 3 dB and the 20 dB bandwidths.

F = B3 dB

B20 dB

The closer this value is to 1 the steeper is the roll-off of the filter.

Note: The harmonic mean of both cutoff frequencies is also referred to as the centre
frequency.

f0 =
√

fcl · fcu

Fig. 5.10. Characteristic plot of the attenuation and the magnitude response of the bandpass filter
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5.2.4 Stop-Band Filter

Stop-band filters are the complement to bandpass filters (Fig. 5.11). Stop-band filters are
used to suppress a specific frequency range. A notch filter is used to suppress a specific
single frequency.

Fig. 5.11. Schematic symbols for stop-band filters

5.2.5 All-Pass Filter

All-pass filters have a constant magnitude response over the frequency, that is, the atten-
uation is identical for all frequencies. However, the phase is changed depending on the
frequency.

5.3 Simple Filters

5.3.1 Low-Pass Filter

Figure 5.12 shows a first-order low-pass filter. Its (complex) transfer function is given by

G(ω) = 1/jωC

1/jωC + R
= 1

1+ jωRC
(5.8)

Note: The circuit is regarded as a voltage divider to determine the transfer function.

Fig. 5.12. First-order low-pass filter

The magnitude response is the magnitude of the transfer function:

|G(ω)| = 1√
1+ (ωRC)2

(5.9)

The phase response is the phase difference between the output voltage and tha input
voltage ϕ(ω) = ϕv out − ϕv in:

ϕ(ω) = arctan

[
Im(G(ω))

Re(G(ω))

]
= − arctan (ωRC) (5.10)

The gain response and the phase response are represented in Fig. 5.13 in a Bode plot.
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Fig. 5.13. Bode plot of a low-pass filter

For the special angular frequency ωc = 1/RC, it holds that

|G(ωc)| = 1√
2
=̂ − 3 dB

fc = ωc/2is the cutoff frequency or corner frequency of the low-pass filter. The phase
at the cutoff frequency is given by

ϕ(ωc) = arctan(−1) = −

4
, or (−45◦)

• At the cutoff frequency ωc the gain of the low-pass filter is 3 dB lower than the DC gain.

The phase shift between the input signal and the output signal is then


4
, or 45◦.

5.3.1.1 Rise Time

The step response of a low-pass filter can be estimated in the time domain from its cutoff
frequency fc.

Fig. 5.14. Definition of rise time
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The rise time is the time interval required by the signal to rise from 10% to 90% of the
steady-state value Fig. 5.14. Between the rise time tr and the critical frequency fc the
following relationship holds:

tr ≈ 1

3fc
≈ 2

ωc
(5.11)

Example: An oscilloscope with a critical frequency of 30 MHz has a rise time tr of
approximately 1/(3 · 30 · 106) s ≈ 10 ns.

5.3.2 Frequency Normalisation

All low-pass filters with a structure as in Fig. 5.12 have similar transfer functions except
for the parameter ωc. In order to describe all low-pass filters with this structure uniformly,
a frequency normalisation relative to the cutoff frequency is done:

Normalisation: � := ω

ωc
= f

fc
(5.12)

De-normalisation: ω = � · ωc, f = � · fc (5.13)

� is called the normalised frequency and has no unit. Therefore the normalised critical
frequency of any low-pass filter is � = 1.

It follows that the normalised transfer function of a low-pass filter is

G(�) = 1

1+ j�

Fig. 5.15. Bode plot of a low-pass filter in frequency-normalised representation
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The normalised magnitude response is

|G(�)| = 1√
1+�2

Figure 5.15 shows the normalised frequency response of a low-pass filter.

5.3.2.1 Approximation of the Magnitude Response

The magnitude response of a low-pass filter is represented in normalised form by

A(�) = 20 log10
1√

1+�2
= 20 log10

1√
1+

(
ω

ωc

)2

For angular frequencies that are much larger than the cutoff frequency, � is much greater
than 1. The following approximation can then be made

A(�) ≈ 20 log10
1

�
= −20 log10 �, for � � 1

• Below the cutoff frequency the magnitude response is approximately constant.

• The magnitude response drops by 20 dB for a tenfold increase (decade) in frequency.
This is described as a roll-off of −20 dB/decade or −6 dB/octave (Fig. 5.16).

• At the cutoff frequency �c = 1, the magnitude response is −3 dB.

Fig. 5.16. Approximate magnitude response for a low-pass filter

5.3.3 High-Pass Filter

Figure 5.17 shows a first-order high-pass filter. Its (complex) transfer function is given
by

G(ω) = R

1/jωC + R
= jωRC

1+ jωRC
(5.14)

Note: The circuit is regarded as a voltage divider to determine the transfer function.
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Fig. 5.17. First-order high-pass filter

The magnitude response is the magnitude of the transfer function

|G(ω)| = (ωRC)√
1+ (ωRC)2

(5.15)

In normalised representation the transfer function and the magnitude response are

G(�) = j�

1+ j�
, |G(�)| =

∣∣∣∣∣ �√
1+�2

∣∣∣∣∣ (5.16)

The phase response of the high-pass filter is

ϕ(ω)=arctan

[
Im(G(ω))

Re(G(ω))

]
=arctan

(
1

ωRC

)
=arctan

(ωc

ω

)
(5.17)

In normalised representation

ϕ(�) = arctan

(
1

�

)
(5.18)

Fig. 5.18. Bode plot for a high-pass filter in frequency-normalised representation
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The magnitude and phase characteristics are represented as Bode plot in Fig. 5.18.

For the special angular frequency ωc = 1/RC, it holds that

|G(ωc)| = 1√
2
=̂ − 3 dB

Here fc = ωc/2is the cutoff frequency or corner frequency of the high-pass filter. The
phase at the cutoff frequency is given by

ϕ(ωc) = arctan(1) = 

4
or 45◦

• At the cutoff frequency ωc the gain of the low-pass filter is 3 dB lower than the gain
at very high frequencies (ω � ωc). The phase shift between the input signal and the

output signal is then


4
, or 45◦.

5.3.3.1 Approximation of the Magnitude Response

• The normalised critical frequency of the high-pass filter is �c = 1.

• The magnitude response increases by 20 dB for a tenfold increase (decade) in frequency
(Fig. 5.19). Above the cutoff frequency, the magnitude is approximately constant.

Fig. 5.19. Approximate magnitude response of a high-pass filter

5.3.4 Higher-Order Filters

Filters of higher-order are obtained when two filters are combined such that the output
signal of the first filter is the input signal of the following filter (cascade circuit, Fig. 5.20).
The filter order is dependent on the number of independent energy-storing elements (that
is, capacitors or inductors). With higher-order filters sharper roll-offs can be obtained.

Fig. 5.20. Cascaded second-order low-pass filter
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Fig. 5.21. Second-order RLC low-pass filter

The RLC filter in Fig. 5.21 is a second-order low-pass filter. Its transfer function is

G(ω) =
1

jωC

1

jωC
+ R + jωL

= 1

1+ jωRC − ω2LC
(5.19)

Similar to the series resonant circuit, a resonant frequency ωr can be defined. The transfer
function can be frequency normalised as follows:

ωr = 1√
L · C, � = ω

ωr

In normalised form the transfer function is

G(�) = 1

1+ jR

√
C

L
�−�2

(5.20)

The quantity

D = R

2

√
C

L

Fig. 5.22. Bode plot of the RLC filter shown in Fig. 5.21 with different damping ratios
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is called the damping ratio (see also Sect. 1.2.6). Using this quantity the normalised
transfer function is

G(�) = 1

1+ 2jD�−�2
(5.21)

The shape of the amplitude/frequency characteristic and the phase response is essentially
determined by the damping ratio D. Figure 5.22 shows the Bode plot of an RLC filter with
the damping ratio as a parameter.

With low damping ratios the low-pass filter shows a pronounced resonant characteristic
and behaves similarly to a bandpass filter. The characteristic plot of the phase becomes
steeper as the damping ratio decreases.

5.3.5 Bandpass Filter

Figure 5.23 shows a series resonant circuit acting as a bandpass filter.

Fig. 5.23. Example of an RLC bandpass filter

Regarding this as a complex voltage divider, it follows that the transfer function is

G(ω) = R

R + jωL+ 1

jωC

= jωRC

jωRC − ω2LC + 1

The frequency is normalised to the resonant frequency ω0 = 1/
√

LC of the resonant
circuit

G(�) =
j�RC

1√
LC

j�RC
1√
LC

−�2 + 1
, with � = ω

ω0

Using D = R

2

√
C

L
, the normalised transfer function becomes

G(�) = 2jD�

2jD�−�2 + 1
(5.22)

where D is the damping ratio. The normalised magnitude response is

|G(�)| = 2D�√
4D2�2 + (1−�2)2

(5.23)

At the resonant frequency ω0, which is also the centre frequency of the bandpass filter, the
transfer function is

G(� = 1) = 1 ⇒ |G(ω = ω0)| = 1
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The output signal at the lower and upper cutoff frequencies of the bandpass filter is 3 dB
lower than at the centre frequency.

|G(�3 dB)|
|G(� = 1)| =

1√
2

⇒ |G(�3 dB)| = 1√
2

The indices for the cutoff frequencies are omitted in the following analysis:

|G(�)| = 2D�√
4D2�2 + (1−�2)2

= 1√
2

This leads to the equation
4D2�2 = (1−�2)2

This equation has four solutions, but only two of them yield positive frequencies

ωlwr =
√

D2 + 1−D, ωupr =
√

D2 + 1+D

where ωlwr and ωupr are the lower and upper cutoff frequencies, respectively. The nor-
malised bandwidth of the filter is 2D.

D = R

2

√
C

L
, B = R

2L
, Q = 1

R

√
L

C
(5.24)

The bandwidth of the filter decreases with decreasing the resistance R. The normalised
phase response is

ϕ(�) = arctan

[
Im(G(�))

Re(G(�))

]
= arctan

(
1−�2

2D�

)
(5.25)

Figure 5.24 shows the Bode plot of the bandpass filter for different damping ratios.

Fig. 5.24. Bode plot of the bandpass filter for different damping ratios D
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Note: For this filter the centre frequency ω0 is the harmonic mean of the lower and
the upper cutoff frequencies ωlwr and ωupr. In normalised notation:

√
�lwr ·�upr =

√
(
√

D2 + 1−D) · (
√

D2 + 1+D) = 1

5.3.6 Filter Realisation

Electrical filters can be realised in a variety of ways. Some options are listed below.

RC filters consist only of resistors and capacitors. A disadvantage is the high attenuation.
LRC filters employ additional inductors to obtain a resonant network. These have sharper

roll-offs than pure RC filters.
Reactance filters consist only of inductances and capacitances. Except for losses in in-

ductors and capacitors no resistive components appear. As a consequence, they have
high quality factors and steep slopes. They are mainly used in RF technology.

Active filters compensate for the losses of filters using operational amplifiers. With suit-
able circuits inductors can be completely avoided. Their use for high frequencies is
limited by the critical frequency of the amplifiers (see Sect. 7.7 for details).

Switched capacitor filters (SC filters) are a type of active filters. Resistors are simulated
by charging and discharging a capacitor at high frequency. The advantage is the possi-
bility of varying the filter parameters with the frequency of the switching signal.

Quartz and ceramic filters are mechanical resonators with low losses. Both quality fac-
tor and stability are very high for quartz filters.

Mechanical filters were once the only possibility to obtain filters with steep slopes and
were widely used in telephony.

Surface acoustic wave filters (SAW filters) convert electric signals into acoustic surface
waves on a substrate. By suitable tapping of the crystal surface, the filter properties can
be adjusted as required. These filters are suitable for high frequencies.

Digital filters work numerically on sampled signals. They have no inaccuracies caused
by ageing, production tolerances or ambient temperature. Thanks to the progress in
semiconductor manufacturing the usable frequency range is increasing while prices are
decreasing.

5.4 Notation Index

A voltage gain
A(ω) gain response (dB)

Ã(ω) attenuation (dB)
B bandwidth (Hz)
B3 dB 3 dB bandwidth (Hz)
Brel relative bandwidth
B(ω) logarithmic phase response
D damping ratio
F shape factor (filter)
f0 centre frequency, resonant frequency (Hz)
fc cutoff or corner frequency
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fcl lower cutoff frequency
fcu upper cutoff frequency
G(ω) transfer function
|G(ω)| magnitude response
G(�) frequency-normalised transfer function
Im() imaginary part
Q quality factor, Q-factor
Re() real part
T transformation through a system
tr rise time
vin input voltage
vout output voltage
ϕ(ω) phase response
ω0 resonant angular frequency (s−1)
ωc angular cutoff frequency
ωlwr lower cutoff frequency
ωupr upper cutoff frequency
� normalised frequency
�3 dB normalised frequency, where the magnitude of the

transfer function has decreased by 3 dB
�lwr lower normalised cutoff frequency
�upr upper normalised cutoff frequency

5.5 Further Reading

Chen, C. T.: Linear System Theory and Design, 3rd Edition
Oxford University Press (1998)

Dorf, R. C.: The Electrical Engineering Handbook
CRC Press (1999)

Kennedy, G.; Davis, B.: Electric Communication Systems
McGraw-Hill (1992)

Zverev, A. I.: Handbook of Filter Synthesis
John Wiley & Sons (1967)



6 Signals and Systems

6.1 Signals

6.1.1 Definitions

In communications and electrical engineering signals are characterised in different classes.

Periodic signals are signals that repeat themselves after a definite time interval T

(Fig. 6.1).
Definition: a value T exists, such that for all times t

f (t) = f (t + T )

T is the period of the signal f (t).

Fig. 6.1. Examples of periodic signals (top) and nonperiodic signals (bottom)

Nonperiodic signals are all signals that are not periodic according to the definition given
above.

Causal signals are signals that have nonzero values only after time t = 0. The name is
related to the definition of causal systems.

The normalised power of a signal is defined as

P = lim
T→∞

1

2T

T∫
−T

|f (t)|2 d t (6.1)

Analogously, the normalised energy of a signal is defined as

E = lim
T→∞

T∫
−T

|f (t)|2 d t =
∞∫

−∞
|f (t)|2 d t (6.2)

Power signals have a finite normalised powerP according to Eq. (6.1). For nonzero power
signals E = ∞.

Energy signals have a finite normalised energy E. For energy signals P = 0.

• All periodic signals are power signals, but not all power signals are periodic.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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Fig. 6.2. A power signal and two energy signals

Example: The following signal is an energy signal (see Fig. 6.2, centre).

f (t) =
{

0 for t < 0
e−t/τ for t ≥ 0

E =
∞∫

−∞
|f (t)|2 d t =

∞∫
0

e−2t/τ d t =
[
−τ

2
e−2t/τ

]∞
0
= τ

2
< ∞

6.1.2 Symmetry Properties of Signals

A function is an even function if it holds for all t that

f (t) = f (−t)

These functions have an axial symmetry with respect to the ordinate (y-axis). They are
also known as symmetric functions (Fig. 6.3).

A function is an odd function if it holds for all t that

f (t) = −f (−t)

Such functions have point symmetry with respect to the origin. They are also known as
antisymmetric functions (Fig. 6.3).

Fig. 6.3. Examples of even (left) and odd functions (right)

Example: The cosine is an even function, while the sine is an odd function.

Note: These properties are mutually exclusive. A function can either be even or odd,
but not both (except the null function). However, there are functions that are
neither even nor odd.

A signal has full-wave symmetry if it holds for all t

f

(
t + T

2

)
= f (t)

which means the signal effectively has a shorter period of T/2.
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A signal has half-wave symmetry if it holds for all t

f

(
t + T

2

)
= −f (t)

This means that the half-waves would be axially symmetric about the time axis if they
were shifted over each other (Fig. 6.4).

Fig. 6.4. Example of a signal with half-wave symmetry

Example: A DC-free triangular signal has a half-wave symmetry.

6.2 Fourier Series

• Any periodic signal with a period T can be represented as a sum of harmonic signals. The
lowest frequency is 1/T . All other frequencies are integer multiples of this fundamental
frequency. These signal components are called harmonics.

6.2.1 Trigonometric Form

If the signal f (t) is periodic with a period T it can be represented by a Fourier series:

f (t) = a0

2
+

∞∑
n=1

[
an · cos(nωt)+ bn · sin(nωt)

]
(6.3)

where ω is the fundamental (angular) frequency of the signal.

ω = 2

T
= 2f

The Fourier coefficients an and bn are

an = 2

T

T∫
0

f (t) · cos(nωt) d t

for n = 0, 1, 2 . . .

bn = 2

T

T∫
0

f (t) · sin(nωt) d t

(6.4)
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• a0

2
= 1

T

T∫
0

f (t) d t is the average value of the signal over one period, i.e. the DC part

of the signal. Note that b0 is always zero.

• The trigonometric representation of the Fourier series depends on the choice of the
starting time t = 0 of the signal.

Note: Since the signal f (t) is periodic, it is irrelevant whether the integration limits
are 0 to T , or −T/2 to +T/2.

Note: The equivalent Fourier representation is also found in the literature.

f (t) =
∞∑

n=0

[
an · cos(nωt)+ bn · sin(nωt)

]
In that case a0 has to be defined separately:

a0 = 1

T

T∫
0

f (t) d t

Note: The mathematical conditions for convergence of the Fourier series in Eq. (6.3)
are:

• The signal has a finite number of noncontinuous points;
• The average value over one period is finite;
• The signal has a finite number of maxima and minima.

These conditions always hold for signals that can be physically realised.

6.2.1.1 Symmetry Properties

• For pure alternating signals a0 = 0.
• Even functions do not contain sine components. This means all bn = 0.
• Odd functions do not contain cosine components. This means all an = 0.
• Waveforms with full-wave symmetry have only even harmonics with frequencies

0, 2ω, 4ω . . .

• Waveforms with half-wave symmetry have only odd harmonics with frequencies
ω, 3ω, 5ω . . .

6.2.2 Amplitude–Phase Form

The addition of sine and cosine functions with the same frequency results in a harmonic
function of this frequency.

an · cos(nωt)+ bn · sin(nωt) = An · cos(nωt + ϕn)

This leads to the amplitude–phase form of the Fourier series (Fig. 6.5).

f (t) = a0

2
+

∞∑
n=1

An · cos(nωt + ϕn) (6.5)
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Fig. 6.5. Combination of the Fourier coefficients an and bn for the amplitude–phase form

with

An =
√

a2
n + b2

n, ϕn = − arctan

(
bn

an

)
for n = 1, 2, 3 . . . (6.6)

where an and bn are the Fourier coefficients according to Eq. (6.4). The set of all An is
known as the amplitude spectrum, and the set of ϕn is the phase spectrum.

• The amplitude spectrum is independent of the choice of the starting point t = 0. This
does not hold for the phase spectrum.

6.2.3 Exponential Form

Applying

cos(nωt) = 1

2

(
ejnωt + e−jnωt

)
, sin(nωt) = 1

2j

(
ejnωt − e−jnωt

)
(6.7)

the trigonometric form of the Fourier series can be converted into the complex normal
form, or the exponential form.

f (t) =
∞∑

n=−∞
cn · ejnωt (6.8)

The complex Fourier coefficients cn are calculated as

cn = 1

T

T∫
0

f (t) · e−jnωt d t (6.9)

The set of all cn is called the complex spectrum. Positive and negative frequency param-
eters nω and −nω appear in this representation of the Fourier series. This leads to the
concept of a positive and negative frequency spectrum.

• The coefficient c0 represents the DC component. It therefore is equivalent to a0/2.
• The spectral component of a harmonic with an angular frequency of nω is

cn · ejnωt + c−n · e−jnωt

• The spectral coefficients cn and c−n are complex conjugates (for real-valued signals),
i.e. c∗n = c−n.

• The complex Fourier coefficients have a magnitude that is half the value of the corre-
sponding amplitude elements in the amplitude–phase form: 2|cn| = An.

Example: Figure 6.6 shows the two-sided spectra of the cosine and the sine functions.
Using Eq. (6.7), both functions can be expressed as
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cosω0t = +1

2︸︷︷︸
c1

ejω0t + 1

2︸︷︷︸
c−1

e−jω0t ,

sinω0t = − j

2︸︷︷︸
c1

ejω0t + j

2︸︷︷︸
c−1

e−jω0t

Fig. 6.6. Frequency spectrum of the cosine and sine functions with components of positive and negative
frequencies

6.2.3.1 Symmetry Properties

• Even functions have purely real spectral coefficients cn.

• Odd functions have purely imaginary spectral coefficients cn.

6.2.4 Overview: Fourier Series Representations

Tables 6.1 and 6.2 present a summary of the Fourier series representations and coefficients
as well as conversion between these representations.

Table 6.1. Summary of the Fourier series representations

Series representations Coefficients
Real normal form

f (t) = a0

2
+

∞∑
n=1

[
an · cos(nωt)+ bn · sin(nωt)

]
an = 2

T

T∫
0

f (t) · cos(nωt) d t

bn = 2

T

T∫
0

f (t) · sin(nωt) d t

for n = 0, 1, 2 . . .

Amplitude–phase form

f (t) = a0

2
+

∞∑
n=1

An · cos(nωt + ϕn) An =
√

a2
n + b2

n

ϕn = − arctan

(
bn

an

)
for n = 1, 2, 3 . . .

Complex normal form

f (t) =
∞∑

n=−∞
cn · ejnωt cn = 1

T

T∫
0

f (t) · e−jnωt d t
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Table 6.2. Summary of conversion between the Fourier series represenations

Conversion of representations
Fourier Spectral Complex Fourier

coefficients coefficients coefficients
an = an An · cosϕn cn + c∗n = 2 · Re(cn)

bn = bn An · sin ϕn j(cn − c∗n) = 2 · Im(cn)

An =
√

a2
n + b2

n An 2 · |cn|

ϕn = − arctan

(
bn

an

)
ϕn −arg(cn)

cn=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0

2
n = 0

an

2
− j

bn

2
n > 0

an

2
+ j

bn

2
n < 0

An

2
· e−jϕn cn

6.2.5 Useful Integrals for the Calculation of Fourier Coefficients

The average value of the sine and cosine functions over one period is zero.

T∫
0

cos nωt d t = 0 (6.10)

T∫
0

sin nωt d t = 0 (6.11)

The sine and the cosine function are orthogonal:

T∫
0

sin nωt · sin kωt d t = 0, for n �= k (6.12)

T∫
0

sin nωt · cos kωt d t = 0 (6.13)

T∫
0

cos nωt · cos kωt d t = 0, for n �= k (6.14)

For integrals over the product of sine and cosine functions of the same frequency nω, it
holds respectively that

T∫
0

sin2 nωt d t = T

2
(6.15)

T∫
0

cos2 nωt d t = T

2
(6.16)
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The orthogonality conditions can be summarised by

T∫
0

cos nωt · cos kωt d t = δnk · T

2

The same holds for sine functions. Here δnk is the Kronecker symbol. Its value is unity
for n = k, otherwise zero.

6.2.6 Useful Fourier Series

The Fourier series of several functions are given in Table 6.3. Table 6.4 gives the amplitude
spectra of the signals.

Table 6.3. Useful Fourier series

ω = 2�
T

(1) Antisymmetric rectangular function (square wave), duty
cycle 0.5, DC-free

f (t) = A · 4
�

(
sinωt + 1

3
sin 3ωt + 1

5
sin 5ωt . . .

)

(2) Symmetric rectangular function (squarewave), duty cycle
0.5, DC-free

f (t) = A · 4
�

(
cosωt − 1

3
cos 3ωt + 1

5
cos 5ωt − . . .

)

(3) Rectangular pulses, duty cycle τ/T

f (t) = A · τ

T
+ A · 2

�
·
(
sin �

τ

T
· cosωt + 1

2
sin �

2τ

T
· cos 2ωt + . . .

)

(4) Bipolar rectangular pulse with half-wave symmetry, let
ϕ = 2�τ/T

f (t) = A · 4
�

(
cosϕ

1
sinωt + cos 3ϕ

3
sin 3ωt + cos 5ϕ

5
sin 5ωt + . . .

)

(5) Trapezoidal waveform, rise time = fall time = τ , let a =
2�τ/T

f (t) = A

a
· 4
�

(
sin a

12
sinωt + sin 3a

32
sin 3ωt + sin 5a

52
sin 5ωt + . . .

)
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Table 6.3. (cont.)

(6) Antisymmetric triangular waveform (half-wave symme-
try), DC-free

f (t) = A · 8

�2

(
sinωt − 1

32
sin 3ωt + 1

52
sin 5ωt − . . .

)

(7) Symmetric triangular waveform (half-wave symmetry),
DC-free

f (t) = A · 8

�2

(
cosωt + 1

32
cos 3ωt + 1

52
cos 5ωt + . . .

)

(8) Sawtooth waveform, DC-free, antisymmetric

f (t) = A · 2
�

(
sinωt + 1

2
sin 2ωt + 1

3
sin 3ωt + . . .

)

(9) Sawtooth waveform, DC-free,
antisymmetric

f (t) = A · 2
�

(
sinωt − 1

2
sin 2ωt + 1

3
sin 3ωt − . . .

)

(10) Sine wave after full-wave rectification
(full-wave symmetry), T : period of the mains frequency

f (t) = A · 2
�
− A · 4

�
·
(

1

1 · 3 cos 2ωt + 1

3 · 5 cos 4ωt + 1

5 · 7 cos 6ωt + . . .

)

(11) Cosine wave after full-wave rectification (full-wave sym-
metry), T : period of the mains frequency

f (t) = A · 2
�
+ A · 4

�
·
(

1

1 · 3 cos 2ωt − 1

3 · 5 cos 4ωt + 1

5 · 7 cos 6ωt − . . .

)

(12) Cosine wave after half-wave rectification

f (t) = A · 1
�
+ A · 2

�
·
(
� cosωt + 1

1 · 3 cos 2ωt + 1

3 · 5 cos 4ωt . . .+
)

(13) Rectified three-phase current, T : period of the mains fre-
quency

f (t) = A · 3
√
3

�
·
(
1

2
− 1

2 · 4 cos 3ωt − 1

5 · 7 cos 6ωt − 1

8 · 10 cos 9ωt − . . .

)

(14) Rectangular waveform passing through RC circuit, time
constant τ , let γ = T/2�τ

f (t) = A · 2
�
·
∞∑

n=0

γ cos
[
(2n+ 1)ωt

]+ (2n+ 1) sin
[
(2n+ 1)ωt

]
γ 2 + (2n+ 1)2
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Table 6.4. Amplitude spectra An of the signals

Signal Factor Harmonic
number A 1 2 3 4 5 6 7 8 9
1 and 2 4/� 1 0 1/3 0 1/5 0 1/7 0 1/9

3(τ/T = 1/3) 2/� .87 .43 0 .22 .17 0 .12 .11 0
3(τ/T = 1/5) 2/� .59 .48 .32 .15 0 .098 .14 .12 .065

6 and 7 8/�2 1 0 1/9 0 1/25 0 1/49 0 1/81
8 and 9 2/� 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

10 and 11 4/� 0 1/3 0 1/15 0 1/35 0 1/63 0
12 2/� � 1/3 0 1/15 0 1/35 0 1/63 0
13 3

√
3/� 0 0 1/8 0 0 1/35 0 0 1/80

6.2.7 Application of the Fourier Series

6.2.7.1 Spectrum of a Rectangular Signal

A TTL (transistot–transistor logic) gate delivers the signal shown in Fig. 6.7. The duty
cycle of this signal is 0.5. The amplitude spectrum is to be determined.

Fig. 6.7. Idealised rectangular pulses from a TTL circuit

Signals (1) or (2) from Table 6.3 are closest to the signal in Fig. 6.7. Defining the time
origin t = 0 is a matter of choice in this example. The peak-to-peak amplitude of the
digital signal is 2.4 V. This means that A = 1.2 V, and the DC component is 1.6 V.

The period is T = 20 s, so ω = 2 · 50 kHz. The Fourier series of the signal above is,
according to signal (2) from Table 6.3

g(t) = 1.6 V+ 1.2 V · 4

·
(
cosωt − 1

3
cos 3ωt + . . .

)

The amplitudes of the individual spectral components are

f (kHz) 0 50 100 150 200 250 300 350 400 450

An 1.6V 1.53V 0 0.51V 0 0.31V 0 0.22V 0 0.17 V

Figure 6.8 gives a graphical representation of the amplitude spectrum. The small circles
indicate that the respective spectral components vanish, even though they are harmonics.
The term line spectrum is derived from this kind of representation.
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Fig. 6.8. Amplitude spectrum of the rectangular signal from Fig. 6.7 (DC-free)

Figure 6.9 shows the superposition of the harmonics with ω, 3ω and 5ω to a rectangular
signal.As already shown inTable 6.4, the amplitude of the fundamental frequency is higher
than the resulting rectangular signal.

Fig. 6.9. Superposition of spectral components up to the fifth harmonic to compose a rectangular signal

6.2.7.2 Spectrum of a Sawtooth Signal

Figure 6.10 shows a sawtooth signal with falling slopes. The signal is composed of the
inverted signal (8) from the table and aDCcomponent of 1.5V.The amplitude isA = 1.5 V,
and the fundamental frequency of the signal is f = 1/T = 4 kHz.

Fig. 6.10. Sawtooth signal with falling slopes and a DC component

The Fourier series of this sawtooth signal is

g(t) = 1.5 V− 1.5 V · 2

·
(
sinωt + 1

2
sin 2ωt + 1

3
sin 3ωt + . . .

)
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f (kHz) 0 4 8 12 16 20 24 28 32 36

An 1.5 V 0.95 V 0.48 V 0.32 V 0.24 V 0.19 V 0.16 V 0.14 V 0.12 V 0.11 V

The amplitude spectrum of this signal is shown in Fig. 6.11. Unlike the rectangular signal,
this spectrum also contains even harmonics.

Fig. 6.11. Amplitude spectrum of the sawtooth signal shown in Fig. 6.10

6.2.7.3 Spectrum of a Composite Signal

The complicated signal shown inFig. 6.12 is composed of the superposition of a rectangular
signal with an amplitude of 2 V and a triangular signal with an amplitude of 1 V. Both
signals correspond either to signals (1) and (6) or (2) and (7) in Table 6.3.

g(t) = 2 V · 4


[
cosωt+ 1

3
cos 3ωt+ 1

5
cos 5ωt + . . .

]
h(t) = 1 V · 8

2

[
cosωt+ 1

32
cos 3ωt+ 1

52
cos 5ωt + . . .

]
f (t) = 8


V

[(
1+ 1



)
cosωt+

(
1

3
+ 1

32

)
cos 3ωt+

(
1

5
+ 1

52

)
cos 5ωt + . . .

]

Fig. 6.12. Superposition of a rectangular signal and a triangular signal

The Fourier coefficients for each frequency are added (taking into account the proper
signs). The fundamental frequency of the signal is 1 kHz. The amplitude spectrum is then:
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f (kHz) 1 2 3 4 5 6 7 8 9

An 2.55 V 0 0.92 V 0 0.54 V 0 0.38 V 0 0.29 V

6.3 Systems

6.3.1 System Properties

Often in communications engineering the internal structure of a system is of no particu-
lar interest. It is more interesting to consider the behaviour of the input and output sig-
nals, which in most cases are voltages. Such systems are often called black-box systems
(Fig. 6.13). The function of a system is described symbolically by a transformation of the
input signal into the output signal.

vout = T (vin)

Fig. 6.13. A black-box system with input and output signals

6.3.1.1 Linear Systems

Many systems can be modelled to a good approximation as linear systems. It then holds
that

T (α · vin) = α · T (vin) (6.17)

• The output signal is proportional to the input signal.

T (v1 + v2) = T (v1)+ T (v2) (6.18)

• Either of the two input signals can be considered individually while passing through the
system as if the other were not present (Fig. 6.14).

Fig. 6.14. Principle of superposition in linear systems

The approach shown in Eq. (6.18) and Fig. 6.14 is called principle of superposition.
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6.3.1.2 Causal Systems

Causal systems show no system response before the excitation.

Fig. 6.15. A causal (top) and a noncausal system (bottom)

Mathematically this can be expressed by

x(t) = 0, for t < t0. It follows that T [x(t)] = 0, for t < t0 (6.19)

Note: According to the definition of causal systems, causal signals are defined. Their
values are always zero before the time t = 0 and can be nonzero after t = 0
(Fig. 6.15).

6.3.1.3 Time-Invariant Systems

Time-invariant systems do not change their inner properties. Their response to a specific
input signal is always identical and does not depend on the time of its arrival.

Mathematically this can be expressed by

y(t) = T [x(t)]. It follows that T [x(t − t0)] = y(t − t0) (6.20)

Fig. 6.16. System response of a time-invariant system

If the input signal is shifted in time, the corresponding output signal experiences the same
shift (Fig. 6.16).
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6.3.1.4 Stable Systems

Systems are considered stable if the system response to signals with a finite amplitude are
signals with finite amplitudes. Mathematically this can be expressed by

|x(t)| < M < ∞ ⇒ |T [x(t)]| < N < ∞, for all t (6.21)

6.3.1.5 LTI Systems

Linear time-invariant systems or LTI systems are of special interest.

It is normally assumed that the systems are causal, since noncausal systems cannot be
realised in the time domain.

• Systems that are composed of resistors, inductors, capacitors, transformers and linearly
controlled sources (transistors in small-signal operation) can be described to a good
approximation as LTI systems. However, caution is required in the case of positive
feedback.

6.3.2 Elementary Signals

In order to describe systems their response to typical test signals is evaluated. The most
important test signals are described below. The use of the symbols varies in the literature.

6.3.2.1 The Step Function

The step function s(t) is zero until t = 0 and is 1 for all t > 0 (Fig. 6.17).

s(t) =
{
0 for t < 0
1 else

(6.22)

Fig. 6.17. The step function

• The step function is a power signal.

6.3.2.2 The Rectangular Pulse

The rectangular pulse rect(t) is a rectangular signal that is symmetrical about the time
t = 0 and that has unity area (Fig. 6.18).

rect(t) =
{
1, for |t | < 1/2
0, else

(6.23)



6.3 Systems 223

Fig. 6.18. The rectangular pulse

• The rectangular pulse is an energy signal.

6.3.2.3 The Triangular Pulse

The triangular pulse �(t) is a triangular signal that is symmetrical about the time t = 0
and that has unity area (Fig. 6.19).

�(t) =
{
1− |t |, for |t | < 1

0, else
(6.24)

Fig. 6.19. The triangular pulse

• The triangular pulse is an energy signal.

6.3.2.4 The Gaussian Pulse

The Gaussian pulse �(t) is a pulse that is symmetrical about the time t = 0 and that has
unity area (Fig. 6.20).

�(t) = e−t2 (6.25)

• The Gaussian pulse is an energy signal.

Fig. 6.20. The Gaussian pulse
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6.3.2.5 The Impulse Function (Delta Function)

The impulse function is the limit of a family of realisable signals. The family being
considered is the rectangular impulses

rectn = n · rect(n · t)

Fig. 6.21. The impulse function as the limit of a family of rectangular pulses

All impulses have unity area. The sequence of these impulses converges to the limit δ(t)

as n →∞, with the following properties

δ(t) = 0 for t �= 0,

∞∫
−∞

δ(t) d t = 1

Because the value for t = 0 is not defined, δ(t) is not a function in the usual sense. It is
called the delta function, the impulse function or the Dirac impulse (Fig. 6.21). It is
characterised by the following properties:

∞∫
−∞

δ(t) d t = 1,

∞∫
−∞

f (t)δ(t − t0) d t = f (t0), δ(t) = δ(−t)

(6.26)

These properties mean:

• The delta function has unity area.

• The delta function filters out the function value under the integral of the function, where
the argument of the delta function is zero.

• The delta function is an even function.

Note: The delta function can also be represented as the limit of a sequence ofGaussian
functions. The functions become narrower and higher, while the area under the
function is always unity.
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The derivative (in a generalised sense) of the step function is the delta function:

[
s(t)
]′ = δ(t),

t∫
−∞

δ(τ ) dτ = s(t) (6.27)

Example: Figure 6.22 (upper left) shows the function

f (t) = s(t − 1)+ s(t − 2)− 2 · s(t − 3)

Its generalised derivative is

f ′(t) = δ(t − 1)+ δ(t − 2)− 2 · δ(t − 3)

The signal is shown directly beneath.

Fig. 6.22. Two signals (top) and their generalised derivatives (bottom)

The function f (t) = s(t−2) · t
2
is shown on the right of Fig. 6.22. Its derivative

is calculated by the product rule as

f ′(t) =
[
s(t − 2) · t

2

]′
= δ(t − 2) · t

2
+ s(t − 2) · 1

2
= δ(t − 2)+ 1

2
· s(t − 2)

6.3.3 Shifting and Scaling of Time Signals

The function
f (t) = s(t − t0)

represents a time-shifted step function in which the step is shifted or delayed by the time
t0 (Fig. 6.23).

Fig. 6.23. Time-shifted step function
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The signal

f (t) = rect

(
t

a

)
a > 0

represents a time-scaled rectangular pulse, where a is the time-scaling factor (Fig. 6.24).
For a > 1 the pulse widens, and for a < 1 it narrows.

Fig. 6.24. Time-scaled rectangular impulse

Example: The signal

f (t) = 3

2
·�
(

t

2
− 1

)
= 3

2
·�
(

t − 2

2

)
represents a time-scaled and time-shifted triangular pulse (Fig. 6.25).

Fig. 6.25. Time-scaled and time-shifted triangular impulse

6.3.4 System Responses

• LTI systems respond to a harmonic input signal with a harmonic output signal of the
same frequency, while its amplitude and phase are usually changed.

Note: Systems responding to harmonic input signals with nonharmonic output signals
are called nonlinear systems. The output signal contains components with
frequencies different from the input signal.

Systems can be characterised by their output signals for defined input signals.

6.3.4.1 Impulse Response

The impulse response is the output signal of a system excited by a delta function
(Fig. 6.26).

g(t) = T {δ(t)}
Function g(t) is also known as the weighting function of the system.

Fig. 6.26. Impulse response of an LTI system
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Example: The impulse response of the RC circuit shown in Fig. 6.27 is a declining expo-
nential function.

Fig. 6.27. Impulse response of an RC low-pass filter

The capacitor is charged instantaneously by the impulse and then discharges via
the resistor with a time constant τ = RC. Multiplication by the step function
s(t) enforces a nonzero response only after the time t = 0.

Note: In order to evaluate the impulse response of a real system the system is excited
with narrow rectangular pulses. Delta pulses cannot be generated in reality.
However, the narrower the pulses the lower is their energy content. The impulse
amplitude cannot be increased arbitrarily for real systems since the systems’
outputs are amplitude limited. Therefore the step response is often preferred.

6.3.4.2 Step Response

The step response is the output signal of a system that is fed with the step function
(Fig. 6.28).

h(t) = T {s(t)}

Fig. 6.28. Step response of an LTI system

• The step response is the integral of the impulse response.

h(t) =
t∫

−∞
g(τ) dτ

Note: In order to determine the impulse response of a system, the step response is
often determined first and the impulse response is calculated as its derivative.

Example: The RC circuit in Fig. 6.29 reacts to the step function with

h(t) = s(t) · (1− e−t/τ )

Derivation of the step response yields the impulse response:

g(t) = h′(t) = s ′(t) · (1− e−t/τ )+ s(t) · (1− e−t/τ )′ (Product rule)

= δ(t) · (1− e−t/τ )︸ ︷︷ ︸
(1−1)

+s(t) · 1
τ
e−t/τ = s(t) · 1

τ
e−t/τ = g(t)

The delta function effectively filters out all elements of the summation except
the element at t = 0.
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Fig. 6.29. Step response of an RC low-pass filter

6.3.4.3 System Response to Arbitrary Input Signals

The system shown in Fig. 6.30 with the impulse response g(t) responds to an input signal
x(t) with an output signal given by

y(t) =
∞∫

−∞
x(τ) · g(t − τ) dτ (6.28)

The operation on x(t) and g(t) defined in Eq. (6.28) is known as convolution. This is often
written symbolically

y(t) = x(t) ∗ g(t)

Spoken as: x convolved with g.

Fig. 6.30. Input and output signals of a system with the impulse response g(t)

Note: For the special input signal x(t) = δ(t) the system response is

y(t) =
∞∫

−∞
δ(τ ) · g(t − τ) dτ = g(t)

which is the impulse response.

Note: In practice, the system response is rarely calculated using convolution. It is
more efficient to calculate in the frequency domain. However, in time discrete-
systems, such as digital filters, the convolution integral becomes a summation,
which is calculated explicitly in signal processors.

6.3.4.4 Rules of Convolution

Let f (t), g(t) and h(t) be arbitrary time functions.

It holds that

0 ∗ f (t) = 0, δ(t) ∗ f (t) = f (t) (6.29)

The delta function acts in convolution of functions as unity in the multiplication of num-
bers. This is also known as the convolution product, because of this property and the
commutative, associative and distributive laws.
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Commutative Law

f (t) ∗ g(t) = g(t) ∗ f (t) (6.30)

• Input signal and impulse response can be exchanged (Fig. 6.31).

Fig. 6.31. Commutative law of convolution

Associative Law

f (t) ∗ g(t) ∗ h(t) = f (t) ∗ [g(t) ∗ h(t)
]

(6.31)

• Two cascaded systems can be combined into a single system. The impulse response of
the total system then is the convolution of the individual impulse responses (Fig. 6.32).

Fig. 6.32. Associative law of convolution

Fig. 6.33. Distributive law of convolution
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Distributive Law

(
f (t)+ g(t)

) ∗ h(t) = f (t) ∗ h(t)+ g(t) ∗ h(t) (6.32)

• Each signal can be treated as if it passes through the system independently of other
signals. The systems’ outputs are finally added (Fig. 6.33) through the principle of
superposition.

6.3.4.5 Transfer Function

An LTI system with an impulse response g(t) reacts according to Eq. (6.28) to the special
input signal x(t) = ejωt as follows:

y(t) =
∞∫

−∞
ejω(t−τ) · g(τ) dτ = ejωt ·

∞∫
−∞

g(τ) · e−jωτ dτ

︸ ︷︷ ︸
G(ω)

The input signal ejωt appears at the output weighted by the complex factor G(ω).

y(t) = G(ω) · x(t), for x(t) = ejωt

The factor G(ω) is called the transfer function of the system (Fig. 6.34).

G(ω) =
∞∫

−∞
g(t) · e−jωt d t (6.33)

• The transfer function is the Fourier transform of the impulse response. Either is
equivalent in the representation of a system.

Fig. 6.34. System response to a complex harmonic input signal

Note: The transfer function for LTI systems with a known internal structure can be
determined using complex calculus.

6.3.4.6 System Response Calculation in the Frequency Domain

It is often more efficient to calculate the system response to an arbitrary excitation in the
frequency domain rather than using convolution according to Eq. (6.28).

Convolution in the time domain is equivalent to multiplication in the frequency domain.

y(t) = x(t) ∗ g(t), Y (ω) = X(ω) ·G(ω) (6.34)

X(ω) and Y (ω) are the spectra of the input and output signals, respectively, and G(ω) is
the transfer function of the system. The calculation of the system response is performed
according to the following procedure (Fig. 6.35):
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Fig. 6.35. Calculation of the system response in the time domain and in the frequency domain

• calculate the input spectrum X(ω) by applying the Fourier transform to the input signal
x(t);

• calculate the transfer function G(ω) using complex calculus;

• calculate the output spectrum Y (ω) bymultiplying the input spectrumwith the transfer
function;

• calculate the output signal y(t) by applying the inverse Fourier transform to the output
spectrum Y (ω).

Note: Despite the fact that this calculation method appears much more complicated
than convolution, it is often the most suitable for problems in Communications.

6.3.5 Impulse and Step Response Calculation

6.3.5.1 Normalisation of Circuits

For easier manipulation all signals in systems theory are considered without their units.
Problems occur when impulse and step responses for a particular physical system are
investigated. In this case normalisation helps.

Impedance normalisation: All resistances are referred to the reference resistanceRr. The
normalised resistance values Rn are calculated as Rn = R/Rr. The reference resistance
is chosen such that most resistances in the circuit are close to unity. The source resistance
of the signal source or the load resistance are often suitable choices.

Frequency normalisation: All frequencies are referred to a reference frequency. Often
a ‘natural’ frequency of the circuit is chosen, e.g. a corner or resonant frequency. The
same applies to angular frequencies.

These two independent normalisations determine the normalisation of all other quanti-
ties. The complex impedances for inductances and capacitances are jωLn and 1/jωCn

respectively.

Example: Normalise the circuit in Fig. 6.36.

The reference resistance is chosen as Rr = 200 �. The reference angular fre-
quency is ωr = 1/

√
LC = 105 s−1. It follows that Rn = 1, Cn = 2 and

Ln = 0.5.

Table 6.5 summarises the normalisation relations for various circuit quantities.
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Table 6.5. Summary of normalisation relations

Quantity Normalised quantity Denormalisation

R Rn = R

Rr
R = Rn · Rr

ω ωn = ω

ωr
ω = ωn · ωr

t tn = t · ωr t = tn

ωr

C Cn = C · ωr · Rr C = Cn

ωr · Rr

L Ln = L · ωr

Rr
L = Ln · Rr

ωr

Rr : reference resistance ωr : reference angular frequency

Fig. 6.36. A circuit and its corresponding normalised circuit

6.3.5.2 Impulse and Step Response of First-Order Systems

Linear first-order systems are RC or RL circuits with one independent energy-storing
component (capacitor or inductor). The general form of the transfer function of such
systems is

G(ω) = a0 + a1jω

b0 + jω
, ai, b0 real (6.35)

All coefficients ai, b0 are real. For stable systems b0 > 0 must also hold. Function G(ω)

is a rational, fractional function of ω. It can be expanded to

G(ω) = a1 + (a0 − a1b0) · 1

b0 + jω

Each term can be transformed individually (see Table 6.7)

a1 a1 · δ(t), and
1

b0 + jω
s(t) · e−b0t

The impulse response of a first-order system is then

g(t) = a1 · δ(t)+ s(t) · (a0 − a1b0) · e−b0t (6.36)

with coefficients a0, a1, b0 according to Eq. (6.35).

The step response is the integral of the impulse response and is

h(t) = s(t) ·
(

a0

b0
− a0 − a1b0

b0
· e−b0t

)
(6.37)
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Example: The transfer function of the circuit in Fig. 6.37 is

G(ω) = R

R + jωL
= R/L

R/L+ jω

Comparing the coefficients, it follows that a0 = R/L, a1 = 0 and b0 = R/L.

Fig. 6.37. A system and its impulse and step response

Substituting in Eq. (6.36) yields the impulse response

g(t) = s(t) · R

L
· e−R

L
t

Using Eq. (6.37) yields the step response

h(t) = s(t) ·
(
1− e−

R
L

t

)
Example: Determine the impulse and step response of the circuit in Fig. 6.38.

Fig. 6.38. A circuit and its normalised representation

The reference quantities are chosen as Rr = 1.8 k� and ωr = 1/RrC =
(1.8 k� · 22 nF)−1 = 25 252 s−1. The normalised quantities are shown on the
right side of Fig. 6.38. The denormalised transfer function is

Gn(ω) = 1

1+ 2|| 1
jω

= 1/2+ jω

3/2+ jω

The coefficients a0 = 1/2, a1 = 1, b0 = 3/2 can be derived from the transfer
function. According to Eq. (6.36), it follows for the impulse response

gn(tn) = δ(tn)− s(tn) · e−
3
2 tn

According to Eq. (6.37) the step response is (Fig. 6.39)

h(tn) = s(tn) ·
(
1

3
+ 2

3
· e−3

2 tn

)
The time axis of the impulse response is given in units of the normalised time
tn. Denormalisation yields t = tn/ωr = tnRrC = 39.6 s. The time constant of

the exponential signal is then given by
2

3
RrC = 26.4 s.



234 6 Signals and Systems

Fig. 6.39. Normalised impulse and step response of the circuit above

6.3.5.3 Impulse and Step Response of Second-Order Systems

Second-order systems are RLC circuits with two independent energy-storing components
(capacitors and/or inductors). The transfer function has the form

G(ω) = a0 + a1jω − a2ω
2

b0 + b1jω − ω2
, ai, bi real (6.38)

All coefficients ai, bi are real, and b0 > 0 and b1 > 0 are the conditions for stable systems.
The transfer function can be expanded to

G(ω) = a2 + c0 + c1jω

b0 + b1jω − ω2
, with c0 = a0 − a2b0, and c1 = a1 − a2b1

It is useful to represent the denominator polynomial in a form where the roots are given
explicitly:

b0 + b1jω − ω2 = (jω − p1) · (jω − p2)

p1/2 = −b1

2
±
√

b2
1

4
− b0

Note: The roots p1, p2 are either both real valued or are complex conjugates.

At the zeros of the denominator polynomial the transfer function exhibits poles;
therefore the roots (zeros) are designated p1, p2.

Note: The special casewhere both roots are equal, i.e.p1 = p2 (double-pole position),
is excluded in further consideration.

The transfer function can be expressed as the sum of two partial fractions, which can be
transformed individually. The impulse resonse is then

G(ω) = a2 + Z1

(jω − p1)
+ Z2

(jω − p2)

g(t) = a2δ(t) + Z1 · s(t) · ep1t + Z2 · s(t) · ep2t

(6.39)

where

Z1 = c0+c1p1
p1−p2

, Z2 = c0+c1p2
p2−p1

, p1 �= p2,

with c0 = a0 − a2b0, and c1 = a1 − a2b1

p1 = −b1
2 +

√
b2
1
4 − b0, p2 = −b1

2 −
√

b2
1
4 − b0
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The step response is

h(tn) = a2 · s(tn)+ Z1

p1
· s(tn) ·

[(
ep1tn − 1

)+ Z2

p2
· (ep2tn − 1

)]
(6.40)

with the coefficients ai, bi given by Eq. (6.38).

Example: Determine the impulse response of the circuit in Fig. 6.40. The reference quan-
tities are chosen to be Rr = 680 �, and ωr = 1/

√
LC ≈ 45 000 s−1. The

normalised quantities (with small rounding errors) can be derived from these
and are given on the right side of the diagram.

Fig. 6.40. Circuit and its normalised form

The normalised transfer function is given by

Gn(ω) =
1

jω
1

jω
+ 1+ jω

= 1

1+ jω − ω2

Therefore a0 = 1, a1 = 0, a2 = 0, b0 = 1, b1 = 1. It follows that c0 = 1,

c1 = 0 and p1/2 = −1

2
± j

√
3

2
, and Z1 = 1

j
√
3
, Z2 = −Z1.

Substituting Eq. (6.39) gives the step response

gn(t) = s(t) ·
(

1

j
√
3
· ep1t − 1

j
√
3
· ep2t

)
The real part of the exponents can be factored out

gn(t) = s(t) · e−1/2 t · 1√
3

1

j

(
ej
√
3/2 t − e−j

√
3/2 t
)

︸ ︷︷ ︸
2·sin(

√
3/2 t)

The variable t represents the normalised time. The impulse response of the
circuit can be represented by oscillations exhibiting an exponential decay.

gn(tn) = s(tn) · 2√
3
· e−1/2 tn · sin

(√
3

2
tn

)

For large enough damping, there are no oscillations (Fig. 6.41). For the nor-
malised quantities Rn = 4, Ln = 1 and Cn = 1/3, the normalised transfer
function is given by

Gn(ω) = 3

3+ 4jω − ω2
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Fig. 6.41. Normalised impulse response of the circuit in Fig. 6.40e and the normalised impulse response of
a circuit with greater damping

The roots of the denominator polynomial are purely real: p1/2 = −2 ± 1. The
calculation of the impulse response shows no imaginary part in the exponential
terms that could be factored out, i.e. there is no periodic component in the
signal.The impulse response is the difference between twodecaying exponential
functions (see the right side of Fig. 6.41).

gn(tn) = s(tn) · Z1 ·
(
ep1tn − ep2tn

) = s(tn) · 3
2
· (e−tn − e−3tn

)

6.3.6 Ideal Systems

Ideal systems are systems with idealised properties, which real systems can only approx-
imate. Ideal systems are used as models to discuss the basic properties of real systems.

6.3.6.1 Distortion-Free Systems

A distortion-free system transmits a signal without changing its form. Changes in the
amplitude and time shifts are permitted (Fig. 6.42). For an arbitrary input signal x(t) it
holds that

y(t) = k · x(t − t0), for causal systems t0 ≥ 0

where k is an arbitrary real amplitude factor, and t0 is an arbitrary real delay time.

Fig. 6.42. Examples of output signals of distortion-free systems excited with a triangular pulse. The signals
in the last row originate from nondistortion-free systems
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The transfer function of the distortion-free system is

G(ω) = k · e−jωt0

It follows for the magnitude and the phase of the transfer function that

|G(ω)| = k, ϕ(ω) = −ω · t0 (6.41)

• A distortion-free system has a constant attenuation (or gain).

• A distortion-free system has a linear phase response.

Note: A system with constant gain over all frequencies is known as an all-pass filter.

Fig. 6.43. Magnitude and phase responses of the transfer function of a distortion-free system

For the description of systems other quantities derived from the transfer function are used.

Attenuation constant

a(ω) = −20 log10 |G(ω)| (dB) (6.42)

Phase constant

b(ω) = −ϕ(ω) (6.43)

Phase delay

τp = b(ω)

ω
(6.44)

Group delay

τg = db(ω)

dω
(6.45)

A distortion-free system thus exhibits constant attenuation and constant group delay
for all frequencies. This means that all frequency components of a signal are delayed by
the same amount of time and therefore appear with the correct phase at the output of the
system.

If this is not the case, it is known as linear delay distortion (phase distortion). If the
attenuation is not constant this is known as linear attenuation distortion.

Note: Nonlinear distortions are different from linear distortions. The former can
create frequency components that were not contained in the original input sig-
nal.
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6.3.6.2 Ideal Low-Pass Filter

The ideal low-pass filter passes signals in the passband up to the critical frequency fc

(ωc) without any distortion. Signal components above the critical frequency are suppressed
completely. Its transfer function is

G(ω) =
{

k · e−jωt0, for |ω| ≤ ωc

0, else
(6.46)

where k is a real amplitude factor, and t0 is the group delay time (signal delay time) of the
low-pass filter system (Fig. 6.44).

Fig. 6.44. Transfer function of the ideal low-pass filter

The impulse response of the ideal low-pass filter is

g(t) = k · ωc


· sinc [ωc(t − t0)] = 2kfc · sinc [2fc(t − t0)] (6.47)

Fig. 6.45. Impulse response of the ideal low-pass filter

Note: The sinc function is defined as

sinc(x) =
{

1, for x = 0
sin x

x , else
(6.48)

• The ideal low-pass filter is a noncausal system. The impulse response appears before
the input signal arrives.

The impulse response assumes its maximum value at t = t0, and g(t0) = kωc/= 2kfc.
Therefore t0 represents the propagation delay time (Fig. 6.45).

The step response of the ideal low-pass filter is (Fig. 6.46)

h(t) = k

2
+ k


· Si(ωc(t − t0)) (6.49)
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Fig. 6.46. Step response of the ideal low-pass filter

Note: The step response assumes nonzero values before the time t = 0.

Note: The Si function is defined as (Integral-Sine)

Si(x) =
x∫

0

sin τ

τ
dτ (6.50)

The Si function cannot be represented analytically. An approximation can be
made by a power series:

Si(x) = x − x3

18
+ x5

600
− x7

35280
. . .

= x − x3

3 · 3! +
x5

5 · 5! −
x7

7 · 7! . . .+ (−1)ix2i+1

(2i + 1) · (2i + 1)!
. . .

The overshoot is characteristic and amounts to 8.6% of the steady-state value, independent
of the bandwidth of the system. Overshoot in band-limited systems is known as Gibb’s
phenomenon.

The impulse response approaches a steady state value of h∞ = k. At the time t = t0 it
passes through k/2, half the final value, at which point the slope (rate of change) of the
response is maximum.

The settling time is defined by the time taken to the intersection of the tangent of the
turning point of the step response with the input signal start value, and the intersection
of the tangent with the input signal steady-state value. The settling time ts of the ideal
low-pass filter is

ts = 

ωc
= 1

2fc
(6.51)

• The step response of the ideal low-pass filter reaches the steady-state value faster with
increasing critical frequency.

Time–Bandwidth Product

The impulse response g(t) of the ideal low-pass filter is infinitely long. However, it can
be characterised by a pulse width. In order to do so, a rectangular impulse with an area
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equal to g(t) is constructed, where the amplitude is equal to the maximum amplitude of
the impulse response. Its width is defined as the pulse width �tp.

�tp = 1

gmax
·
∞∫

−∞
g(t) d t

For the ideal low-pass filter this definition yields the pulse width of the impulse response

�tp = 1

2fc
(6.52)

The settling time and the width of the impulse response are equal for the ideal low-pass
filter.

• The width of the impulse response is inversely proportional to the bandwidth of the
low-pass filter.

The time–bandwidth product

fc ·�tp = 1

2
is constant. This concept can be generalised. With the definition for the bandwidth

B =

√√√√√ ∞∫
−∞

ω2|G(ω)|2 dω

and for the pulse width

�T =

√√√√√ ∞∫
−∞

t2|g(t)|2 d t

using the normalisation condition

∞∫
−∞

|g(t)|2 d t = 1

the so-called uncertainty principle follows:

B ·�T ≥
√



2
(6.53)

This relation holds for all kinds of low-pass filters. The smallest time–bandwidth product
achieve filters with a Gaussian impulse response.

• The bandwidth and pulse width of the impulse response are inversely proportional for
a given type of filter.

6.3.6.3 Ideal Bandpass Filter

The ideal bandpass filter passes signals within a frequency range �f (�ω) without
any distortion. In the stop-bands all signal components are completely suppressed. The
transfer function is
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G(ω) =
⎧⎨⎩k · e−jωt0, for |ω − ω0| < �ω

2
0, else

(6.54)

where ω0 is the centre (angular) frequency of the bandpass filter, and �ω is its bandwidth.
This equation only makes sense if the centre frequency is at least twice the bandwidth
(ω0 > �ω/2).

Fig. 6.47. Transfer function and impulse response of the ideal bandpass filter

The impulse response of the ideal bandpass filter is

g(t) = k ·�f · sinc[�f (t − t0)
] · 2 cos

[
2f0(t − t0)

]
(6.55)

= k · �ω

2
· sinc[�ω(t − t0)

] · 2 cos
[
2ω0(t − t0)

]
The impulse response resembles a signal with a centre frequency f0 and with an envelope
that corresponds to the impulse response of a low-pass filter with a cutoff frequency of
�f/2 (Fig. 6.47).

• The ideal bandpass filter is a noncausal system. The impulse response appears before
the input signal arrives.

6.4 Fourier Transforms

6.4.1 Principle

The principle of the Fourier transform is to transform a signal f (t) from the time domain
into a signal F(ω) in the frequency domain such that this transform is reversible and
unambiguous (Fig. 6.48).

The Fourier transform represents a time function as a superposition of an infinite number of
harmonic exponential functions. Similar to the Fourier series, which describes a periodic
function as a summation of infinitely discrete oscillations, the Fourier transform is the
integral over an infinitely large number of oscillations. By expanding this concept to
continuous spectra, nonperiodic functions can also be represented in the frequency domain.
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Fig. 6.48. Principle of the Fourier transform

It is often easier to calculate the effect of filters and transmission systems in the frequency
domain. Problems requiring the solution of a linear differential equation in the time domain
can be treated by solving an algebraic equation in the frequency domain.

Application of the inverse Fourier transform yields the corresponding signal in the time
domain.

6.4.2 Definition

The Fourier transform of a function of time f (t) is defined as

F(f ) =
∞∫

−∞
f (t) · e−j2f t d t (6.56)

The inverse Fourier transform is

f (t) =
∞∫

−∞
F(f ) · ej2f t df (6.57)

This is also written as

F(f ) = F{f (t)}, f (t) = F−1{F(f )}
or by using the correspondence symbol

f (t) F (f ), or f (t) F (ω)

This symbol can be read in both directions and thus illustrates the reversibility of the
transformation. The filled circle corresponds to the frequency domain.

Note: Occasionally the representation of the transform with the angular frequency
ω as the parameter in F(ω) is used. In Eq. (6.56) 2f is replaced by ω. The
Fourier transform is then

F(ω) =
∞∫

−∞
f (t) · e−jωt d t (6.58)
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Note: When using this representation of the Fourier transform watch out for a factor
2, since the inverse Fourier transform is then expressed by

f (t) = 1

2
·
∞∫

−∞
F(ω) · ejωt dω (6.59)

In this chapter both representations of the Fourier transform are used, if they
differ from each other.

Note: In the literature a representation with F(jω) is often found. It fully corresponds
to the representation given byF(ω). It is found especiallywhere the relationship
with the Laplace transform is emphasised.

6.4.3 Representation of the Fourier Transform

The Fourier transform S(f ) of a real-valued time signal is a complex function and can
therefore be represented as the sum of the real and imaginary parts.

S(f ) = R(f )+ j ·X(f )

For real-valued functions of time it holds that

R(f ) = Re{S(f )} = ∫∞−∞ f (t) · cos(2f t) d t (6.60)

X(f ) = Im{S(f )} = − ∫∞−∞ f (t) · sin(2f t) d t (6.61)

Furthermore
R(f ) = R(−f ), X(f ) = −X(−f )

For the Fourier transform of real-valued functions of time it holds that

• The real part is an even function.

• The imaginary part is an odd function.

Like any complex function, the Fourier transform can also be represented in polar form:

S(f ) = |S(f )| · ejϕ(f )

with

|S(f )| =
√

R2(f )+X2(f ), and ϕ(f ) = arctan

[
X(f )

R(f )

]
For real-valued functions of time it holds that

• The magnitude of the Fourier transform is an even function.

• The phase of the Fourier transform is an odd function.

Note: When dealing with the Fourier transform it may be useful to also work with
complex functions of time, e.g. f (t) = ejωt . The statements above about sym-
metries hold only for real-valued functions.
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6.4.3.1 Symmetry Properties

For real-valued functions of time it holds that

• The Fourier transform of even functions of time is purely real.
• The Fourier transform of odd functions of time is purely imaginary.

Example: The cosine function is an even function. Its Fourier transform is
1

2
δ(f + f0)+ 1

2
δ(f − f0). It is purely real (Fig. 6.49).

Fig. 6.49. Cosine and sine functions in the frequency domain

The sine-function is an odd function. Its Fourier transform is

− j

2
δ(f − f0)+ j

2
δ(f + f0). It is purely imaginary (Fig. 6.49).

6.4.4 Overview: Properties of the Fourier Transform

Let s(t) and r(t) be abitrary functions of time, then S(f ) and R(f ) (S(ω) and R(ω),
respectively) are their corresponding Fourier transforms.Whenever the two notations differ
the spectrum with ω is also given. Table 6.6 summarises the properties of the Fourier
transform.

Table 6.6. Properties of the Fourier transform

s(t) S(f )

S(ω)

Fourier transform

s(t) S(f ) =
∞∫

−∞
s(t) · e−j2f t d t

Inverse Fourier transform

s(t) =
∞∫

−∞
S(f ) · ej2f t df S(f )

s(t) = 1

2

∞∫
−∞

S(ω) · ejωt dω S(ω)

Complex conjugate
s∗(t) S∗(−f )
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Table 6.6. (cont.)

Duality
S(t) s(−f )

2 · s(−ω)

Multiplication
r(t) · s(t) R(f ) ∗ S(f )

1

2
R(ω) ∗ S(ω)

Convolution
r(t) ∗ s(t) R(f ) · S(f )

Superposition
a · r(t)+ b · s(t) a · R(f )+ b · S(f )

Time shift
s(t − t0) S(f ) · e−j2f t0

S(ω) · e−jωt0

Frequency shift
s(t) · ej2f0t S(f − f0)

s(t) · ejω0t S(ω − ω0)

Time scaling

s

(
t

a

)
|a| · S(a · f )

Differentiation
d

d t
s(t) j2f · S(f )

jω · S(ω)

Integration
t∫

−∞
s(τ ) dτ

1

j2f
· S(f )+ 1

2
· S(0) · δ(f )

1

jω
· S(ω)+  · S(0) · δ(ω)

For DC-free signals the terms with delta function are discarded

6.4.5 Fourier Transforms of Elementary Signals

6.4.5.1 Spectrum of the Delta Function

The Fourier transform of the delta function is

S(f ) = ∫∞−∞ f (t) · e−jωt d t = ∫∞−∞ δ(t) · e−jωt d t = e0 = 1

δ(t) 1 (6.62)

• A delta impulse contains all frequencies with equal amplitudes (Fig. 6.50).

Because of the duality of time and frequency it also holds that a signal that is constant in
time (DC signal) corresponds to a delta impulse in the spectrum.

1 δ(f ), or 1 2δ(ω) (6.63)
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Fig. 6.50. Delta impulse and real part of its Fourier transform

6.4.5.2 Spectrum of the Signum and the Step Functions

The signum function is similar to the step function.

sign(t) =

⎧⎪⎨⎪⎩
1 t > 0
0 t = 0
−1 t < 0

The Fourier transform is

sign(t) −j
1

f
, or sign(t)

2

jω
(6.64)

The signum function is an odd function; therefore its spectrum is purely imaginary
(Fig. 6.51).

Fig. 6.51. Signum function and the imaginary part of its Fourier transform

Unlike the signum function the step function has a DC component. This can also be seen
in its spectrum. The step function can be expressed using the signum function as

s(t) = 1

2
· sign(t) + 1

2

−j

2f
+ 1

2
δ(f ),

or
1

jω
+ δ(ω)

Note: The representation of the step function through the signum function is not exact
for t = 0 (Fig. 6.52). Generally, the inverse Fourier transform of the spectra of
discontinuous functions at the discontinuity points is given by the average of
the right- and left-side limits (in this case 0).
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Fig. 6.52. Step function (left) and the imaginary (centre) and real parts (right) of its Fourier transform

6.4.5.3 Spectrum of the Rectangular Pulse

The spectrum of the rectangular pulse is (Fig. 6.53)

S(f ) =
∞∫

−∞
rect(t) · e−jωt d t =

1/2∫
−1/2

e−j2f t d t = −1

j2f

(
e−jf − ejf

)
(6.65)

Applying the following representation of the sine function:

sin x = 1

2j

(
ejx − e−jx

)
,

Equation (6.65) holds that

S(f ) = sin f

f
= sinc(f ) (6.66)

Fig. 6.53. Rectangular pulse and its amplitude spectrum

For pulses of arbitrary width, applying the similarity theorem, the following holds:

rect(t) sinc(f )

rect

(
t

T

)
T · sinc(Tf )

or rect

(
t

T

)
T · sinc

(
T ω

2

) (6.67)

6.4.5.4 Spectrum of the Triangular Pulse

The triangular pulse �(t) can be represented as the convolution of the rectangular pulse
with itself.

�(t) = rect(t) ∗ rect(t)
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A convolution in the time domain corresponds to a multiplication in the frequency domain

�(t) = rect(t) ∗ rect(t)

sinc(f ) · sinc(f )

(6.68)

It therefore holds that (Fig. 6.54)

�(t) sinc2(f ) (6.69)

Fig. 6.54. Triangular pulse and its amplitude spectrum

6.4.5.5 Spectrum of the Gaussian Pulse

The Gaussian pulse
�(t) = e−t2

again has a Gaussian amplitude spectrum.

S(f ) =
∞∫

−∞
e−t2 · e−jωt d t

Applying the Euler formula to ejωt yields

∞∫
−∞

e−t2 · e−jωt d t =
∞∫

−∞
e−t2 · cosωt d t −

∞∫
−∞

e−t2 · sinωt d t

︸ ︷︷ ︸
=0

The second integrand is the product of an even (Gaussian)with an odd (sinusoidal) function
and is therefore itself an odd function. Its integral is zero. The first integrand is an even
function. Therefore the integral over [−∞ . . . 0] is equal to the integral over [0 . . .∞].

S(f ) = 2 ·
∞∫
0

e−t2 · cos(2f t) d t

The definite integral can be looked up in a table of integrals

∞∫
0

e−a2t2 · cos bt d t =
√



2a
· e−b2/4a2
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Therefore a2 = and b = 2f yields the spectrum of the Gaussian pulse

�(t) = e−t2 e−f 2 = �(f ) (6.70)

Obviously, this function is converted to its spectrum by swapping the time and frequency
variables. Functions with this property are called self-reciprocal.

6.4.5.6 Spectrum of Harmonic Functions

The Fourier transform of the complex harmonic function ej2f0t is

ej2f0t

∞∫
−∞

ej2f0t · e−j2f t d t = δ(f − f0), or 2δ(ω − ω0)

The real-valued harmonic cosine (Fig. 6.55) and sine (Fig. 6.56) functions of time can be
composed of two periodic exponential functions.

cos 2f0t = 1

2
· ej2f0t + 1

2
· e−j2f0t

1

2
· δ(f − f0) + 1

2
· δ(f + f0)

or  · δ(ω − ω0) +  · δ(ω + ω0)

Fig. 6.55. Fourier transform of the cosine function

sin 2f0t = 1

2j
· ej2f0t − 1

2j
· e−j2f0t

−j

2
· δ(f − f0) + j

2
· δ(f + f0)

or −jδ(ω − ω0) + jδ(ω + ω0)

The appearance of a pair of delta pulses in the spectrum indicates a periodic component
in the signal. As is generally known, all periodic functions can be represented in a Fourier
series as a sum of sine and cosine functions. Their spectrum is therefore always a discrete
line spectrum, i.e. it consists of delta pulses in the frequency domain.
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Fig. 6.56. Fourier transform of the sine function

6.4.6 Summary of Fourier Transforms

The graphs in Table 6.7 represent the functions of time s(t) and the magnitude of their
corresponding Fourier transform |S(f )|.

Table 6.7. Fourier transforms of elementary signals

Signal Spectrum
s(t) S(f ), S(ω)

Delta impulse
δ(t) 1

DC signal
1 δ(f ), 2δ(ω)

Rectangular pulse

rect

(
t

T

)
T · sinc(Tf )

T · sinc(ωT /2)

Si pulse
sinc(t) rect(f )

rect(ω/2)

Triangular pulse

�(t) sinc2(f ) = sin2(f )

(f )2

sinc2
(ω

2

)
= 4 sin2(ω/2)

ω2
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Table 6.7. (cont.)

Signal Spectrum
s(t) S(f ), S(ω)

Gaussian pulse
e−t2 e−f 2

e−ω2/4

Delta impulse sequence
∞∑

n=−∞
δ(t − nT )

∞∑
n=−∞

δ
(
f − n

T

)
2

∞∑
n=−∞

δ

(
ω − 2n

T

)

Step function

s(t)
1

2
δ(f )− j

1

2f

δ(ω)+ 1

jω

Signum function
sign(t) −j

1

f
2

jω

Cosine waveform

cos(2f0t)
1

2
δ(f + f0)+ 1

2
δ(f − f0)

cosω0t δ(ω + ω0)+ δ(ω − ω0)

Sine waveform

sin(2f0t)
j

2
δ(f + f0)− j

2
δ(f − f0)

sinω0t jδ(ω + ω0)− jδ(ω − ω0)
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Table 6.7. (cont.)

Signal Spectrum
s(t) S(f ), S(ω)

Single-sided cosine

s(t) · cos(2f0t)
1

4
δ(f −f0)+ 1

4
δ(f +f0)+ j

2

f

f 2
0 − f 2

s(t) · cosω0t


2
δ(ω− ω0)+ 

2
δ(ω+ ω0)+ j

ω

ω2
0 − ω2

Single-sided sine

s(t) · sin(2f0t)
j

4
δ(f +f0)− j

4
δ(f −f0)+ 1

2

f0

f 2
0 − f 2

s(t) · sin(ω0t)


2j
δ(ω+ω0)− 

2j
δ(ω−ω0)+ ω0

ω2
0 − ω2

Single-sided exponential pulse

s(t) · e−at
1

a + jω
for Re{a} > 0

Double-sided exponential pulse

s(t) · e−a|t | 2a

a2 + ω2
for Re{a} > 0

Decaying cosine waveform

s(t) · e−at · cosω0t
jω + a

(jω + a)2 + ω2
0

for Re{a} > 0

Decaying sine waveform

s(t) · e−at · sinω0t
ω0

(jω + a)2 + ω2
0

for Re{a} > 0
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6.5 Nonlinear Systems

6.5.1 Definition

Systems with a nonlinear relationship between the input and output signal are called
nonlinear systems.

Note: In practice, there is no such thing as a linear system since any real system has
output swing limits. Linear systems are in many cases a good approximation
of real systems.

The following definition is more suitable for a practical characterisation of nonlinear
systems:

• A system that responds to a harmonic input signal with a nonharmonic output signal is
called nonlinear system.

6.5.2 Characterisation of Nonlinear Systems

Examples of components with a distinctive nonlinear I (V )-characteristic are rectifier
diodes, Zener diodes, tunnel diodes and varistors (voltage-dependent resistors). Consider-
ing the thermal behaviour over time, this also holds for conductors with negative or positive
temperature coefficients (NTC/PTC), and also for filament light bulbs.

Often (not always) the interest focuses on the realisation of systems with a broad-ranged
linear response. Certain nonlinearities are then accepted within limits. The deviation from
the desired linearity is characterised by quantities.

6.5.2.1 Characteristic Equation

One way to describe nonlinear characteristics is a polynomial equation

v2 = a · v1 + b · v2
1 + c · v3

1 + . . . (6.71)

The order of the polynomial of the characteristic equation is called the order of the
nonlinear system.

Example: For a nonlinear second-order system the output voltage for the harmonic input
voltage v1 = v̂1 · cosωt is

v2 = a · v̂1 · cosωt + b · v̂2
1 · cos2 ωt

The square of the cosine function can be resolved using the following relation-
ship

cos2 ωt = 1

2
· (1+ cos 2ωt) (6.72)

Therefore the output voltage is

v2 = b

2
· v̂2

1 + a · v̂1 · cosωt + b

2
· v̂2

1 · cos 2ωt

The output signal contains components having twice the frequency of the input
signal. These components are called harmonics.
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In general it holds that

• An nth-order nonlinear system produces harmonics up to n times the frequency of the
input signal. The amplitude of each individual harmonic depends on the coefficients of
the characteristic equation.

Note: The first harmonic is the angular frequency ω, which is the fundamental fre-
quency. The second harmonic has a frequency of 2ω.

The description of nonlinear systems with the coefficients of their characteristic curves
is not very suitable. Of greater interest is the effect on the distortion products. The total
harmonic distortion is used for this analysis.

6.5.2.2 Total Harmonic Distortion

The total harmonic distortion of a signal is defined as

T HD = RMS value of the harmonics

RMS value of the complete signal
=

√√√√ ∞∑
n=2

A2
n√√√√ ∞∑

n=1

A2
n

(6.73)

The An are the Fourier coefficients of the amplitude spectrum of the related signal. The
factor

√
2 relating the amplitude and RMS value of each component cancels out.

Example: The signal v(t) = 2 V · cosωt + 0.2 V · sin 3ωt − 0.4 V · sin 4ωt has the total
harmonic distortion

T HD2 = 0.22 + 0.42

22 + 0.22 + 0.42
= 0.0476⇒ T HD = 0.218 ≈ 22%

Note: It is usually easier to calculate k2 and then take the square root instead of
applying the definition directly.

• The total harmonic distortion of a purely harmonic (sinusoidal) signal is zero.

Fig. 6.57. Representation of the total harmonic distortion factor of a transmission system

If a system produces a total harmonic distortion k in the output signal for a purely harmonic
input signal, the system distortion is quantified and denoted by THD (Fig. 6.57).

Note: It is not possible to determine the total harmonic distortion if the input signal
already contains harmonics.

• The total harmonic distortion of the output signal depends on the output voltage swing.
Providing the total harmonic distortion of a transmission system only makes sense if
the measurement conditions are given.
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Table 6.8. Typical total harmonic distortions

THD Example
33% Total harmonic distortion of a square-wave oscillation
10% Voice signal still intelligable
1% Maximum total harmonic distortion of HiFi amplifier,

distortions just perceptible
0.1% Total harmonic distortion of a good HiFi amplifier

distortions imperceptible

Occasionally, only the amplitude of an individual harmonic is of interest. The total har-
monic distortion of nth order is used for this.

T HDn = RMS value of the n-th harmonic

RMS-value of the complete signal
(6.74)

The total harmonic distortion attenuation is defined as

ak = −20 log T HD (6.75)

or the total harmonic distortion attenuation of nth order as (Table 6.9)

akn = −20 log T HDn (6.76)

Table 6.9. Total harmonic distortion attenuation values

Total harmonic Total harmonic
distortion distortion attenuation

10% 20 dB
1% 40 dB

0.1% 60 dB

Sine wave generators, spectrum analysers and selective level meters must have values of
total harmonic distortion attenuation that are as high as possible (i.e. distort very little).

6.5.2.3 Signal-to-Intermodulation Ratio

Other effects resulting from nonlinearities are intermodulation distortions.

Example: A nonlinear second-order system with a characteristic v2 = a · v1 + b · v2
1 is

excited with the two-tone signal v1(t) = cosω1t + cosω2t . The output signal
is

v2 = b

2
(DC component)

+a(cosω1t + cosω2t) (intended signal)

+b

2
(cos 2ω1t + cos 2ω2t) (components at double the frequency)

+b · cos(ω1 + ω2)t (sum)

+b · cos(ω1 − ω2)t (and difference frequencies)
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Generally, for nonlinear systems of nth order, there will be signal components at frequen-
cies

|p · f1 ± q · f2|, with p, q = 0, 1 . . . n and p + q ≤ n (6.77)

Example: A nonlinear third-order system is excited by a two-tone signal with the frequen-
cies 5 kHz and 7 kHz. The output signal contains the following frequencies:

p 0 0 0 0 1 1 1 2 2 3 5 kHz
q 0 1 2 3 0 1 2 0 1 0 7 kHz

p · f1 + q · f2 0 7 14 21 5 12 19 10 17 21 (kHz)

|p · f1 − q · f2| 2 9 3 (kHz)

For this system the distortion products are shown using logarithmic scales in Fig. 6.58.

Fig. 6.58. Distortion products of a nonlinear system under excitation by a two-tone signal of 5 kHz and
7 kHz using logarithmic scales

Intermodulation also occurs in narrowband systems, which do not transmit any harmonics
because of their inherent bandwidth limitations. Particularly disturbing during the trans-
mission of the useful signals are distortions of third-order with frequencies of 2f1 − f2

and 2f2 − f1 (3 kHz and 9 kHz, respectively, in the example), since these are closest to
the useful signal and therefore most difficult to suppress. For systems with small nonlinear
distortions, it approximately holds for the distortion products of second and third-order
that

v
(2)
2 = const · v2

1, and v
(3)
2 = const · v3

1 (6.78)

The different constants are given by the coefficients of the characteristic equation.

• The amplitude of the distortion products of second order increases approximately
quadratically with the input signal. The dependence is cubic for intermodulation prod-
ucts of third-order.

Taking the logarithm of both sides of Eq. (6.78) yields

20 log10 v
(2)
2︸ ︷︷ ︸

L
(2)
2

= const + 2 · 20 log10 v1︸ ︷︷ ︸
L1
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whereL1 is the input voltage level, andL
(n)
2 is the output voltage level of the intermodulation

product of nth order.

L
(1)
2 = const + L1, L

(2)
2 = const + 2 · L1, L

(3)
2 = const + 3 · L1

In logarithmic representation the output voltage level of all signal components depends
linearly on the input voltage level, and only the slope changes.

Fig. 6.59. Definition of the intermodulation margin, intercept point and 1 dB compression point (denoted by
C)

The intermodulation margin is the logarithm of the ratio between the useful signal and
the intermodulation product. This is denoted by IM2 or IM3, respectively. The intermod-
ulation margin decreases with increasing output voltage swing. The input power, where
the intermodulation margin vanishes, is called the intercept point (Fig. 6.59). Knowledge
of the intercept point (IP ) leads to the value for the intermodulation margin (IM) for a
given input power L1. The following expression may be used

IM3(L1) = 2 · (IP 3− L1) (6.79)

Example: Amicrowave amplifier has an intermodulation margin IM of 34 dB for a given
input voltage level of−15 dBm.Towhat levelmust the input voltage be reduced
to produce an intermodulation margin of 40 dB?
The intercept point of the system is at 2 dBm according to Eq. (6.79). A drop
of the input voltage level to −18 dBm, i.e. a drop of 3 dB, yields the desired
intermodulation margin.

Note: There are two ways to identify the intercept point, referring to input or out-
put power, respectively. Either the input intercept point (IP IP ) or the output
intercept point (OPIP ) is given.

For practical systems, the intercept point cannot be achieved, because the output signal
saturates. The 1 dB compression point is used to characterise the output voltage swing
limits. This is the input power for which the actual output power lies 1 dB below the
theoretically expected value.
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6.6 Notation Index

a time scaling factor
a0, a1, a2 coefficients of nominator polynomial
a(ω) damping ratio (dB)
a0/2 DC component of a signal
ak total harmonic distortion attenuation (dB)
akn total harmonic distortion attenuation nth-order (dB)
an Fourier coefficients
An Fourier coefficients of the amplitude spectrum
b0, b1 coefficients of denominator polynomial
bn Fourier coefficients
b(ω) phase response
B bandwidth
cn complex Fourier coefficients
Cn normalised capacitance value
E energy of a signal
�f bandwidth of the ideal LPF
fc critical frequency
f (t) function of time
F(f ), F (ω) Fourier transform
F{} Fourier transform

F−1{} inverse Fourier transform
g(t) impulse response, weighting function of a system
gn(t) normalised impulse response
G(ω) transfer function
Gn normalised transfer function
h(t) step response of a signal
IM intermodulation margin (dB)
kn total harmonic distortion of nth order
L1 input voltage level (dBm)

L
(n)
2 output voltage level of the intermodulation product nth order

Ln normalised inductance value
M, N upper limits for the magnitude of a signal
p1, p2 zeros of the denominator polynomial, poles
P power of a signal
rect(t) rectangular waveform, rectangular pulse
R(f ) real part of the Fourier transform
Rn normalised resistance value
Rr reference resistance for the impedance normalisation (�)
s(t) step function
sign(t) signum function
sinc sinc function
|S(f )| magnitude of the Fourier transform
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Si integral sine function
t0 delay time
tn normalised time
�tp pulse width (ideal LPF)
ts settling time
T period of a periodic signal
T transformation through a system
�T pulse width
T HD total harmonic distortion
v̂ amplitude of the voltage
v1 input voltage
v2 output voltage
vin input voltage
vout output voltage
X(f ) imaginary part of the Fourier transform
X(ω) Fourier transform of the input signal
Y (ω) Fourier transform of the output signal
δ(t) impulse function, delta impulse (s−1)
ϕ(f ) phase component of the Fourier transform
ϕn Fourier coefficients of the phase spectrum
ϕ(ω) phase response
�(t) Gaussian pulse
�(t) triangular pulse
�ω bandwidth of the ideal LPF
ω0 angular centre frequency (s−1)
ωc critical angular frequency
ωn normalised frequency
ωr reference frequency for frequency normalisation (s−1)
τ integration variable
τg group delay time
τp phase delay time
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7 Analogue Circuit Design

This chapter on analogue circuit design describes electric circuits that are used for the
processing of analogue signals. Analogue signals have a continuous progression and can
have any arbitrary value within certain limits.

7.1 Methods of Analysis

Calculations in analogue circuit design are made to identify the circuit configuration and
to derive the component values. Often calculations can only be reasonably carried out by
making simplifying assumptions. Therefore the equivalent circuits are strongly simplified
and only represent the characteristics of the required function. Circuit analysis methods
can describe the actual circuit conditions with an accuracy of approximately 10–20 %.
Since values of semiconductors can vary by a factor of 2, and resistors and capacitors by
5–10 %, it is necessary to design circuits independent of the large tolerances of the com-
ponents. To achieve this, methods from control engineering, especially negative feedback,
are employed.

7.1.1 Linearisation at the Operating Point

The relationships between current and voltage in semiconductors are usually nonlinear.

Fig. 7.1. Linearisation at the operating point

Provided that the voltages and currents vary only marginally about the operating point V0,
I0 the function V = f (I) can be linearised at V0, I0. The small amplitude variations of the
signal around the operating point is shown in Fig. 7.1 by �V , �I . This signal is called a
small signal because its amplitude is small compared to the operating point values. In order
to replace the real nonlinear function with a linear function, all calculations concerning
the small signal around the operating point will be simplified. The smaller the signal is
compared to the operating point values, the more valid the linearisation assumption is.
Linearisation is especially useful in small signal amplifier analysis, where the signal to
be amplified, e.g. an audio signal, is small compared to the operating point values of the
semiconductor circuit.

Calculation:

The function V = f (I) is substituted with its slope in the operating point. For a small
change �I of the current I around the operating point it then holds that:

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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�V = d V

d I

∣∣∣∣
I0

·�I (7.1)

For the small signal v, i it holds respectively that:

v = dV

dI

∣∣∣∣
I0

· i , or v = r · i (7.2)

The resistance r is called the dynamic resistance, the incremental resistance or the small
signal resistance. It is dependent on the operating point. The representation v = r ·i means
that the origin of the small signal v = 0, i = 0 has been moved to the operating point V0,
I0.

Note: The principle of the linearisation in the operating point can be also applied to
other nonlinear physical relationships.

7.1.2 AC Equivalent Circuit

Circuits for small-signal amplification usually have a DC supply voltage, while the signal
itself is an AC voltage. In order to simplify the calculation only the quantities relevant to
the signal are considered.

According to the principle of superposition, the effect of a voltage in a linear circuit
can be calculated by eliminating all other voltage and current sources (voltage sources
were replaced by a short circuit, current sources by an open circuit). If a real circuit with
semiconductors is linearised at the operating point, the assumption for the superposition
is met, i.e. the relationship between cause and effect is linear. A circuit where all supply
voltages are replaced with a short circuit, so that only the small-signal source remains, is
called the small-signal equivalent circuit.

Example: The voltage V2 consists of an AC and a DC part (Fig. 7.2). The following
calculation determines the AC part v2 of V2: V0 is replaced with a short circuit.
It follows for v2 = f (v1):

v2 = R2‖R3

R1 + (R2‖R3)
· v1

Fig. 7.2. Generation of an AC equivalent circuit
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7.1.3 Input and Output Impedance

7.1.3.1 Determination of the Input Impedance

The input impedance Zin of a small-signal circuit is the impedance between the input
terminals for a small AC signal.

Zin =
vin

i in

Fig. 7.3. Definition of the input impedance Zin

• For passive circuits the resulting impedance Zin is obtained by combining all
impedances occurring in the circuit.

• For active circuits with unregulated/uncontrolled sources Zin is the resulting
impedance at the input terminals, if all internal voltage sources are shorted and all
current sources are opened/interrupted.

• For active circuits with controlled sources Zin is determined by applying vin across
the input terminals and measuring i in or calculated by using nodal and mesh analysis.
Controlled sources are sources where the output values are determined by an other
electrical quantity.

In practice the last case is the most relevant for the majority of applications with semicon-
ductor amplifiers.

Example: Calculate the input impedance of a circuit with a controlled current source
(Fig. 7.4):

vin = iin · rBE + (iin + iin · β) · RE

= iin · [rBE + (1+ β) · RE]

Zin = vin

iin
= rBE + (1+ β) · RE

Fig. 7.4. Calculation of the input impedance Zin

7.1.3.2 Determination of the Output Impedance

The idea behind determining output impedance, equivalent source resistance Zout is to
regard the active circuit as a voltage or current source with a source impedance (Fig. 7.5).

The output impedance Zout is calculated as:

Zout =
open circuit voltage

short circuit current
= vo/c

is/c
(7.3)
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Fig. 7.5. Calculation of the output impedance Zout

Technically, the output impedance can be determined by measuring two different load
states:

Zout =
v1 − v2

i2 − i1
(7.4)

7.1.3.3 Combination of Two-Terminal Networks

When two two-terminal networks (circuits) are combined into one circuit, the current
depends on the output impedance of one two-terminal network and the input impedance
of the other two-terminal network (Fig. 7.6).

i = vo/c

Zout + Zin

v = vo/c ·
Zin

Zout + Zin

Fig. 7.6. Combination of two circuits

For such combinations three different cases are distinguished:

1. Zout = Z∗in (Zin is the complex conjugate of Zout)

This is called power matching: v = vs

2
2. Zout � Zin

The impedance of the voltage source is much lower than the load impedance. The input
voltage of the load impedance is approximately equal to the open-circuit voltage of
the voltage source. In this case, the voltage v is approximately independent of the load
impedance.

3. Zout � Zin

The impedance of the voltage source ismuch larger than the load impedance. The current
is mainly determined by the output impedance and is approximately independent of the
load impedance.
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7.1.4 Two-Port Networks

Two-port networks are circuits with four accessible terminals, where two terminals are
the input (v1, i1) and two terminals are the output (v2, i2), see Fig. 7.7.

Fig. 7.7. Two-port network

Classification:

• Two-port networks are active if they contain sources (also controlled sources, e.g. by
the input current); otherwise they are passive.

• Two-port networks are symmetrical if the input and output terminals can be swapped;
otherwise they are asymmetrical.

• Two-port networks are linear if currents and voltages have linear relationships; other-
wise they are nonlinear.

• Two-port networks are reciprocal, reversible, if the ratio of the input voltage to the
output voltage is not affected by exchanging the input and output terminals; otherwise
they are irreversible, nonreciprocal.All linear passive two-port networks are reversible.

• Two-port networks are nonreactive if they do not change the relevant output quantity
of the previous and the relevant input quantity of the following two-port network. This
is, for instance, the case if two-port networks are combined in a chain, where the inputs
have a high impedance and the outputs have a low impedance.

7.1.4.1 Two-Port Network Equations

The electrical characteristics of a linear two-port network can be described unambiguously
bymeans of their two-port network equations. The coefficients of the electrical quantities
are called two-port network parameters. The two-port network equations are used to
describe the small-signal behaviour of analogue circuits. They are especially useful in
small-signal analysis of basic transistor circuits. Particularly significant are the hybrid and
admittance forms of the two-port network equations.

7.1.4.2 Hybrid Parameters (h-Parameters)

v1 = h11 · i1 + h12 · v2

i2 = h21 · i1 + h22 · v2

Fig. 7.8. The two-port network equations in hybrid form

The two-port network equations can be expressed in hybrid form using hybrid parameters
(h-Parameters), Fig. 7.8. The parameters have the following meaning:
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input resistance with shorted input

h11 = v1

i1
, for v2 = 0

reverse voltage transfer ratio with open
input

h12 = v1

v2
, for i1 = 0

forward current gain with shorted output

h21 = i2

i1
, for v2 = 0

output admittance with open input

h22 = i2

v2
, for i1 = 0

The parameters are measured or calculated while the output is shorted or the input is open.
The formal contexts of the two-port equations can be represented in an equivalent circuit
as shown in Fig. 7.9.

Fig. 7.9. Two-port network equivalent circuit diagram for the h-parameters

7.1.4.3 Admittance Parameters (y-Parameters)

i1 = y11 · v1 + y12 · v2

i2 = y21 · v1 + y22 · v2

Fig. 7.10. The two-port equations in admittance form

The two-port network equations can be expressed in hybrid form using hybrid parameters
(y-Parameters), Fig. 7.10. The parameters have the following meaning:

The parameters are measured or calculated while the input and output are shorted. The
formal contexts of the two-port network equations can be represented in an equivalent
circuit as shown in Fig. 7.11.
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input admittance with shorted output

y11 = i1

v1
, for v2 = 0

reverse transconductance with shorted
input

y12 = i1

v2
, for v1 = 0

forward transconductance with shorted
output

y21 = i2

v1
, for v2 = 0

output admittance with shorted input

y22 = i2

v2
, for v1 = 0

Fig. 7.11. Two-port network equivalent circuit diagram for the y-parameters

7.1.5 Block Diagrams

Block diagrams are used for the representation and calculation of complex analogue
circuits. Individual parts of the circuit are represented by a block, where the transfer
characteristics between output Xout(s) and input Xin(s) can be described unambiguously
by a transfer function F(s), see Fig. 7.12.

Xout(s) = F(s) ·Xin(s)

Fig. 7.12. Representation of a block

Input and output quantities as well as the transfer function are represented in the Laplace
frequency domain, i.e. as a function of the complex frequency s. The transfer function is
written into the block. The values of Xout(s) and Xin(s) may have different physical units.
The combination of circuit parts is represented with the connection of the corresponding
blocks. The signal direction is marked by arrows on the connecting lines. Addition and
subtraction of signals are represented by summation points.

Note: This representation becomes very clear if the individual blocks are nonreactive,
i.e. the following block does not influence the previous block (no loading effect).
This is achieved if the individual circuit parts have low-impedance outputs and
high-impedance inputs, or are separated by an impedance converter.
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7.1.5.1 Calculation Rules for Block Diagrams

The transfer function of a complex circuit can be calculated using the following (Fig. 7.13)
calculation rules:

Fig. 7.13. Block diagram algebra

Example: Calculation of a transfer function using block diagram algebra (Fig. 7.14):

Fig. 7.14. Example of block diagram algebra



7.2 Silicon and Germanium Diodes 269

7.1.6 Bode Plot

The Bode plot represents the transfer characteristics of two-port networks with identical
physical units at the input and the output (e.g. amplifiers, attenuators, Fig. 7.15). A dis-
tinction is made between the frequency response and the phase response. The frequency
response represents the gain as a function of the angular frequency in a diagram, where
both axes have logarithmic scales. The phase response shows the phase difference between
the output and the input as a function of the angular frequency, where the frequency axis
is logarithmic.

Fig. 7.15. Bode-plot of a low-pass filter

Note: The Bode plot is very useful for nonreactive circuits, which are combined in
series (see Sect. 7.1.5). In this case the transfer functions must be multiplied,
i.e. the magnitudes of the gain must be multiplied while the phase shift must
be added. In the Bode plot this multiplication can be done graphically through
linear geometric addition.

7.2 Silicon and Germanium Diodes

Diodes are semiconductors with a single p–n junction, which in general allow currents to
pass in one direction only (rectification). Diodes may also be used for other purposes such
as signal mixing, variable capacitors and voltage biasing.
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7.2.1 Current–Voltage Characteristic of Si and Ge Diodes

Fig. 7.16. Circuit symbol and characteristic diagram of Si and Ge diodes

The reverse current IRev of silicon diodes is approximately 10 pA and that of germanium
diodes is approximately 100 nA. The threshold voltage is defined as the forward voltage
across the diode when the forward current reaches 10% of the maximum permanent DC
current. For silicon diodes the threshold voltage is approximately 0.7 V, and for germanium
diodes this value is approximately 0.3 V. Because of the sharp rise in the forward bias
characteristic curve, in approximate calculations it is presumed that the voltage drop VF is
0.7 V for silicon diodes and 0.3 V for germanium diodes (Fig. 7.16).

The analytical function of the characteristic curve is given by:

IF = IRev ·
(
e

VF
VT − 1

)
(7.5)

with IRev : reverse current

VT = kT

e
: thermal voltage

k : Boltzmann’s constant = 1.38 · 10−23 J

K
T : absolute temperature
e : elementary charge

The thermal voltage VT is approximately 25 mV at T = 300 K (approx. 25◦C, room
temperature).

Approximations:

For forward operation: e
VF
VT � 1. The diode characteristic then simplifies to

IF ≈ IRev · e
VF
VT . (7.6)

For reverse operation: e
VF
VT � 1. Therefore the reverse current is approximately IRev =

const. for the whole reverse operation range.

7.2.2 Temperature Dependency of the Threshold Voltage

The threshold voltage of a p–n junction decreases with increasing temperature by 2 to
2.5 mV/K.
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Note: Because diodes have a negative temperature coefficient they must not be com-
bined in parallel in order to increase the maximum rectification current. Min-
imum differences in the temperature would cause a lower forward voltage at
the warmer diode. Therefore the warmer diode would take over a higher cur-
rent than the cooler diode. This would lead to a further temperature increase in
the warmer diode, which then would again take over a bigger part of the total
current. This results in the hotter diode taking over the entire current.

7.2.3 Dynamic Resistance (Differential Resistance)

Fig. 7.17. Dynamic resistance rD of Si and Ge diodes

The dynamic resistance rD of the diode is the slope of the characteristic in the operating
point.

rD = dVF
dIF

∣∣∣
VF0

(7.7)

1

rD
= dIF

dVF

∣∣∣
IF0

= 1
VT
· IRev · e

VF
VT︸ ︷︷ ︸

IF0

= IF0
VT

(7.8)

• The dynamic resistance of the diode is equal to the thermal voltage VT divided by the
forward current IF0 in the operating point (Fig. 7.17). Therefore the dynamic resistance
rD is reciprocally proportional to the forward current IF.

rD = VT

IF0
(7.9)

7.3 Small-Signal Amplifier with Bipolar Transistors

Small-signal amplifiers are circuits used for the amplification of small alternating signals,
where the signal amplitude is much smaller than the operating point values (i.e. the DC
voltages across the components). The operating frequencies are supposed to be low, so that
group and phase propagation delays from parasitic elements do not have to be considered
(however, it is noted in the case where special operating conditions apply).
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7.3.1 Transistor Characteristics

7.3.1.1 Symbols, Voltages and Currents for Bipolar Transistors

A distinction is made between n–p–n and p–n–p transistors

Fig. 7.18. Symbol, voltages and currents for bipolar transistors

The terminals are called the base (B), the collector (C) and the emitter (E). The base–
emitter junction and the base–collector junction are p–n junctions. In normal operation
the base–emitter diode is used in forward bias operation while the base–collector diode is
used in reverse bias operation. The direction of the arrow in the circuit symbol gives the
forward direction of the diode. The positive base current flows into the base for a n–p–n
transistor and comes out of the base for the p–n–p transistor. The base current causes a
voltage drop of appr. 0.7 V across the base–emitter diode. The base current controls the
collector current, provided that the applied collector–emitter voltage drives the collector–
base diode in reverse bias operation (Fig. 7.18). Then the collector current is approximately
proportional to the base current.

Note: The type of an unknown transistor can be determined by checking the direction
of the base–emitter and the base–collector diode with an ohmmeter.

Note: A transistor can be checked for defects by

a) checking the base–emitter and the base–collector diodes, and

b) measuring if the collector–emitter path has a high resistance (is not conduct-
ing) when the base is open.

7.3.1.2 Output Characteristics

Fig. 7.19. Output characteristics IC = f (VCE), IB=Parameter
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The output characteristics show the collector current as a function of the collector–emitter
voltage (Fig. 7.19). The base current acts as a parameter. The output characteristics provide
all essential information necessary for the design of a circuit. In the so-called active region
the output characteristics are almost horizontal. Within this region the collector current is
approximately proportional to the base current. In this active region the transistor may be
used as a small-signal amplifier. Often in these characteristics Ptotal, which is a hyperbolic
function, is given as well. This shows which current–voltage values are permitted given
the maximum allowed temperature of the transistor.

7.3.1.3 Transfer Characteristic

Fig. 7.20. Transfer characteristic IC = f (VBE)

The transfer characteristic shows the collector current as a function of the base–emitter
voltage (Fig. 7.20). Because of the diode characteristic of the base–emitter junction IC =
f (VBE) is also an exponential function since IC ∝ IB. It appears linearly in a diagram with
a logarithmic ordinate. Often several characteristics are given with the temperature as a
parameter.

7.3.1.4 Input Characteristic

Fig. 7.21. Input characteristic IB = f (VBE)

The input characteristic is the diode characteristic of the base–emitter junction (Fig. 7.21).
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7.3.1.5 Static Current Gain βDC

The static current gain βDC is the relationship between the collector current and the base
current in the active region:

βDC = IC

IB
(7.10)

Common values are between 100 and 1000 for small-signal transistors, and between 10
and 200 for power transistors.

7.3.1.6 Differential Current Gain β

The differential current gain β is the current gain for small signals around the operation
point. It is the derivative of the collector current with respect to the base current. A small
change of the base current �IB causes a small change β · �IB in the collector current.
Therefore a small signal is amplified with this differential current gain. The differential
current gain is also called the AC current gain or the small-signal current gain.

A distinction ismade betweenβ andβ0.Whileβ is a common expression for the differential
current gain, β0 is a certain differential current gain, which is called the forward current
gain with shorted output (Fig. 7.22). This is the differential current gain for low fre-
quencies (propagation delay times and phase shifts caused by parasitic elements need not
be considered), and where the collector–emitter voltage is kept constant (VCE = const.)
Keeping the collector–emitter voltage constant means that the AC signal is shorted, there-
fore the term shorted output.

β0 = dIC

dIB

∣∣∣∣
VCE= const

≈ �IC

�IB

∣∣∣∣
VCE= const

(7.11)

β0 ≈ �IC

�IB

∣∣∣∣
VCE= const

Fig. 7.22. Determination of the forward current gain β0 from the output characteristics

Common values for β0 are between 100 and 1000 for small-signal transistors, and between
10 and 200 for power transistors.

Note: In case a data sheet is not available, it is recommended to assume β0 = 100 for
further calculations.
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7.3.1.7 Transconductance gm

The transconductance gm is the change in the collector current IC depending on the
change in the base–emitter voltage VBE. It is the slope of the transfer characteristic.

gm = dIC

dVBE

∣∣∣∣
VCE= const

≈ �IC

�VBE

∣∣∣∣
VCE= const

(7.12)

Note: The use of the transconductance gm for bipolar transistor circuit design is not
recommended, since bipolar transistors are current-controlled devices. The
transconductance is mainly used for field-effect transistor circuit design, since
field-effect transistors are voltage-controlled components. However, occasion-
ally the very high transconductance of bipolar transistors is pointed out, be-
cause the collector current IC changes drastically for small changes in the
base–emitter voltage VBE.

7.3.1.8 Thermal Voltage Drift

Thermal voltage drift is the base–emitter voltage change�VBE that depends on the junction
temperature. The base–emitter voltage decreases with increasing temperature. The change
is |�VBE| = 2–2.5 mV/K.

7.3.1.9 Differential Input Resistance rBE

The small-signal differential input resistance is the slope of the input characteristic
curve at the operating point. This is the differential resistance of the base–emitter diode
(see Sect. 7.2.3).

rBE = dVBE

dIB
≈ �VBE

�IB
≈ VT

IB
(7.13)

where VT is the thermal voltage (about 25 mV at T = 300 K)

7.3.1.10 Differential Output Resistance rCE

The small-signal differential output resistance defines the change in the collector current
as a function of the collector–emitter voltage for a constant base current (Fig. 7.23). This
can be calculated from the output characteristic curve.

rCE = dVCE

dIC

∣∣∣∣
IB= const

≈ �VCE

�IC

∣∣∣∣
IB= const

(7.14)

• If the output characteristic is horizontal then rCE →∞.
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rCE ≈ �VCE

�ICE

∣∣∣∣
IB= const

Fig. 7.23. Calculation of the small-signal differential output resistance rCE from the output characteristic
curve

7.3.1.11 Reverse Voltage Transfer Ratio Ar

The reverse voltage-transfer ratio defines the change in the input voltage as a function
of the output voltage for a constant base current.

Ar = dVBE

dVCE

∣∣∣∣
IB= const

≈ �VBE

�VCE

∣∣∣∣
IB= const

(7.15)

The reverse voltage-transfer ratio is negligible at lower frequencies. For higher frequencies
this can be taken into account either through the relevant value from a data sheet, or by the
addition of a capacitor between the collector and the emitter (Miller capacitance). In this
manner it need not be considered in the transistor AC equivalent circuit.

7.3.1.12 Unity Gain and Critical Frequencies

The unity gain frequency is the frequency at which the current gain β has a value of 1.

The critical frequency fβ is the frequency at which β has fallen 3 dB below β0. This is
also known as the cutoff or corner frequency. For transistors whose short-circuit current
gain is considerably greater than 1 (β0 � 1), it can be approximated that:

fβ = fT

β0
(7.16)

Note: In circuits without negative feedback the useful frequency range lies between
0 < f < fβ . Negative feedback increases the frequency range roughly by the
feedback factor.

7.3.2 Equivalent Circuits

7.3.2.1 Static Equivalent Circuit

In order to design or understand electronic circuits, the following static equivalent circuit
is useful.
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The bipolar transistor consists of two back-to-back p–n junctions. In normal operation the
base–collector diode is reverse biased, and the base–emitter diode is forward biased. The
base–collector diode can be assumed to be a current source whose current is proportional
to the base current. The voltage drop at the base–emitter junction is approximately 0.7 V
from the diode characteristic.

The difference between the n–p–n and p–n–p transistor is that currents and voltages are in
opposite directions (Fig. 7.24).

Fig. 7.24. Topology, circuit symbol and static equivalent circuit of the bipolar transistor

7.3.2.2 AC Equivalent Circuit

In the AC equivalent circuit (Fig. 7.25) only alternating quantities that are small about
the operating point are considered. The operating point must lie within the active region
of the output characteristic.

Fig. 7.25. AC equivalent circuit of the bipolar transistor

The base current controls the collector current. The base resistance rBE is equal to the
dynamic resistance of the base–emitter diode. The base current iB controls the internal
collector current iB · β0. A small portion of the current iB · β0 flows away through rCE and
therefore does not appear at the collector terminal. The resistance rCE is high impedance
(see the output characteristic curve where the parameter iB is represented by constant lines,
which means rCE →∞). It can be neglected in approximate calculations.



278 7 Analogue Circuit Design

7.3.2.3 The Giacoletto Equivalent Circuit

The Giacoletto equivalent circuit is an AC equivalent circuit (Fig. 7.26). It describes the
AC characteristics of the transistor up to approximately half of the unity gain frequency.

Physical Explanation:

The internal collector current vB′E · gmB′E is proportional to the internal base voltage vB′E.
The output voltage vCE is fed back in anti-phase to the internal base voltage vB′E through
the feedback capacitor CB′C. The feedback effect through CB′C increases with increasing
frequency as the feedback impedance 1/ωCB′C decreases. Accordingly, the transistor gain
iC/iB decreases with increasing frequency.

Fig. 7.26. Giacoletto AC equivalent circuit

7.3.3 Darlington Pair

At low frequencies the Darlington pair shows the characteristics of a bipolar transis-
tor whose current gain is approximately the product of the two individual current gains
(Fig. 7.27).

The static current gain or DC current gain βDC of the Darlington pair is given by:

IC = IC1 + IC2 = IB1βDC1 + IB2βDC2 = IB1βDC1 + IB1(1+ βDC1)βDC2

= IB1(βDC1 + βDC2 + βDC1βDC2)

For βDC1 � 1 and βDC2 � 1 it holds that:

βDC ≈ βDC1 · βDC2 (7.17)

Fig. 7.27. Darlington pair

The dynamic current gain or small-signal current gain β0 of the Darlington pair is given
by:
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Fig. 7.28. AC equivalent circuit of the Darlington pair

Neglecting the collector–emitter resistances, the circuit diagram in Fig. 7.28 yields:

iC = iB1β01 + iB2β02 = iB1β01 + iB1(1+ β01)β02

= iB1(β01 + β02 + β01β02)

For β01 � 1 and β02 � 1 it holds that:

β0 ≈ β01 · β02 (7.18)

For the differential input resistance rBE it holds that:

rBE = vBE

iB
= rBE1 + β01 · rBE2 ≈ rBE1 + β01

βDC1
· rBE1 , with rBE2 = rBE1

βDC1

Using the approximation that β01 ≈ βDC1 it follows that:

rBE ≈ 2 · rBE1 ≈ 2
VT

IB1
(7.19)

• The input impedance of the Darlington pair is approximately twice the thermal voltage
VT divided by the quiescent input current IB.

The Darlington pair is employed where a high output power has to be controlled by a
small control power. The high current gain of the Darlington pair results in high input
impedances in amplifiers. In power electronics three- or four-fold Darlington connections
are even used for switching high currents.

7.3.3.1 Pseudo-Darlington Pair

Fig. 7.29. Pseudo-Darlington pair
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The Current gain and the input impedance of the pseudo-Darlington pair (Fig. 7.29) is
given by:

βDC ≈ βDC1 · βDC2, β0 ≈ β01 · β02, rBE ≈ rBE1 ≈ VT

IB
(7.20)

7.3.4 Basic Circuits with Bipolar Transistors

Small-signal operation of bipolar transistors is divided into three operating groups, namely
common-emitter, common-collector and common-base (Fig. 7.30). Their circuits each
have different input and output voltage terminations. The input and output voltages are
measured with respect to the common line. This common line gives the circuit its name,
e.g. common-emitter circuit. Each circuit has different gain and impedance properties.

Common Common Common
Emitter circuit Collector circuit Base circuit

Circuit

voltage
gain Av

> 1 ≈ 1 > 1

current
gain Ai

> 1 > 1 ≈ 1

input
impedance rin

medium very high very small

output
impedance rout

high very small high

Fig. 7.30. Basic bipolar transistor circuits

7.3.5 Common-Emitter Circuit

The common-emitter circuit has a high power, current and voltage gain. The output
voltage has the opposite phase to the input voltage.

The transistor operating point in the circuit in Fig. 7.31 is adjusted by the resistors R1, R2,
RC and RE so that it lies in the active region of the output characteristic. The AC signal
is coupled into the circuit through C1 and out of the circuit through C2. The values of C1

and C2 are chosen so that they appear as short circuits in the relevant frequency range
(Fig. 7.31).

The capacitor CE is also approximately a short circuit in the relevant frequency range, so
that the AC emitter is approximately at ground. Occasionally, the capacitor CE is not used
so that the emitter is not grounded. In this case, the circuit does not correspond to the
definition of a common-emitter circuit, but is nonetheless described as such.

Theuse of common-emitter circuits is limited to low- andmid-range frequencies, because at
high frequencies negative feedback occurs between the antiphase input and output voltages,
through the collector–base parasitic capacitor (Miller capacitance).
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Fig. 7.31. Common-emitter circuit with n–p–n and p–n–p transistor

7.3.5.1 Common-Emitter Circuit Two-Port Network Equations

The common-emitter two-port network parameters are usually given as h-parameters
(Fig. 7.32).

vBE = h11E · iB + h12E · vCE (7.21)

iC = h21E · iB + h22E · vCE (7.22)

Fig. 7.32. h-parameters of the common-emitter circuit

Short circuit-input resistance:

h11E = rBE = dVBE

dIB

∣∣∣∣
VCE= const

= vBE

iB

∣∣∣∣
vCE=0

≈ VT

IB
(7.23)

Parameter h11E is called the short-circuit input resistance. It is equal to the AC input
voltage vBE divided by the AC input current iB (see also Sect. 7.2.3). The VCE = const.
condition ismeaningless in the calculation ormeasurement of the input impedance at lower
frequencies, as the output voltage has hardly any influence on the input voltage (see h12E).

Reverse voltage transfer ratio:

h12E = dVCE

dVBE

∣∣∣∣
IB= const

≈ 0 (7.24)

Parameter h12E is called the reverse voltage-transfer ratio with open input (actually only
theAC input is open, and a DC quiescent current has to be present). For low frequencies it
is approximately zero. For higher frequencies the feedback voltage can be modelled by an
equivalent capacitance CCB, so that does not appear in the transistor AC equivalent circuit
(see also Sect. 7.3.1).
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Forward current gain:

h21E = β0 = dIC

dIB

∣∣∣∣
VCE= const

= iC

iB

∣∣∣∣
vCE=0

≈ �IC

�IB

∣∣∣∣
VCE= const

(7.25)

Parameter h21E is called the forward current gain with shorted output (AC-shorted only).
It is the AC current gain β0. This gives the relationship between the AC collector and
base currents for an AC-shorted collector–emitter junction. The collector–emitter path is
shorted with a capacitor to measure h21E. Graphically, h21E can be determined from the
output characteristic curve (Fig. 7.22).

Output admittance:

h22E = 1

rCE
= dIC

dVCE

∣∣∣∣
IB= const

= iC

vCE

∣∣∣∣
iB=0

≈ �IC

�VCE

∣∣∣∣
IB= const

(7.26)

Parameter h22E is called the output admittance with open input (actually, only theAC input
is open, and a DC quiescent current has to be present). This corresponds to the output
impedance rCE and can be determined from the output characteristic curve (Fig.7.23).

7.3.5.2 Common-Emitter AC Equivalent Circuit

Figures 7.33 and 7.34 show the common-emitter circuit with (i.e. emitter grounded) and
without the emitter capacitor CE.

The capacitors are chosen to be short circuits in the relevant frequency range. Here VCC

is the DC supply voltage, Rint is the source resistance of the AC input voltage source, and
RL is the load resistance (e.g. the input resistance of a following circuit). Note that rCE is
not shown in the equivalent circuit in Fig. 7.34, because of its high impedance. For clarity
it is not considered in the following calculations.

Fig. 7.33. Common-emitter circuit with bypass capacitor and its equivalent circuit
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Fig. 7.34. Common-emitter circuit without bypass capacitor and its equivalent circuit

7.3.5.3 Common-Emitter Circuit Input Impedance

The input impedance is different for Fig. 7.33 and Fig. 7.34 (with and without emitter
resistor bypassing):

In Fig. 7.33:

rin = vin

iin
= R1‖R2‖rBE (7.27)

If R1 and R2 have a high impedance compared to rBE, the input impedance simplifies as
follows:

rin ≈ rBE (7.28)

In Fig. 7.34:

vin = iB [rBE + (1+ β0)RE]
vin

iB
= rBE + (1+ β0)RE ≈ rBE + β0RE

The input impedance is:

rin ≈ R1‖R2‖(rBE + β0RE) (7.29)



284 7 Analogue Circuit Design

• If the circuit is realised without the bypass capacitor CE, the input impedance increases
drastically. The emitter resistor RE multiplied by a factor β0 influences this value! How-
ever, the voltage gain decreases by the same factor (see Sect. 7.3.5.5).

7.3.5.4 Common-Emitter Circuit Output Impedance

The output impedance rout is calculated by considering the circuit as a voltage or a current
source with an internal source resistance (of course, both yield the same result). See also
Sect. 7.1.3.2.

The output impedance is then

rout = open-circuit voltage

AC short-circuit current
= vo/c

is/c
(7.30)

Fig. 7.35. Common-emitter circuit: calculation of the output impedance

Assume the input voltage vin in Fig. 7.35 is known. Then

rout = vo/c

is/c
=
− vin

rBE
β0 (rCE‖RC)

− vin

rBE
· β0

= rCE‖RC (7.31)

Usually rCE can be neglected because of its high impedance. Then

rout ≈ RC (7.32)

Fig. 7.36. Common-emitter circuit without emitter capacitor CE
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For the common-emitter circuitwithout the emitter capacitorCE (Fig. 7.36) and neglecting
rCE:

rout = vo/c

is/c
≈
− vin

rBE + (1+ β0)RE
β0RC

− vin

rBE + (1+ β0)RE
β0

= RC (7.33)

The output of the common-emitter circuit is considered – physically correctly – a current
source. The higher the value RC, the higher the circuit efficiency. Unfortunately, as the
operating point is also defined by RC, the choice of RC is not entirely free. It is possible to
couple the alternating part of the collector current with high impedance using an (ideal)
transformer in the collector arm (Fig. 7.37). In this case, the whole alternating part of the
collector current flows through RL. The output impedance is then very high and is given
by rout = rCE.

Fig. 7.37. Common-emitter circuit with transformer coupling of the output current and its corresponding
AC equivalent circuit

7.3.5.5 Common-Emitter Circuit AC Voltage Gain

Fig. 7.38. AC equivalent circuit for voltage gain calculation

Calculation of the AC (small-signal) voltage gain Gv (Fig. 7.38):

Av = vout

vin
=
− vin

rBE
β0RC

vin
= −β0RC

rBE
(7.34)

The voltage gain is negative. This means that the input and output voltage have opposite
phases. If the output is loaded by a resistance RL then the voltage gain decreases, as the
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current iB · β0 divides between RC and RL. Then

Av = − β0

rBE
(RC‖RL) (7.35)

For the common-emitter circuit without CE (Fig. 7.39):

Av = vout

vin
=
− vin

rBE + (1+ β0)RE

vin
β0RC = − β0RC

rBE + (1+ β0)RE
≈ − RC

rBE

β0
+ RE (7.36)

When
rBE

β0
� RE, then the gain Av is given by

RC

RE
. If the circuit is loaded by RL, then

Av ≈ −RC‖RL
rBE

β0
+ RE

≈ −RC‖RL

RE
(7.37)

Fig. 7.39. Common-emitter circuit without emitter capacitor

The resistor RE is called a negative-feedback resistor. Its voltage, which is proportional
to iC, is subtracted from the input voltage, i.e. negatively fed back.

Fig. 7.40. Block diagram of the common-emitter circuit without emitter capacitor

The block diagram of the common-emitter circuit (Fig. 7.40) yields the same result
(Eq. (7.36)).

7.3.5.6 Operating Point Biasing

The operating point, i.e. the point defined by the transistor DC valuesVCE and IC, should be
in the active region of the output characteristic curve and also beneath the power dissipation
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hyperbolic curve. The operating point should be stable with respect to thermal runaway
and with respect to the production variations in the current gain βDC.

The operating point is calculated as follows for the circuit shown in Fig. 7.41:

1. VCE and IC are chosen first. The voltage VCE is chosen as a little less than half of the
supply voltage VCC. The choice of the collector current IC has an upper limit given by
permitted transistor power dissipation Ptotal.

VCE ≈ 0.3 · · · 0.5VCC , IC : Ptotal < VCE · IC
2. The resistorRE stabilises the operating point. It is chosen so that approximately 1−−2 V

is dropped across it.

3. The voltage VRC = VCC − VCE − VRE drops across the resistor RC. Then

RC ≈ VCC − VCE − VRE

IC
(7.38)

4. The base voltage is fixed by the resistors R1 and R2. They are also known as a base
voltage divider. The choice of RE and IC means that the base voltage cannot be freely
chosen.

VB0 = VRE + VBE = VRE + 0.7 V (7.39)

The voltage divider current Is is chosen to be approximately 10 times the base current.
This means that the base current only slightly loads the voltage divider, and thus the
production variation of the current gain βDC does not change the operating point.

Fig. 7.41. Operating point biasing

Example: Fixing the operating point of a common-emitter circuit:

1. Choice of VCE: VCE =4.5–7.5 V , choose VCE = 6 V
Choice of IC: ICmax = 500 mW/6 V = 83 mA , choose IC = 50 mA

2. RE = 1 V/50 mA = 20 �,
choose RE = 22 � , it follows that VRE = 1.1 V

3. RC = (VCC − VCE − VRE)/IC = 7.9 V/50 mA = 158 � , choose RC = 150 �

4. Is ≈ 10 · IB ≈ 10 · IC/B = 10 · 50 mA/200 = 2.5 mA

⇒ R2 ≈ (VRE + VBE)/Is = (1.1 V+ 0.7 V)/2.5 mA = 720 �
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VCC = 15 V
Transistor:
Ptotal = 500 mW
B = 200


⇒ R1 ≈ [VCC − (VRE + VBE)] /Is = (15 V− 1.9 V)/2.5 mA = 5.2 k�

choose R1 = 5.6 k� and R2 = 820 �

The calculation just described yields realistic component values. It is, however, not
the only solution. For example, the voltage divider could have a higher impedance
to increase the input impedance. Alternatively, RC could be larger in order to have
a greater open circuit voltage gain (see Fig. above). It is also not the only means to
do the calculation. If, for example, the output impedance RC should be equal to the
load impedance RL, then it is better to begin as follows: RC = RL

→ IC ≈ (VCC/2)/RC → RE ≈ (1 · · · 2 V)/IC → VB0 ≈ VBE + VRE, Is ≈
10 · IC/B → R2 = VB0/Is and R1 = (VCC − VB0)/Is.

In general:

• The base voltage divider and RE define the collector current. The collector resistor RC

defines the collector–emitter voltage.

7.3.5.7 Operating Point Stabilisation

Changes in the transistor data lead to a shift in the operating point. Thermal runaway �VBE

and production sample variation of the current gain βDC are important in this context.

• All steps to stabilise the operating point must focus on keeping the collector current
constant.

Stabilising the operating point using current feedback:

The resistor RE is called a feedback resistor.

The feedback mechanism: if the base–emitter voltage VBE decreases by an amount �VBE

because of a temperature increase, then the voltage VRE increases (for VB0 = constant).
The difference of these two changes appears across the differential input impedance rBE

and produces a change �IB in the base current. This is multiplied by the current gain β0,
yielding the change in collector current �IC. This in turn produces a change in the voltage
drop across RE. The change �IC with feedback present can be used to calculate the voltage
change VRC and thus VCE: �VCE = −�VRC = −�IC · RC.

The relationship �IC = f (�VBE) can be derived using the block diagram in Fig. 7.42.

�IC

�VBE
= −1

rBE

β0
+ RE

(7.40)
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Fig. 7.42. Stabilising the operating point using current feedback

The voltage change �VBE is considered as an extra voltage source at the base.

The relationship

�VCE

�VBE
= ADR = + 1

rBE

β0
+ RE

· RC ≈ +RC

RE
(7.41)

is the thermal voltage drift gain. It shows how much the collector voltage changes as a
result of thermal drift. It decreases as RE increases. Usual values for ADR lie in the range
5–10.

• The stabilising effect improves the larger RE becomes.

Note: The recommendations made in 7.3.5.6 for the measurement of RE are directly
related to the thermal voltage drift gain. For normal supply voltages, the voltage
drop across RE lies between 1–2 V.

Stability for production sample variations of current gain is achieved using low impedance
base voltage dividers. Thismeans that sample variations in the base current do not influence
the base quiescent current.

Operating-point stabilisation using voltage feedback:

Fig. 7.43. Operating point stabilisation using voltage feedback

Feedback mechanism: if the voltage VBE decreases by an amount �VBE because of a
temperature increase, then the base current IB increases. As IB increases, the collector
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current IC also increases, causing the collector voltage to decrease. The base voltage
defined by the voltage divider R1, R2 also decreases, and the base current (which was
increased by the temperature increase) decreases again. This is represented in the block
diagram in Fig. 7.43.

�VCE

�VBE
=

β0

rBE
· RC

1+ β0RC

rBE

R2

R1 + R2

= 1
rBE

β0RC
+ R2

R1 + R2

≈ R1 + R2

R2
(7.42)

Note: The voltage feedback has the disadvantage that an AC current will also ex-
perience negative feedback. Therefore the AC current gain is the same as the
thermal voltage drift gain. Alternatively, the AC voltage gain and thermal volt-
age drift gain with current feedback can be different, as the feedback resistor
RE can be AC-shorted by a capacitor CE placed in parallel. Capacitor CE is
chosen so that it is a short circuit for theAC signal to be amplified, but exhibits
a high impedance for the much slower changing thermal voltage drift.

Nonlinear stabilisation of the operating point:

The stabilisation of the operating point using current feedback can be further improved
if a p–n junction is placed in the base voltage divider, which is thermally coupled with
the transistor Q1 (Fig. 7.44). Any thermal drift of the transistor Q1 is therefore directly
compensated for in the base voltage divider.

Fig. 7.44. Nonlinear operating point stabilisation

7.3.5.8 Load Line

The mesh equation VCC = IC · (RC + RE)+ VCE is a linear equation.

IC = VCC − VCE

RC + RE
= − 1

RC + RE︸ ︷︷ ︸
slope

·VCE + VCC

RC + RE︸ ︷︷ ︸
constant

(7.43)

Equation (7.43) is called the static load line. VCE and IC can only take on values that lie
on the static load line. The operating point can be so chosen, by using the load line, that a
maximum output range is achieved that uses the entire active range of the transistor.
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Fig. 7.45. Static and dynamic load line in the output characteristic

Bypassing RE with a capacitor CE leads to the dynamic load line (Fig. 7.45). The slope

is given by
dIC

dVCE
= − 1

RC
, or if the load resistance is included

dIC

dVCE
= − 1

RC‖RL
. This

represents the relationship between the AC quantities vCE and iC.

7.3.5.9 Common-Emitter Circuit at High Frequencies

The collector AC voltage is in antiphase to the base voltage. A frequency dependent feed-
back exists through the parasitic collector–base capacitance (Miller capacitance). This
increases with increasing frequency. The amount of feedback also depends on the internal
resistance of the input voltage source. The smaller the resistance, the smaller the amount
of feedback.

Current feedback increases the critical frequency of the circuit. The voltage gain is de-
creased, and so the voltage feedback is less. Also, the current gain β in the expression for
the AC voltage gain is equally frequency dependent and thus decreases in value.

A value for the critical frequency can be measured or predicted with a suitable simulation
system.

• A high critical frequency can be achieved by using current feedback and a small internal
resistance in the input voltage source.

7.3.6 Common-Collector Circuit (Emitter Follower)

The common-collector circuit has a voltage gain of about 1. The output voltage range is
from around 0.7 V ≤ VB ≤ VCC, i.e. the output voltage range practically extends to the
supply voltage (Fig. 7.46).

The emitter voltage is always about 0.7 V below the base voltage. Hence the name emitter
follower, as the emitter voltage follows the base voltage and differs by the fixed amount
of 0.7 V.
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Fig. 7.46. The common-collector circuit and its voltages

The common-collector circuit has a very high input impedance and a small output
impedance. Therefore it is used as an impedance converter, e.g. in combination with
a common-emitter circuit (Fig. 7.47).

Fig. 7.47. Common-collector circuit as an impedance converter for a common-emitter circuit

7.3.6.1 Common-Collector AC Equivalent Circuit

Fig. 7.48. Common-collector circuit and its AC equivalent circuit
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7.3.6.2 Common-Collector Circuit Input Impedance

The common-collector input-impedance rin can be expressed as

rin = vin

iB
= iB · rBE + iB · (1+ β0) · RE

iB
= rBE + (1+ β0) · RE ≈ β0 · RE

(7.44)

and with a load resistance RL:

rin ≈ β0 · (RE‖RL) (7.45)

Fig. 7.49. AC equivalent circuit for the calculation of the input and output resistance

7.3.6.3 Common-Collector Circuit Output Impedance

The output impedance is given by:

rout = open-circuit AC voltage

short-circuit AC current
= vo/c

is/c
(7.46)

The input AC voltage vin is supplied.

This yields (Fig. 7.49):

vo/c = iB · (1+ β0) · RE = vin

rBE + (1+ β0)RE
(1+ β0)RE ≈ vin (7.47)

is/c = iB · β0 = vin

rBE
β0 (7.48)

This further yields:

rout ≈ rBE

β0
(7.49)

If the common-collector circuit is fed by a voltage source with an internal resistance Rint

(e.g. by a common-emitter circuit with Rint = RC), then this internal resistance appears at
the output impedance reduced by a factor β0.

rout ≈ rBE + Rint

β0
(7.50)

Note: The output impedance of a common-emitter stage can be reduced by a factor
β0 by the addition of an emitter follower (only two components!) as shown in
Fig. 7.47.
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7.3.6.4 Common-Collector Circuit AC Current Gain

The AC current gain is given by (Fig. 7.49):

Ai = iout

iin
= β0 · RE

RE + RL
(7.51)

The AC current gain of the emitter follower is unimportant in analogue design. Because
of its large input impedance, a voltage is applied to the input of the emitter follower and
is subsequently coupled to the output with a low output impedance.

7.3.6.5 Common-Collector Circuit at High Frequencies

The common-collector circuit has its critical frequency fc approximately at the critical
frequency of the current gain fβ (see also Sect. 7.3.1.12).

fc ≈ fβ ≈ fT

β0
(7.52)

7.3.7 Common-Base Circuit

The common-base circuit has a current gain of 1 and a voltage gain similar to the common-
emitter. The output voltage has the same phase as the input voltage. The input impedance
is very small, so a transformer coupling is often used, which, depending on the winding
ratio, can be very low impedance and deliver a large current for a small voltage (Fig. 7.50).

Fig. 7.50. Common-base circuit with transformer coupling

The common-base is suitable for very high frequencies. As its current gain Ai = 1 and the
output voltage is in phase with the input voltage, it can be used up to approximately the
unity gain frequency fT.

Note: The importance of the common-base diminished greatly with the introduc-
tion of field-effect transistors, because common-source circuits (comparable
to common-emitter circuits) are suitable up to frequencies that are achievable
with bipolar transistors only with the common-base circuit.

Operation of the common-base: The base–emitter voltage is the controlling voltage.
Given that the base is at AC ground, the input voltage must control the emitter voltage.
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This has the disadvantage that the input voltage source must supply the emitter current
and not the base current as in the case of the common emitter. For a positive change in the
input voltage, the base–emitter voltage decreases. The collector current decreases, and the
collector voltage increases (Fig. 7.50).

7.3.7.1 Common-Base AC Equivalent Circuit

Fig. 7.51. Common-base circuit and its AC equivalent circuit

7.3.7.2 Common-Base Circuit Input Impedance

The input impedance is (Fig. 7.51):

rin = vin

iin
, vin = iin · RE + iB · rBE = iin

(
RE + rBE

1+ β0

)

⇒ rin = RE + rBE

1+ β0
≈ RE + rBE

β0
(7.53)

If RE is bypassed by a capacitor (Fig. 7.51), then the input impedance reduces to

rin ≈ rBE

β0
(7.54)

7.3.7.3 Common-Base Circuit Output Impedance

The output impedance is given by:

rout = open-circuit AC voltage

short-circuit AC current
= vo/c

is/c
(7.55)

vo/c ≈ iB · β0 · RC = vin
β0RC

rBE
, is/c ≈ iB · β0 = vin

rBE
β0 (7.56)


⇒ rout = vo/c

is/c
≈ RC (7.57)

• The common-base output impedance is the same as for the common emitter.
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7.3.7.4 Common-Base Circuit AC Voltage Gain

The AC voltage gain of the common-base circuit is:

Av = vout

vin
, vout = iBβ0RC, vin = iB(1+ β0)RE + iB · rBE


⇒ Vv = vout

vin
≈ RC

rBE

β0
+ RE

(7.58)

If RE is bypassed by a capacitor, the gain increases to:

Av = vout

vin
= β0 · RC

rBE
(7.59)

• The AC voltage gain of the common-base is as for the common-emitter circuit.

7.3.7.5 Common-Base Circuit at High Frequencies

The common-base current gain is 1. Thus the current gain does not create any unwanted
negative feedback. The output voltage is in phase with the input voltage, so that in this
case feedback over parasitic capacitances is also not a problem. For these reasons the
common-base can be operated up to approximately the unity gain frequency fT.

7.3.8 Overview: Basic Bipolar Transistor Circuits

Fig. 7.52 gives an overview of basic bipolar transistor circuits.

7.3.9 Bipolar Transistor Current Sources

Real current sources can be represented by a circuit diagram consisting of an ideal current
source Is and a source resistor Rint, (Fig. 7.53).

Current sources in circuit theory should deliver a defined current:

• independent of the terminal voltage Vout, and

• independent of the supply voltage VCC (in particular repressing any mains hum present)

.

Bipolar transistor current source:

The mesh equation −Vz + VBE + Is · RE = 0 yields an expression for the current Is
(Fig. 7.54):

Is ≈ Vz − 0.7 V

RE
for 0 < Vout < (VCC − Vz) (7.60)

The current Is is independent of the output voltageVout with the choice of the Zener voltage
Vz and the emitter resistor RE. The Zener diode works as a constant voltage source. Other
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Common-emitter Common-collector Common-base
circuit circuit circuit

(Emitter follower)

Av = vout

vin

−β0RC

rBE + (1+ β0)RE

1

1+ rBE

(1+ β0)RE

β0RC

rBE + (1+ β0)RE

≈ −RC
rBE

β0
+ RE

≈ 1 ≈ RC
rBE

β0
+ RE

rin = rBE + (1+ β0)RE rBE + (1+ β0)RE RE + rBE

(1+ β0)

rout = RC
Rint + rBE

(1+ β0)
RC

Fig. 7.52. Comparison of basic bipolar transistor circuits

Fig. 7.53. Current source representation

Fig. 7.54. Bipolar transistor current source
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voltage sources could be used in place of the diode, such as reference elements, LEDs or
series connected silicon diodes.

The source resistance of the current source can be determined from the AC equivalent
circuit (Fig. 7.55).

Fig. 7.55. AC equivalent circuit for bipolar transistor current sources

ri = −vout

iout
= RE(rBE + β0rCE)+ rCE(RE + rBE)

RE + rBE
(7.61)

• The source resistance lies between rCE and β0 · rCE, depending on the circuit layout.

rCE < ri < β0 · rCE (7.62)

For a normal choice of voltage Vz (Vz = a few volts) the source resistance is approxi-
mately 10–20 times rCE.

• In general, ri increases with increasing Vz and RE.

Current source stabilisation against voltage supply variations only partially depends
on the source resistance. The source resistance of the voltage source Vz has a similar
influence. It causes Vz to change with the supply voltage VCC and thus also the current Is.

To reduce 100 Hz mains ripple, Vz can be stabilised by using a low-pass filter (Fig. 7.56).

C = 10 . . . 100 · 10 msec

R1/2

to reduce 100 Hz mains ripple

Fig. 7.56. Current source with improved mains ripple reduction

7.3.10 Bipolar Transistor Differential Amplifier

The differential amplifier amplifies the difference of the input voltages (Fig. 7.57):

−vout1 = vout2 = (vin1 − vin2) · Ad = vd · Ad (7.63)
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Fig. 7.57. Differential amplifier with bipolar transistors

Differential amplifiers are used mostly as addition points in a feedback loop.

Differential amplifiers are usually used with a symmetric plus/minus-supply voltage. The
quiescent input voltage is at ground. The quiescent collector voltage (operating point)
is chosen to be at VCC/2 for n–p–n transistors or at −VSS/2 for p–n–p transistors. The
quiescent collector current is equal to half the source current Is (IC = Is/2). The emitter
resistor RE (current feedback) can be chosen to be very small, as the thermal drift effects
both transistors. For selected transistors, which differ only slightly in their parameters
(matched transistors), RE can be discarded. If the output voltage is taken between the
collector terminals, then Vout ∝ Vd also in DC.

A distinction is made between common mode and differential mode. If the input voltages
have the same amplitude and phase, then they are in common-mode. If the input voltages
have the same amplitude and are in antiphase, then they are in differential mode. If vin1

and vin2 are not equal, then they can be broken into common-mode and differential mode
constituent parts.

In theory, a common-mode signal vin1 = vin2 = vCM does not cause an output signal, as
the current Is is defined and should divide equally between the two transistor arms because
of the input voltage symmetry. A common-mode signal produces an output signal only as
a result of the finite source resistance of the current source Is.

The ratio

common-mode output voltage

common-mode input voltage
= vout1

vCM
= dVout1

dACM
= VCM (7.64)

is known as common-mode gain. Ideally it is zero.

A differential signal vin1 = −vin2 = vd/2 produces an output signal vout1 = −vout2, as it
causes the current Is to divide unequally between the two transistor arms.
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The ratio

differential output voltage

differential input voltage
= vout1

vin1 − vin2
= vout1

vd
= dVout1

d(Vin1 − Vin2)
= Ad

(7.65)

is known as differential-mode gain.

7.3.10.1 Differential Mode Gain

Fig. 7.58. Calculation of the differential mode gain using anAC equivalent circuit of the differential amplifier

The AC equivalent circuit in Fig. 7.58 yields:

vd = iB1 · rBE1 + id · 2RE − iB2 · rBE2 (7.66)

vout1 = −iB1 · β0 · RC (7.67)

id = iB1 · (1+ β0) = −iB2 · (1+ β0) (7.68)

It follows that:

Ad = vout1

vd
= −vout2

vd
= −1

2

β0 · RC

rBE + (1+ β0)RE
(7.69)

or, alternatively:

Ad = vout1

vd
= −vout2

vd
≈ −1

2

RC
rBE

β0
+ RE

(7.70)

• The lower the resistance of RE, the greater the differential gain Ad.

Note: In order to be able to choose a small feedback resistor RE, the transistors
must be as similar as possible and be exposed to the same temperature. For
this reason monolithic transistors (dual transistors in the same housing) are
produced. These are manufactured in the same process (on the same chip) and
are thus very similar, and they are at the same temperature because of the
common casing. In this case RE can be discarded.
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7.3.10.2 Common-Mode Gain

Fig. 7.59. Differential amplifier AC equivalent circuit for the common-mode gain calculation

Calculation of the common-mode gain, taking into account the source resistance ris of the
current source Is the AC equivalent circuit yields (Fig. 7.59):

vGl = iB1 · rBE1 + iB1 · (1+ β0)RE + is · ris (7.71)

vout1 = −iB1 · β0 · RC (7.72)

is = (iB1 + iB2) · (1+ β0) = 2 · (1+ β0) · iB1 (7.73)

It follows that:

ACM = vout1

vCM
= − β0RC

rBE + (1+ β0)RE + (1+ β0) · 2ris
(7.74)

With 2ris � RE it follows that:

ACM = vout1

vCM
= −vout2

vCM
≈ −RC

2ris
(7.75)

• The higher the source impedance of the current source, the smaller the common mode
gain is.

7.3.10.3 Common-Mode Rejection Ratio

The common-mode rejection ratio CMRR is the quotient of differential-mode gain and
common-mode gain.

CMRR = Ad

ACM
(7.76)

Usually it is expressed in dB. The common-mode rejection ratio is:

CMRR = Ad

ACM
= ris

rBE

β0
+ RE

(7.77)
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7.3.10.4 Differential Amplifier Input Impedance

Differential-mode input resistance rd (Fig. 7.58):

rd = vd

iB1
= 2rBE + (1+ β0)2RE (7.78)

rd ≈ 2(rBE + β0RE) (7.79)

Common-mode input resistance rCM (Fig. 7.59):

rCM = vCM

iB1
= rBE + (1+ β0) · RE + 2 · (1+ β0) · ris (7.80)

rCM ≈ 2β0 · ris (7.81)

7.3.10.5 Differential Amplifier Output Impedance

The output impedance rout is (as for the common-emitter circuit):

rout = RC (7.82)

7.3.10.6 Offset Voltage of the Differential Amplifier

The offset voltage V0 (input offset voltage) is the differential input voltage that must be
applied so that the output voltages Vout1 and Vout2 are equal.

V0 = (Vin1 − Vin2)|Vout1=Vout2
(7.83)

The offset voltage is a tolerance value. The value given in the data sheet is the worst case.

7.3.10.7 Differential Amplifier Offset Current

The offset current I0 (input offset current) is the differential input currentthat must be
supplied so that Vout1 and Vout2 are equal.

I0 = (Iin1 − Iin2)|Vout1=Vout2 (7.84)

7.3.10.8 Input Offset Voltage Drift

The thermal voltage drift of both differential amplifier transistors effectively cancels
out because of their matched fabrication. Only the tolerance-defined differences in the
thermal drift have an effect. The offset voltage drift (also described as the temperature
coefficient of the input offset voltage) is the change in the offset voltage caused by the
different temperature responses of the transistors. It lies several decades below the thermal

voltage drift �VBE. The input offset voltage drift is given in units of
V

K
.
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7.3.10.9 Differential Amplifier Examples

Fig. 7.60. Differential amplifier examples

A number of examples of differential amplifiers are given in Fig. 7.60:

a) Differential amplifier with current source, good mains-ripple repression and current
feedback with a potentiometer for symmetry;

b) Differential amplifier with a single output voltage. A collector resistor can therefore be
discarded. Disadvantage: The power dissipated in the transistors is different, causing
the transistors’ thermal symmetry to be lost.

c) Differential amplifier without current feedback. The transistor BCY87 is a dual tran-
sistor in a single casing especially suitable for differential amplifiers.

d) Symmetrical analogue signal transmission. Electromagnetically coupled interferences
in the transmission channel cancel each other out in the receiver circuit.

e) Differential circuit with currentmirror to couple current out, iout = (vin1−vin2)
β0

rBE
. This

circuit is particularly important in IC design because of the required thermal coupling
and the required small deviation in the transistor parameters .
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7.3.11 Overview: Bipolar Transistor Differential Amplifiers

Differential-mode gain:

Ad = vout1

vd
= −vout2

vd

≈ −1

2

RC
rBE

β0
+ RE

with vin1 − vin2 = vd

common-mode gain:

ACM = vout1

vCM
= vout2

vCM
≈ −RC

2ris
with vin1 = vin2 = vCM

common-mode rejection ratio:

CMRR = Ad

ACM
= ris

rBE

β0
+ RE

Differential-mode input
impedance:
rd ≈ 2(rBE + β0RE)

Output impedance:
rout = RC

7.3.12 Current Mirror

The current mirror produces an output current Iout, which is equal to the input current I1.
The circuit output has the qualities of a current source, i.e. it has a very high impedance
source resistance.

In Fig. 7.61 current I1 is the input quantity. Transistors T1 and T2 are equal and are at the
same temperature. It follows that:

I1 = IC1 + IB , IB1 = IB2 = IB

2
, IC1 = βDC · IB1 (7.85)

I1 = βDC · IB1 + 2IB1 = (2+ βDC) · IB1

Iout = βDC · IB2 = βDC · IB1

}
Iout ≈ I1 (7.86)

Fig. 7.61. Current mirror circuit
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7.3.12.1 Current Mirror Variations

Fig. 7.62 shows how to multiply or to divide an input current.

Fig. 7.62. Current mirror variation

7.4 Field-Effect Transistor Small-Signal Amplifiers

Small-signal amplifiers are circuits that amplify small AC signals, where the signal am-
plitude is much smaller than the operating point values (i.e. the DC values applied to the
components). The operating frequencies should be low, so that propagation delays and
phase changes caused by parasitic elements can be neglected (otherwise it is pointed out
in the operating conditions).

7.4.1 Transistor Characteristics and Ratings

7.4.1.1 Symbols, Voltages and Currents for Field-Effect Transistors

The transistor terminals are called the drain, the source and the gate. Field-effect tran-
sistors are voltage-controlled components. The drain–source current is controlled by the
gate–source voltage. At low frequencies the control requires no power. This means that
the gate current is insignificantly small.

A distinction is made between junction field-effect transistors (JFETor junction-FET)
and insulated gate field-effect transistors (IGFET or insulated-gate FET while MOS-
FET). JFETs are always depletion types, while IGFETs can be depletion type or en-
hancement type. Depletion means that the drain–source path conducts for VGS = 0.
Enhancement means that the drain–source path does not conduct for VGS = 0.

A further distinction is made between n-channel and p-channel types. In n-channel types
the drain current flows into the drain. The drain current increases if the gate–source voltage
is changed in a positive sense. In p-channel types the drain current flows from the drain. It
increases if the gate–source voltage is changed in a negative sense.

Note: In terms of the current and voltage directions, an n-channel FET corresponds
to an n–p–n transistor and a p-channel FET to a p–n–p transistor.

Figure 7.63 summerizes informtion for FETs

For JFETs the gate–source path is a silicon diode which is reverse-biased in normal
operation. Forward biasing can easily lead to the destruction of the FET, as the current
follows the forward-bias diode characteristic.
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TYPE Symbol Characteristics

JFET
n-channel
depletion type

JFET
p-channel
depletion type

IGFET
n-channel
depletion type

IGFET
n-channel
enhancement type

IGFET
p-channel
depletion type

IGFET
p-channel
enhancement type

Fig. 7.63. Classification, voltages, currents and characteristics of FETs

For IGFETs or MOSFETs the gate is isolated with respect to the drain and source. The
maximum rating for the gate–source voltage is in the region of ±20 V.

MOSFETs are often used as ‘electronic switches’. The smallest drain–source resistance
RDS(ON) (ON resistance) is given in the switched on state (VGS > 10 V).

MOSFETs often have a silicon diode in parallel (reverse-current diode). In the non-
conducting state the source–drain path behaves like a forward-biased silicon diode. This
diode must be a fast rectifier for applications in frequency inverters and in push–pull
amplifiers.

In MOSFETs the termination is occasionally accessible. It is described by the term BULK
(B). It has a similar controlling influence as the gate.
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Note: To test whether an IGFET (MOSFET) is defective or not, a continuity tester can
be used on the drain–source path in conjunction with a voltage source (about
10 V), which controls the gate–source voltage. The state of the drain–source
path must maintain its state (conducting or not), even if the control voltage VGS

is removed.

7.4.1.2 JFET Characteristic Curves

The transfer characteristic ID = f (VGS) and the output characteristic ID = f (VDS),
where VGS is a parameter, represent the relationship between all voltages and currents of
the field-effect transistor (Fig. 7.64).

VP is the pinch-off voltage. At VGS = VP the drain current ID becomes practically zero.
The value of VP is governed by sample variations and temperature dependence.

The input voltage of the gate–source voltage lies between VP < VGS < 0 V for the JFET.
For VGS > 0 V the high impedance of the gate is lost.

Fig. 7.64. Transfer and output characteristics of a JFET (here: n-channel JFET)

The analytical form of the transfer characteristic is

ID = IDSS

(
1− VGS

VP

)2

(7.87)

The output characteristic curve is divided into two regions, the saturation region and the
linear region (or triode region). In the saturation region the characteristic curve is almost
horizontal, and the drain current only depends on the gate–source voltage and is almost
independent of the applied drain–source voltage. In the linear region the drain current
increases approximately proportionally to the drain–source voltage. The increase depends
on VGS. Both regions are separated by a pinch-off curve given by

Vk = (VGS − VP) (7.88)

7.4.1.3 IGFET Characteristic Curves

The threshold voltage Vth of the gate–source voltage for enhancement-type FETs lies in
a positive voltage range and in a negative range for depletion types. The threshold voltage,
like VP for the JFET, varies greatly due to manufacturing tolerances. The gate isolation
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Fig. 7.65. IGFET (MOSFET) transfer and output characteristics; here: enhancement-type n-channel IGFET

from the conducting channel means that relatively high gate–source voltages may be used.
Usual values are ±20 V.

The analytical form of the transfer characteristic of IGBTs is the same as for JFETs:

ID = IDSS

(
1− VGS

VP

)2

(7.89)

For enhancement-type FETs the current ID = ID(VGS = 2Vth) is substituted for IDSS

(Fig. 7.65).

7.4.1.4 Transconductance

Transconductance gm is given by the slope of the transfer characteristic curve ID =
f (VGS), see Fig. 7.66.

gm = dID

dVGS

∣∣∣∣
VDS=const

≈ �ID

�VGS

∣∣∣∣
VDS=const

(7.90)

The drain–source voltage feedback to the gate is small at low frequencies, so that the
measurement condition VDS = const is practically meaningless.

Transconductance gm is given in siemens or millisiemens.

Fig. 7.66. Definition of the forward transconductance in the transfer characteristic and in the output charac-
teristic
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7.4.1.5 Dynamic Output Resistance

Fig. 7.67. Definition of the differential output resistance

The dynamic output resistance defines the change in the drain current as a function of
the drain–source voltage for a constant gate–source voltage (Fig. 7.67).

rDS = dVDS

dID

∣∣∣∣
VGS=const

≈ �VDS

�ID

∣∣∣∣
VGS=const

(7.91)

• rDS is extremely high, especially forMOSFETs (the output characteristic curve is almost
horizontal).

7.4.1.6 Input Impedance

The input impedance of a field-effect transistor is the impedance of the gate–source
junction, which is capacitive. It is given in data sheets either by Ciss or by their two-port
parameters C11S. The value is in the range of a few picofarads to several nanofarads.

7.4.2 Equivalent Circuit

7.4.2.1 Equivalent Circuit for Low Frequencies

The gate–source voltage controls the drain current. The value of rDS is usually so high that
it can be neglected.

It then holds:

iD ≈ gm · vGS, and  ID ≈  gm · VGS, respectively
(7.92)

Fig. 7.68. FETAC equivalent circuit for low frequencies
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7.4.2.2 Equivalent Circuit for High Frequencies

Fig. 7.69. FETAC equivalent circuit for high frequencies

At higher frequencies the parasitic capacitances between each of the terminals begin to take
effect (Fig. 7.69). The gate–source capacitance loads the input voltage source. The gate–
drain capacitance causes feedback in the common-source circuit, the amount of which
depends on the source resistance of the input voltage source. The frequency-dependent
feedback decreases with decreasing source resistance.

The following connections exist between the data sheet parameters Ciss, Crss andCoss (also
denoted by C11S, C12S and C22S) and the equivalent circuit values:

Input capacitance: Ciss = C11S ≈ CGS + CGD

Reverse transfer capacitance: Crss = C12S ≈ CGD

Output capacitance: Coss = C22S ≈ CDS + CGD

7.4.2.3 Critical Frequency of Transconductance

The critical frequency of transconductance is very high for field-effect transistors (for
the BF245, a particularly popular JFET, it is at 700 MHz). The FET is thus particularly
suitable as a high-frequency amplifier.

The critical frequency of transconductance is only given for those FETs that are intended
for analogue usage. It is not given, therefore, for most MOSFETs, which are intended for
use in fast switching.

7.4.3 Basic Circuits using Field-Effect Transistors

Similar to bipolar transistors, there are three different small signal modes of operation.
These are the common-source, the common-gate and the common-drain (Fig. 7.70, see
also Sect. 7.3.4).

7.4.4 Common-Source Circuit

The common-source circuit is an amplifier circuit for voltage and current amplification
(Fig. 7.71).

Common-Source Circuit with JFET

Figure 7.71a shows the common-source circuit with a JFET. The transistor operating point
is selected so that it lies in the saturation region of the output characteristic curve. VGS
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Common-source Common-drain Common-gate
circuit circuit circuit

Circuit

Voltage
gain Av

> 1 < 1 > 1

Current
gain Ai

→∞ →∞ 1

Input
impedance rin

Very high Very small Small

Output
impedance
rout

Intermediate Small Intermediate

Fig. 7.70. Basic FET circuits

Fig. 7.71. Common-source circuit

must be therefore negative for depletion-type n-channel FETs. RG connects the gate via a
high impedance to Ground, while the drain current passing through RS causes the source
voltage to have a positive value. The source is connected to AC ground via the capacitor
CS. RD defines the DC drain–source voltage. The output voltage is taken from this point.
The output voltage vout has the opposite phase to the input voltage vin (see Sect. 7.4.4.8).

Common-Source Circuit with IGFET

Figure 7.71b shows the common-source circuit with an enhancement-type IGFET. The
configuration is similar to the common-emitter configuration. The gate voltage must be
positive with respect to the source voltage. The stabilisation of the operating point is
achieved using RS (see also operating-point stabilisation for the IGFET).

7.4.4.1 Common-Source Two-Port Parameters

The common-source two-port parameters are usually given as y-parameters (Fig. 7.72 and
Tab. 7.1).
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iG = y11S · vGS + y12S · vDS

iD = y21S · vGS + y22S · vDS

Fig. 7.72. Definition of the two-port parameters for the common-source circuit

Table 7.1. FET y-parameters of the common-source cicuit

low high
frequencies frequencies

Input admittance with shorted output:

Y11S = dIG

dVGS

∣∣∣∣
VDS=const

= iG

vGS

∣∣∣∣
vDS=0

≈ 0 ωC11S

Reverse transconductance with shorted input:

Y12S = dIG

dVDS

∣∣∣∣
VGS=const

= iG

vDS

∣∣∣∣
vGS=0

≈ 0 ωC12S

Forward transconductance with shorted output:

Y21S = dID

dVGS

∣∣∣∣
VDS=const

= iD

vGS

∣∣∣∣
vDS=0

≈ gm gm

Output admittance with shorted input:

Y22S = dID

dVDS

∣∣∣∣
VGS=const

= iD

vDS

∣∣∣∣
vGS=0

≈ 0 ωC22S

7.4.4.2 AC Equivalent Circuit of the Common-Source Circuit

The resistance of RG is usually selected to be very large, so it is not considered in the
equivalent circuit.

The equivalent circuit for low frequencies can, in most cases, be the one used with field-
effect transistors (Fig. 7.73a).

The equivalent circuit for high frequencies is valid when the parasitic reactances 1/ωCGD,
1/ωCGS and 1/ωCDS are not negligible compared with RD, the source resistance of the
voltage source, Rint or the load (Fig. 7.73b). This could be the case even at lower frequen-
cies, especially if the source resistance Rint is large enough to effect feedback over the
feedback capacitor CGD (Miller effect).

The equivalent circuit in Fig. 7.73c is valid if RS is not AC-bypassed by the capacitor CS.
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Fig. 7.73. Equivalent circuits of the common-source: a for low frequencies; b for high frequencies; c for low
frequencies and without CS

7.4.4.3 Input Impedance of the Common-Source Circuit

The input impedance is

zin = 1

Y11S
≈
{
∞ , for low frequencies
ωC11S = ωCiSS , for high frequencies

(7.93)

7.4.4.4 Output Impedance of the Common-Source Circuit

The output impedance is

zout = open-circuit AC voltage

AC short-circuit current
= vo/c

is/c
= vo/cSRD

vo/cS
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this yields

zout =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vo/cgmRD

vo/cgm
= RD , for low frequencies

vo/cgm(RD|| 1

jωC22S
)

vo/cgm
= RD|| 1

jωC22S
, for high frequencies

(7.94)

7.4.4.5 AC Voltage Gain

The small-signal AC gain Av according to Fig. 7.73a is:

Av = vout

vin
= −vGS · gm · RD

vGS
= −gm · RD (7.95)

If the load resistance RL at the circuit output is considered, then this yields:

Av = −gm · (RD||RL) (7.96)

• The output voltage has the opposite phase from the input voltage.

• The voltage gain of the common-source circuit is significantly smaller than of the
common-emitter circuit. This can be seen in the significantly smaller transconductance
in the FET compared to the bipolar transistor.

The small-signal AC gain Av according to Fig. 7.73c is:

Av = − gm · RD

1+ gm · RS
(7.97)

At high frequencies the antiphase output voltage is returned to the gate–source voltage via
the feedback capacitance CGD. The higher the value of Rint, the more this reduces the
amplification. Furthermore, at high frequencies the impedance of the output capacitance
reaches the region of the drain impedance, which causes a further decrease in the gain.
An exact analysis of the gain at high frequencies in practice should be carried out by
measurements or with a suitable simulation system.

7.4.4.6 Operating-Point Biasing

Operating-point biasing for depletion-type FETs:

The transconductance curve and the output characteristic curve are used in the selection
of the resistances RD, RS and RG (Fig. 7.74). The operating point VDS0, ID0 is chosen as
follows

• ID0 = 0.3 . . . 0.5 · IDSS , and VDS0 ≈ 0.3 . . . 0.5VCC

• in the saturation region taking into account the gate voltage
• under the curve of the power loss.

RS and RD are then:

RS = −VGS0

ID0
, and RD = VCC − VDS0

ID0
(7.98)
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Fig. 7.74. Operating-point biasing for depletion-type FETs

RD determines the voltage gain. To get a large voltage gain, small values of ID0 should be
chosen and large values of VCC should be used.

RG is present to connect the gate to ground.RG can be chosen in themegohm range because
of the large impedance of the gate.

The temperature dependence of VP and its sample variations causes the operating point
to shift on the bias line, whose slope is −1/RS. This means that there is an acceptable
operating point over a large range of tolerances.

Operating-point definition for enhancement-type FETs:

Fig. 7.75. Operating-point definition for enhancement-type FETs

The operating point VDS0 and ID0 is chosen from the output characteristic curve:

• VDS0 ≈ 0.3 . . . 0.5VCC;

• in the saturation region;

• underneath the power loss curve (Fig. 7.75).

The drain current is defined by the gate voltage divider R1, R2 and the source resistor
RS. To determine the three resistors, the possible variations in the transconductance curve
ID = f (VGS) are considered. The bias line−1/RS is chosen so that, despite the variations
in Vth, the operating point remains in a valid position in the output characteristic curve.
The choice of RS and VG may be carried out graphically from the transconductance curve.
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The resistor values can be calculated thus:

RD = VCC − VDS0

ID0
− RS , RS = VG − VGS0

ID0
,

R1

R2
= VCC − VG

VG (7.99)

The voltage divider R1/R2 can be chosen in the megohm range.

7.4.4.7 Common-Drain Circuit, Source Follower

Fig. 7.76. Common-drain circuit (source follower)

The common-drain is similar to the emitter follower, but has a smaller gainAv < 1 because
of the smaller transconductance of the FET compared to the bipolar transistor. The gate
voltage divider R1, R2 can be discarded if the common-drain is used as a stage after a
common-source stage (Fig. 7.76).

The common-drain input impedance is extremely high. The output impedance is small, so
the common-drain circuit is particularly useful as an impedance converter.

7.4.4.8 AC Equivalent Circuit of the common-drain Circuit

Fig. 7.77. Common-drain circuit (source follower) and its AC equivalent circuit
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7.4.4.9 Input Impedance of the Common-Drain Circuit

The input impedance of the common-drain circuit is extremely high:

rin →∞ (7.100)

7.4.4.10 Output Impedance of the Common-Drain Circuit

rout = open-circuit AC voltage

AC short-circuit current
= vo/c

is/c

According to Fig. 7.77 it holds that:

Open circuit: vin = vGS + vGS · gm · RS, vo/c = vGS · gm · RS, vo/c = gm · RS

1+ gm · RS
vin

Short circuit: is/c = vin · gm

This yields:

rout = RS

1+ gm · RS
(7.101)

7.4.4.11 Voltage Gain of the Common-Drain Circuit

According to Fig. 7.77 it holds that:

vin = vGS + vGS · gm · RS, vout = vGS · gm · RS

This yields:

Av = vout

vin
= gm · RS

1+ gm · RS
(7.102)

7.4.4.12 Common-Drain Circuit at High Frequencies

The common-drain circuit is suitable for operation up to the transconductance critical
frequency fy21S.

7.4.5 Common-Gate Circuit

The common-gate is similar to the common-base in bipolar transistors (Fig. 7.78). The
current gain is 1, and the voltage gain corresponds to that of the common-source circuit.
The input impedance is small, and the output impedance is RD. The circuit is suitable as a
voltage amplifier for high frequencies, as the output voltage has the same phase as the input
voltage, and thus there can be no undesired frequency-dependent feedback. The operating
point is determined and stabilised by RS.
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Fig. 7.78. Common-gate and its AC equivalent circuit

7.4.5.1 Input Impedance of the Common-Gate Circuit

The impedance is

rin = 1

gm
||RS ≈ 1

gm
(7.103)

7.4.5.2 Output Impedance of the Common-Gate Circuit

The output impedance is

rout = RD (7.104)

7.4.5.3 Voltage Gain of the Common-Gate Circuit

The voltage gain is

Av = gm · RD (7.105)

7.4.6 Overview: Basic Circuits using Field-Effect Transistors

Common-source Common-drain Common-gate
circuit circuit circuit

(source follower)

Circuit

AC equivalent
circuit

Av −gmRD
gmRS

1+ gmRS
gmRD

Ai →∞ →−∞ −1
rin →∞ →∞ 1/gm

rout RD
RS

1+ gmRS
RD

Fig. 7.79. Comparison of basic FET circuits
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7.4.7 FET Current Source

Fig. 7.80. JFET Current source

FET current sources are mainly realised using depletion-type FETs (Fig. 7.81). They have
the advantages over bipolar transistors that they

• consist of only two components, and

• have a very high mains-ripple repression, as they do not require a reference voltage,
which is supplied by the ‘humming’ supply voltage

A disadvantage is that the source current Is can vary considerably because of production
tolerances.

Fig. 7.81. AC equivalent circuit of the current source (equivalent circuit for small/incremental changes iout
of the source current Is )

The differential internal impedance rout is (Fig. 7.81):

rout = − dVout

dIout
= −vout

iout
= rDS(1+ gm · RS)+ RS ≈ rDS(1+ gm · RS)

(7.106)

• A horizontal progression of the output characteristic curve means that rDS has a very
large resistance, and thus that the current source has a very high impedance.

7.4.8 Differential Amplifier with Field-Effect Transistors

The differential amplifier with field-effect transistors operates similarly to the differential
amplifier with bipolar transistors, as described in Sect. 7.3.10. The current Is is divided up
evenly between the two transistor arms, because of the symmetry of the input voltages.
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The source voltage and thus the gate–source voltage is defined by the corresponding
transconductance curve, while the drain currents are ID = Is/2 for symmetry reasons
(Fig. 7.82). In order to guarantee the required symmetry of the transistor parameters,
monolithic dual FETs should be used. Differential amplifiers with field-effect transistors
are employed where an extremely high input impedance is required.

Fig. 7.82. Differential amplifier with FETs and the AC equivalent circuit, where rint is the differential
resistance of the current source IS

7.4.8.1 Differential Mode Gain

Differential amplification is the amplification that exists for antiphase, equal amplitude
input voltages.

From the AC equivalent circuit in Fig. 7.82 it follows that:

Vd = vGS1 − vGS2, vout1 = −vGS1 · gm · RD, vGS1 = −vGS2, Ad = vout1

vd
= −vout2

vd

Ad = vout1

vd
= −1

2
gm · RD (7.107)

7.4.8.2 Common-Mode Gain

Common-mode gain is the gain that exists for input voltages that are in phase and have
equal amplitudes.

The source resistance rint of the current source is now inserted (Fig. 7.82):

vin1 = vin2, vin1 = vGS1 + is · rint, vout1 = −vGS1 · gm · RD,

is = vGS1 · gm + vGS2 · gm

ACM = vout1

vin1
= vout2

vin1
= − RD

2rint
(7.108)
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7.4.8.3 Common-Mode Rejection Ratio

The common-mode rejection ratio is:

CMRR = Ad

ACM
≈ gm · rint (7.109)

7.4.8.4 Input Impedance

Differential mode input impedance:

zd =
⎧⎨⎩
→∞ , for low frequencies

2
1

jωC11S
, for high frequencies

(7.110)

Common-mode input impedance:

rCM →∞ (7.111)

7.4.8.5 Output Impedance

rout = RD (7.112)

7.4.9 Overview: DifferentialAmplifier with Field-Effect Transistors

Differential mode gain:

Ad = vout1

vd
= −vout2

vd

≈ −1

2
gm · RD

with vin1 − vin2 = vd

Common-mode gain:

ACM = vout1

vCM
= −vout2

vCM

≈ − RD

2rint
with vin1 = vin2 = vCM

Common-mode rejection
ratio:

CMRR = Ad

ACM
≈ gm · rint

Differential mode input
impedance:

zd ≈ 2 · 1

jωC11S

Output impedance:
rout = RD

7.4.10 Controllable Resistor FETs

The FET as a controllable resistor is operated in the linear region of the output characteristic
curve. This means that in this case the FET is operated with a very small drain–source
voltage (VDS < Vk) (Fig. 7.83).

The resistance of small-signal FETs is in the range of tens to several hundred Ohms.
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Fig. 7.83. The resistive range of the output characteristics

A linearisation of the curved characteristics is achieved with the circuit for the adjustable
voltage divider in Fig. 7.84. The linearisation works as follows: for increasing output
voltages the gate–source voltage is increased and thus the nonlinear characteristic curve
is compensated. The resistors are chosen so that R2 = R3 � RDS.

It then holds that:

Vout

Vin
= RDS

R1 + RDS
(7.113)

Fig. 7.84. Linearised voltage-controlled voltage divider

The FET as a controllable resistance is used, for example, in

• automatic voltage-level control,

• adjustable voltage dividers,

• amplitude stabilisation of oscillators, and

• circuits with variable gain.

7.5 Negative Feedback

Feedback is the term used when a circuit’s output signal is fed back to the input. The term
negative feedback is used when a part of the output signal is subtracted from the input
signal, while for positive feedback the portion of the output signal is added to the input
signal. For AC voltages negative feedback means that a part of the output signal is added
in antiphase to the input signal, and positive feedback means that the portion of the output
signal is added in phase to the input signal.
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Positive-feedback systems are usually unstable, i.e. an independent oscillation exists or
the output voltage saturates to the positive or negative rail. Positive feedback is important
in the area of oscillators.

Systems with negative feedback are stable. Instabilities exist only if unwanted positive
feedback occurs as a result of output signals that are phase-shifted at certain frequencies
with respect to the input signal.

The purpose of negative feedback is

• to improve the linearity of an amplifier,

• to make the gain independent of the semiconductor parameters,

• to stabilise the output signal against load variations,

• to reduce the load on the source, and

• to improve the frequency response of an amplifier.

In general, negative feedback can be represented in a block diagram (Fig. 7.85). The output
signal is multiplied by the feedback factor β and then subtracted from the input signal.
The difference is amplified by AOL. Such a system with negative feedback is also known
as a closed-loop system.

Fig. 7.85. System with negative feedback

The closed-loop gain ACL = vout/vin of the negative feedback system with

vout = (vin − β · vout) · AOL (7.114)

is:

ACL = AOL

1+ β · AOL
(7.115)

The expression βAOL is known as the loop gain.

The amount of feedback is given by 1+ βAOL. The closed loop gain ACL decreases with
increasing amounts of feedback. In this context the gain AOL is called open-loop gain.
This is the effective gain if the feedback loop is removed.

Transforming Eq. (7.115) yields:

ACL = 1
1

AOL
+ β

(7.116)

It can be seen that the closed-loop gain becomes approximately independent of AOL if AOL

is very high.

For AOL � 1

β
, f ollows ACL ≈ 1

β
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• If the open-loop gain is very high, the closed-loop gain becomes approximately 1/β.

• The feedback circuit is usually a linear resistor network. If βAOL is very large, then the
amplifier with negative feedback is independent of the nonlinearities and tolerances of
the semiconductor parameters of the amplifier AOL and depends only on the feedback
circuit.

7.5.1 Feedback Topologies

A distinction is made between four different kinds of negative feedback, depending on
whether the input and output quantities are ‘current’ or ‘voltage’ (Fig. 7.86).

The description of the different types of feedback depends on the manner in which the
output is sampled and fed back to the input. The first term of the description refers to the
connection at the input and the second term refers to the connection at the output. So,
for example, in series–parallel feedback the input of the corresponding circuit receives
feedback in series and the output is sampled in parallel. Then the output appears to be a
voltage source, and the input should be fed by a voltage source. The term shunt is often
also used instead of parallel. The kinds of negative feedback are summarised as follows
(Fig. 7.86):

a) series–parallel feedback: the output is sampled in parallel to give a series voltage
feedback at the input.
input: voltage
stabilised output: voltage
type of amplifier: voltage amplifier

b) parallel–parallel feedback: the output voltage is sampled in parallel to give a parallel
current feedback at the input.
input: current
stabilised output: voltage
type of amplifier: transimpedance amplifier, current–voltage converter

c) series–series feedback: the output is sampled in series to give a series voltage feedback
at the input.
input: voltage
stabilised output: current
type of amplifier: transconductance amplifier, voltage-current converter

d) parallel–series feedback: the output current is sampled in series to give a parallel
current feedback at the input.
input: current
stabilised output: current
type of amplifier: current amplifier

Example: The current of a photodiode is to be converted into a voltage. Photodiodes
behave approximately like current source. In order to convert this current into
a voltage, a transimpedance amplifier is required (parallel–parallel feedback,
Fig. 7.87 a).

Example: The sensitive measurement voltage in a strain gauge is to be converted into
a current in order to transmit the analogue measurement result over a greater
distance. In this case series–series feedback is applied (Fig. 7.87 b).
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Fig. 7.86. Different types of feedback
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Fig. 7.87. Examples of a parallel–parallel feedback and b series–series feedback

7.5.2 Influence of Negative Feedback on Input
and Output Impedance

The influence of negative feedback on the input and output impedance is calculated in the
example on series–parallel feedback (for a noninverting amplifier), see Fig. 7.88.

Input Impedance

The input impedance of the open loop amplifier is assumed to be r ′in.

rin = vin
iin

, vout = AOL · v′in, rin = v′in+β·vout
iin

= v′in+v′in·β·AOL

iin

rin = r ′in(1+ β · AOL) (7.117)

Fig. 7.88. Input configuration of the system with series–parallel feedback

• The input impedance increases in the case of series–parallel feedback by the amount of
feedback.

Output Impedance

The output impedance of the open-loop amplifier is assumed to be r ′out (Fig. 7.89).

rout = open-circuit voltage

short-circuit current
= vo/c

is/c
= vout

is/c
, vout = vin

AOL

1+ β · AOL
,

is/c = vin · AOL

r ′out
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(for the short circuit vout = 0 and vin = v′in)

rout = r ′out
1+ β · AOL

(7.118)

• The output impedance decreases in the case of series–parallel feedback by the amount
of the feedback.

Fig. 7.89. Output configuration of the system with series-shunt feedback

7.5.2.1 Input and Output Impedance of the Four Kinds of Feedback

rin

r ′in

rout

r ′out

a) Series–parallel feedback 1+ β · AOL
1

1+ β · AOL

b) Parallel–parallel feedback
1

1+ β · AOL

1

1+ β · AOL

c) Series–series feedback 1+ β · AOL 1+ β · AOL

d) Parallel–series feedback
1

1+ β · AOL
1+ β · AOL

• Negative feedback has always a positive effect on the input and output impedance:
voltage outputs get a lower impedance, and current outputs get a higher impedance;
voltage-driven inputs get a higher impedance, and current-driven inputs get a lower
impedance.

7.5.3 Influence of Negative Feedback on Frequency Response

The amplifier AOL is assumed to have low-pass characteristics:

AOL(f ) = AOL0

1+ jf/f ′c

AOL0: DC gain or low-frequency gain

f ′c: critical frequency
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The transfer function of the system with negative feedback is then:

ACL(f ) = AOL(f )

1+ β · AOL(f )
= AOL0

1+ β · AOL0︸ ︷︷ ︸
gain

· 1

1+ j
f

f ′c

1

1+ β · AOL0︸ ︷︷ ︸
frequency response

(7.119)

• The critical frequency of the closed-loop system increases with respect to the critical
frequency of the open-loop system by the amount of feedback (1+ βAOL0).

• The gain decreases by the amount of feedback (Fig. 7.90).

Fig. 7.90. Frequency response of the amplifier AOL and of the closed-loop system

7.5.4 Stability of Systems with Negative Feedback

In theory systems with negative feedback are always stable. However, real amplifier gains
AOL have low-pass filter properties. This means that the gain decreases with increasing
frequency and the phase is shifted between the input and output signal. Each pole rotates
the input signal by 90◦. Positive feedback will occur at the frequencies at which the phase
is shifted by 180◦, so that the output signal is added in phase to the input signal. If the loop
gain β · AOL is greater than 1 at any of these frequencies the signal is further amplified,
the system becomes unstable and oscillations can occur (see also Sect. 7.6.2).

The oscillation criterion (barkhausencriterion) for feedback systems is given in general
by:

Amplitude criterion: β · AOL ≥ 1, and
Phase criterion: ϕ = n · 360◦, n = 0, 1, 2, . . .

• An oscillation is generated in a closed-loop system if the phase shift is 0◦ or multiples
of 360◦ and the loop gain is greater than 1.

The stability of a negative feedback system can be verified in a Bode plot: at a certain
frequency (in Fig. 7.91 called f1) the amplifier shifts the phase by 180◦, and the negative
feedback turns into positive feedback (Fig. 7.91, phase response). Thus, at this frequency
the phase criterion has been fulfilled. The magnitude response Ad(f ) is split into the loop
gain β ·AOL(f ) and 1/β. If the loop gain at the frequency fcritical is larger than 1 the closed-
loop system is unstable. If the loop gain at fcritical is smaller than unity the closed-loop
system is stable.

Note: In a negative-feedback system the critical phase shift (360◦) occurs when the
amplifier AOL shifts the phase by 180◦. A further shift of 180◦ occurs at the
summation point where the feedback signal is subtracted from the input signal.
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Note: The smaller the value of β is, the smaller is the portion of the output signal that
is fed back, and the smaller is the risk of oscillation.A system with a large AOL

and large feedback, i.e. with a small overall gain ACL is more likely to have
problems with oscillations.

Fig. 7.91. Oscillation criterion in the Bode plot: at a frequency f (ϕ = −180◦) the closed loop gain is
β · AOL > 1, the system starts oscillating (i.e. it is unstable)

7.6 Operational Amplifiers

An operational amplifier (op-amp) is an amplifier with a very high open-loop gain
(Fig. 7.93). They are usually employed with negative feedback. Because of the high gain
of the operational amplifier the amplification of the negative-feedback/closed-loop circuit
depends only on the feedback circuit (see Sect. 7.5).

The operational amplifier input is a differential amplifier. One input is called the inverting
input (Vn), and the other is the noninverting input (Vp). The differential voltage Vd is
amplified with a gain of Ad. The output voltage is Vout = AdVd. The gain Ad usually falls
in the range of 104–105. The output voltage can vary between the positive and the negative
supply voltages. In order to obtain positive and negative output voltages, the operational
amplifier requires a positive and a negative supply voltage (usually: ±15 V).

Fig. 7.92. Circuit symbol of the operational amplifier
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Fig. 7.93. Simplified circuit of an operational amplifier

7.6.1 Characteristics of the Operational Amplifier

7.6.1.1 Output Voltage Swing

The range of values that the output voltage can have is called the output voltage swing.
The maximum peak output voltage swing lies about 1–3 V below the supply voltages
(Fig. 7.94).

It is also possible to find so-called single supply op-amps which are supplied by a single
positive supply voltage and whose output voltage swing is from 0 V up to approximately
1 V below the positive supply voltage value.

There are also so-called rail-to-rail op-amps whose output voltage swing is from exactly
the negative to the positive supply voltage values.

7.6.1.2 Offset Voltage

The offset voltage V0 (input offset voltage) is the input differential voltage Vd that has to
be applied at the operational amplifier in order to obtain an output voltage of 0 V. V0 is a
worst case tolerance.

The transfer characteristic Vout = f (Vd) of the ideal operational amplifier goes through
the origin. For real op-amps the zero crossing is at V0 (Fig. 7.94).

Fig. 7.94. Transfer characteristic of an operational amplifier
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7.6.1.3 Offset Voltage Drift

The offset voltage V0 is temperature dependent. The change in the offset voltage with
temperature �VGl/�ϑ is called the input offset voltage drift. It is in the range of 3–
10 V/K.

7.6.1.4 Common-Mode Input Swing

Fig. 7.95. Common-mode input swing

Common-mode amplification occurs when Vin− = Vin+ = VCM. Then Vd = 0 V. The
ideal operational amplifier output voltage is also 0 V, independent of the value of VCM.
For real op-amps the common-mode input swing VCM is given to define the range in which
Vout = 0 V (Fig. 7.95).

7.6.1.5 Differential Mode Gain

The differential mode gain is The differential mode gain is usually in the region of 100 000,

Ad = Vout

Vd
(7.120)

i.e. 100 dB.

7.6.1.6 Common-Mode Gain

The common-mode gain is

GCM = Vout

VCM
(7.121)
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7.6.1.7 Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) is

CMRR = Ad

ACM
(7.122)

Often this value is expressed in decibels. The range is 104–105, or between 80 and 100 dB,
respectively.

7.6.1.8 Power Supply Rejection Ratio

The power supply rejection ratio (PSRR) is ameasure of the influence of the supply voltage
on the output voltage. It is defined via the offset voltage V0. Its value expresses by how
much the offset voltage has to be corrected in order to keep the output voltage at 0 V, when
one of the supply voltages changes. The power supply rejection ratio is in the range of
10–100 V/V. It is also expressed in dB.

7.6.1.9 Input Impedance

A distinction is made between the differential input impedance rd and the common-mode
input impedance rCM.With bipolar operational amplifiers the differential input impedance
rd lies in the megohm range. Operational amplifiers with FET input stages have a differen-
tial input impedance of 1012 �. The common-mode input impedance is in the range 109 �

to 1012 �.

Note: The input impedance is changed by the amount of feedback in the case of
negative feedback (see Sect. 7.5.2):

rin = rd(1+ βAOL) , or
rd

(1+ βAOL)

7.6.1.10 Output Impedance

The output impedance of operational amplifiers is in the range of several hundred ohms to
a few kilohms.

• This value is changed by negative feedback, so that, depending on the form of feedback
used, the output can be regarded approximately as an ideal voltage source or as an ideal
current source (see Sect. 7.5.2).

7.6.1.11 Input Bias Current

The input bias currents are the base currents absorbed by the differential amplifier. They
are in the range of some tens to hundreds nanoamperes. In FET input stages the input bias
currents are practically zero.

Note: Negative feedback does not influence the input bias currents.

Input bias current compensation: see Sect. 7.6.4.3
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7.6.1.12 Gain–Bandwidth Product (Unity Gain Frequency)

The differential gain Ad has low-pass filter characteristics (Fig. 7.96):

Ad = Ad0

1+ jf/fc

Above the critical frequency it approximately holds that:

Ad ≈ Ad0

jf/fc

Therefore:

Ad · f = Ad0 · fc = fT (7.123)

• At the unity gain frequency fT the differential gain of the amplifier is 1. The unity gain
frequency for op-amps is often given as the gain–bandwidth product because of the
following relationship: fT = Ad0 · fc.

7.6.1.13 Critical Frequency

The critical frequency for frequency-compensated op-amps (see Sect. 7.6.2) lies between
a few hertz and a few hundred hertz. With negative feedback this increases by the amount
of feedback (see Sect. 7.5.3).

Fig. 7.96. Frequency response of the operational amplifier

7.6.1.14 Slew Rate of the Output Voltage

The slew rate defines the maximum rate of change of the output voltage. It is given inV/s.

7.6.1.15 Equivalent Circuit of the Operational Amplifier

Figure 7.97 shows an equivalent circuit for a real operational amplifier. For standard
frequency-compensated op-amps the following values are used:

• Input bias current IB: for bipolar op-amps in the nanoampere range, negligible in FET
op-amps.

• Differential input resistance rd: for bipolar op-amps in the megohm range, for FET
op-amps extremely high.

• Common-mode input resistance rCM: almost always extremely high.
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Fig. 7.97. Equivalent circuit of an operational amplifier

• Differential gain Ad: Characteristic curve like a low-pass filter. DC voltages gain Ad0

lies around 105 (100 dB), and the critical frequency fc lies between 10 and 100 Hz.

• Output resistance r ′out: lies between 100–1000 �.

• Offset voltage V0: lies between 1 and a few millivolts.

• Common-mode rejection ratio CMRR (not considered in the equivalent circuit): for
DC it is about 80 dB and decreases dramatically with increasing frequency.

Note: The critical frequency and the output impedance of the op-amp with negative
feedback depend on the amount of feedback (1+βAd)where β is the amount of
feedback. The critical frequency increases by the amount of feedback, while the
output impedance decreases by the amount of feedback. For an amplification in
an op-ampwith feedback of, for example,A = 100 the critical frequencywould
be about 10–100 kHz and the output impedance about 0.1–1 �! (Sect. 7.5.2).

Note: As well as the op-amp characteristics shown here, there are numerous designs
with special characteristics, such as, for example, offset voltage in themicrovolt
range, input bias current in the picoampere range or a critical frequency in the
megahertz range.

7.6.2 Frequency Compensation

Op-amps are frequency compensated for stability reasons. The low-pass filter character-
istic is altered so that the critical frequency is shifted to lower frequencies. This is achieved
by inserting a capacitor Ccomp as a means of feed-back from the collector to the base of the
voltage-amplifying emitter stage (see Fig. 7.93). This causes the gain Ad to dramatically
decrease at high frequencies, so that in the system with feedback the loop gain βAd is
lower than unity when the phase shift reaches ϕ = 180◦ (see Sect. 7.5.4).

For op-amps a distinction is made between frequency-compensated op-amps (internally
compensated) and uncompensated op-amps. Uncompensated op-amp have external con-
tacts, which can be connected to a capacitor Ccomp. The choice of capacitance depends
greatly on the amount of feedback chosen. The smaller the desired feedback, then the
smaller is the required capacitance, i.e. the greater is the gain of the feedback system.
The determination of Ccomp can be carried out in an iterative manner. A square-wave input
voltage can be applied to the system and the step response may be measured on an oscil-
loscope. Values of Ccomp that are too large lead to a damping of the square-wave, while
values of Ccomp that are too small lead to oscillations and to instability in the circuit.
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Fig. 7.98. Bode plot for frequency compensation: a uncorrected: βAd > 1 at f (ϕ = −180◦), the circuit is
unstable; b corrected: at βAd1 the phase shift ϕ = −180◦ has not yet occurred, the circuit is stable

The angle α = 180◦ − ϕ(βAd=1) is known as the phase margin. It is a measure of the
stability of the circuit (Fig. 7.98). If the phase margin is small, then the amplifier with
feedback reacts to any change in the input voltage with damped oscillations. If α = 90◦
then this is the critically damped case, and for α = 65◦ there are overshoots of about 4%,
which is often used in practice.

The gain margin is another measure of the stability of a system with feedback, as well as
the phase margin (Fig. 7.98).

Internally frequency-compensated op-amps have a frequency compensation, which for a
feedback network with β = 1 shows a phase margin of 65◦. This ensures that the amplifier
with feedback is always stable. It has the disadvantage that it is very slow for small amounts
of feedback (β � 1, ACL � 1), which happens when a high closed-loop gain is desired.

7.6.3 Comparators

Comparators are operational amplifiers that are operated without feedback. They are used
to compare voltages. Therefore the output voltage can only have two states, high or low,
depending on the sign of the input voltage Vd. The output is usually an open collector,
which is connected to a pull-up resistor.

7.6.4 Circuits with Operational Amplifiers

Operational amplifier circuits can have positive or negative feedback. Circuits with positive
feedback show two-state behaviour (e.g. Schmitt trigger) or can oscillate (Wien–Robinson
oscillator). Circuits with negative feedback are stable, and the output voltage is propor-
tional to the input voltage with linear feedback. Because of the high gain of the operational
amplifier, the voltage difference between the input terminals is practically zero, when neg-
ative feedback is used. Calculations using Kirchhoff’s laws are not used in the following.
Block diagrams are occasionally used to display the circuit principle.
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7.6.4.1 Impedance Converter (follower)

The impedance converter is an operational amplifier operated in series–parallel feedback
with β = 1 (Fig. 7.99).

The amount of feedback is (1+ βAd) ≈ Ad. The transfer function is

Vout

Vin
= Ad

1+ βAd
≈ 1,

So, in general, it is assumed that:

Vout = Vin (7.124)

Fig. 7.99. Impedance converter: a circuit diagram; b block diagram

The input has an extremely high impedance:

rin = rd(1+ Ad) ≈→∞ (7.125)

where rd is the differential input impedance of the operational amplifier.

Note: The input bias current is unaffected in this analysis! It loads the input voltage
source independently of the amount of feedback. An op-amp with a FET input
provides some relief from this problem.

The output has an extremely low impedance:

rout = r ′out
1+ Ad

≈ 0 (7.126)

where r ′out is the output impedance of the operational amplifier.

7.6.4.2 Noninverting Amplifier

The noninverting amplifier (Fig. 7.100) is an operational amplifier that is used in series–

parallel feedback with β = R2

R1 + R2
. The amount of feedback is

1+ R2

R1 + R2
Ad

The transfer function is:
Vout

Vin
= Ad

1+ βAd
≈ 1+ R1

R2
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Fig. 7.100. Noninverting amplifier: a circuit diagram; b block diagram

So, in general, it is assumed that:

Vout

Vin
= 1+ R1

R2
(7.127)

The input has an extremely high impedance:

rin = rd

(
1+ R2

R1 + R2
Ad

)
≈→∞ (7.128)

where rd is the differential input impedance of the operational amplifier.

Note: The input bias current is not affected by this consideration! The current drained
from the input voltage source is independent of the feedback. An op-amp with
a FET input provides some relief from this problem.

The output has an extremely low impedance:

rout = r ′out
1

1+ R2

R1 + R2
Ad

≈ 0 (7.129)

where r ′out is the output impedance of the operational amplifier.

7.6.4.3 Inverting Amplifier

Fig. 7.101. Inverting amplifier: a circuit diagram; b block diagram

The inverting amplifier (Fig. 7.101) is an op-amp that uses parallel–parallel feedback with
β = 1/R2. The amount of feedback is

1+ 1

R2
Az
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The input current is determined by R1. The transfer function is given by:

Vout

Vin
= 1

R1

−Az

1+ 1

R2
(−Az)

≈ −R2

R1
,

So the transfer function is, in general, defined as:

Vout

Vin
= −R2

R1
(7.130)

Its input impedance is:
rin = R1

The output has an extremely low impedance:

rout = r ′out

1+ 1

R2
Az

≈ 0 (7.131)

where r ′out is the output impedance of the operational amplifier.

Note: The op-amp is employed here as a transimpedance amplifier, i.e. the transfer
function Az of the amplifier has the qualities of an impedance. Referring to the
equivalent circuit in Sect. 7.6.1.15 yields:

Note: The input bias current IB− causes an offset voltage. This amounts to IB− ·R1.
It can be compensated for by connecting a resistor R = (R1||R2) to ground
from the noninverting input (Fig. 7.102).

Fig. 7.102. Compensation of the input bias current

7.6.4.4 Summing Amplifier

The summing amplifier, like the inverting amplifier, employs parallel–parallel feedback
(Fig. 7.103). The input currents Vi/Ri are summed at the inverting input of the operational
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Fig. 7.103. Summing amplifier

amplifier. The output voltage is:

Vout = −
n∑

i=1

Ii · RN (7.132)

Alternatively, Vout can be expressed as a function of the input voltages Vinn:

Vout = −
(

Vin1
RN

R1
+ Vin2

RN

R2
+ · · · + Vinn

RN

Rn

)
(7.133)

In the case where all resistors are equal it holds that:

Vout = −
n∑

i=1

Vi (7.134)

7.6.4.5 Difference Amplifier

Fig. 7.104. Difference amplifier

The difference amplifier amplifies the difference of two input voltages (Fig. 7.104). Its
gain is R2/R1.

Vout = (Vin1 − Vin2)
R2

R1
(7.135)

The input impedance is rin = 2R1 .
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If Vin1 = 0, then the circuit is the same as the inverting amplifier with input-bias current
compensation. Input-bias current compensation is automatic in the difference amplifier.

Fig. 7.105 shows a difference amplifier with high input impedance.

Fig. 7.105. Difference amplifier with high input impedance

Its transfer function is:

Vout = (Vin1 − Vin2)

(
1+ R2

R1

)
(7.136)

7.6.4.6 Instrumentation Amplifier

Fig. 7.106. Instrumentation amplifier

The instrumentation amplifier measures the difference between the input voltages Vin1 and
Vin2 (Fig. 7.106). Its gain is:

Vout = (Vin1 − Vin2) ·
(
1+ 2

R2

R1

)
(7.137)

It has an extremely high input impedance (see Sect. 7.6.4.2).
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7.6.4.7 Voltage-Controlled Current Source

The voltage-controlled current source employs series–series feedback as shown in
Fig. 7.107a. The input voltage is equated to the voltage drop across the current-sensing
resistor R, so it holds that

Vin = RIout (7.138)

A transistor connected in series after the circuit permits higher output currents and has the
advantage with the open drain (or open collector) that the choice of output potential is free
(Fig. 7.107b).

For earthed loads the current source shown in Fig. 7.108 is suitable. The relationship
Iout = Vin/R is all the more valid the larger R1 is compared to R.

Fig. 7.107. a,b Voltage-controlled current sources employing series–series feedback

Fig. 7.108. Voltage-controlled current source for earthed/grounded loads

7.6.4.8 Integrator

The integrator works like the inverting amplifier. The input current Iin = Vin/R charges
the capacitor C (Fig. 7.109). Therefore the output voltage is the integral of the input signal:

Vout = − 1

RC

∫
Vin d t (7.139)



342 7 Analogue Circuit Design

Vout = − 1
RC

∫ t1
t0

vin(t) d t + Vout(t0)

Fig. 7.109. Integrators: a simple integrator, b differential integrator

For a sinusoidal input the voltage gain is:

Av = − 1

jωRC
(7.140)

The input bias current is no longer negligible for large time constants. Relief can be
provided either by using input-bias current compensation or – even simpler – by inserting
an op-amp with a FET input stage. The input-bias current compensation is carried out in
a similar way to the inverting amplifier, except that the noninverting input is connected to
ground via a parallel combination of a resistor R and a capacitor C (see Sect. 7.6.4.3).

Integrators are mainly used as I-controllers in negative-feedback systems.

In systems without feedback the output voltage saturates to the positive or negative power
supply rails, as the offset voltage and input bias current are integrated as well as the applied
voltage signal Vin. Integrators must therefore be reset to zero at suitable time intervals, in
order to be able to achieve a defined output state for the integration. This can be achieved
with a relay or a FET in parallel with the capacitor (Fig. 7.110). In the use of a MOSFET,
the internal reverse-current diode limits the output voltage range to positive voltages.

Fig. 7.110. Integrators: reset circuits for Va(t0) = 0

7.6.4.9 Differentiator

The input current of the differentiator in Fig. 7.111 is

Iin = C
dVin

d t
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This current flows through R, so the output voltage is

Vout = −RC
dVin

d t
(7.141)

For a sinusoidal input the voltage gain is

Av = −jωRC (7.142)

The differentiator is mainly used as the D-stage in PID controllers.

Fig. 7.111. Differentiator

7.6.4.10 AC Voltage Amplifier with Single-Rail Supply

Sometimes amplifiers are operated with only one supply voltage. In that case the reference
voltage at the inverting input is set to VCC/2 using a voltage divider (Fig. 7.112).

Fig. 7.112. AC voltage amplifier with single-rail supply

7.6.4.11 Voltage Setting with Defined Slew Rate

The output voltage of the circuit in Fig. 7.113 can only change at a rate given by

dVout

d t
= ±Vout1max

1

RC
≈ ±VCC

1

RC
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Fig. 7.113. Voltage setting with a defined slew rate

For Vout �= Vin the first op-amp’s output voltage Vout1 jumps to one of its supply rails of
±Vout1max. The output voltage Vout therefore changes at a defined slew rate to the value
given by Vout = Vin.

7.6.4.12 Schmitt Trigger

Schmitt triggers (comparators with hysteresis) are bistable circuits that use positive feed-
back. Thus the output voltage can only jump between the output voltage limits of±Vout max.
By using feedback two thresholds exist for the input voltage, which are defined by the
switching of the output voltage. Once a threshold has been exceeded, the other threshold
must be exceeded in order to change to a new state.

Schmitt triggers are employed in bistable controllers. They are also used instead of com-
parators to avoid multiple switching if the input signal is noisy.

Inverting Schmitt Trigger

Fig. 7.114. Inverting Schmitt trigger

The trigger levels of the inverting Schmitt trigger (Fig. 7.114) are

Vin on = − R1

R1 + R2
Vout max , and Vin off = + R1

R1 + R2
Vout max

(7.143)
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Noninverting Schmitt Trigger

Fig. 7.115. Noninverting Schmitt trigger

The trigger levels of the noninverting Schmitt trigger (Fig.7.115) are

Vin on = +R1

R2
Vout max , and Vin off = −R1

R2
Vout max (7.144)

7.6.4.13 Triangle- and Square-Wave Generator

Fig. 7.116. Triangle- and square-wave generator

The triangle- and square-wave generator is a free-running circuit, consisting of an integrator
and a noninverting Schmitt trigger (Fig. 7.116). The amplitude of the triangular wave is
equal to the Schmitt trigger threshold value.The frequency of the output voltagewaveforms
is

f = R3

R2

1

4R1C1
(7.145)

for a symmetrical output voltage swing of ±V2.
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7.6.4.14 Multivibrator

Fig. 7.117. Multivibrator

The multivibrator or square wave generator is a free-running circuit (Fig. 7.117).

The switching frequency is

f = 1

2R1C1 ln

(
1+ 2R2

R3

) (7.146)

For small hysteresis, i.e. R2 � R3, it holds that

f ≈ 1

2R1C1

R3

2R2
(7.147)

7.6.4.15 Sawtooth Generator

Fig. 7.118. Sawtooth generator

A sawtooth voltage has the form of a ramp (Fig. 7.118). It is generated by charging a
capacitor with a constant current and then discharging it in a very short time.

The discharge occurs over a clock pulse, which can be generated externally or internally.

7.6.4.16 Pulse-Width Modulator

Pulse width-modulators (PWM) are mainly used in measurement technology or in
switched-mode power supplies. They convert an analogue signal into a digital signal,
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where the duty cycle t1/T is proportional to the analogue input voltage. Pulse-width
modulators are a simple means to prepare analogue signals for digital systems.

Pulse width modulator with fixed pulse frequency:

Fig. 7.119. Pulse-width modulator with fixed pulse frequency

The duty cycle is:

t1

T
= Vin

V̂S

A pulse-width modulated voltage can be generated by comparing a sawtooth voltage with
an analogue voltage (Fig. 7.119). For measurement purposes the sawtooth can be triggered
by a digital system and the time t1 measured. This results in a simple analogue-to-digital
converter. This does have the disadvantage, however, that the peak value of the sawtooth
must be known, i.e. if necessary must be adjusted.

Precision Pulse-Width Modulator

The accuracy of the pulse-width modulation can be enhanced significantly with the use
of an I-controller (Fig. 7.120). The comparison between the desired and the actual value
is carried out at the integrator. The integrator output voltage V ′

in changes value, so that

Vref · t1

T
= Vin. The sawtooth amplitude and nonlinearities are not included in the result.

The disadvantage of the circuit is that the integrator time constant must be large compared
with the periodic time of the sawtooth.

Fig. 7.121 shows a free-running pulsewidthmodulator.The duty cycle of the output voltage
is t1/T = 0.5 for Vin = 0 V. The accuracy of the modulator is dependent on the symmetry
of the bidirectional reference voltage source Vz. The disadvantage of this circuit is that the
switching frequency is dependent on the input voltage Vin. The switching frequency for
Vin = 0 V is:

f(Vin=0) = 1

4R1C1
. (7.148)

The switching frequency decreases with increasing input voltage Vin, and f = 0 for
Vin = Vz.
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Fig. 7.120. Precision pulse-width modulator

Fig. 7.121. Precision pulse-width modulator

7.7 Active Filters

Filters are circuits with a frequency-dependent transfer function. A distinction is made
between low-pass, high-pass and bandpass filters and band-stop or notch filters. All
of these filters have in common that their transfer function is divided into stop-bands and
passbands. The border between the pass- and stop-bands is called the corner or critical
frequency. The critical frequency (or−3 dB point) is the frequency where the magnitude
of the transfer function is −3 dB (i.e. 1/

√
2) lower than the pass-band magnitude. This

frequency-dependent attenuation of the signal in the stop-band depends on the order of
the filter. The higher the order the steeper is the frequency-dependent rejection.

Another member of the filter family is the all-pass filter. It does not alter the signal
amplitude, but changes the phase of the signal depending on its frequency. Band-stop
filters and all-pass filter are not covered further in this section.

A further distinction is made between active and passive filters. Active filters are filters
that contain active components. The active components are used as impedance converters,
so that higher-order filters can be combined from series-connected filters of second order,
with no extra feedback requirement. This simplifies the design and the calibration of those
filters compared to passive filters. Furthermore, the use of active components means that
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inductors are not required.Active filters usually employ only resistors and capacitors as the
frequency-selective components. Passive filters are combinations of resistors, capacitors
and inductors. They do not contain active components.

7.7.1 Low-Pass Filters

7.7.1.1 Theory of Low-Pass Filters

The transfer function of a low-pass filter is explained by the example of a second-order
RLC low-pass filter (Fig. 7.122a:

Fig. 7.122. Second-order RLC low-pass filter; a circuit, b frequency response

vout

vin
= F(jω) =

1

jωC

jωL+ R + 1

jωC

= 1

1+ jωRC + (jω)2LC (7.149)

• For small values of ω the expression for F(jω)is approximately equal to 1.
• For large values of ω the quadratic term in the denominator dominates: F(jω) drops at

a rate of 40 dB/decade.
• The attenuation around the natural frequency defines the transition from passband to

stop-band (see Sect. 1.2.6). For smaller attenuation there is a rise due to resonance,
whereas for larger attenuation F(jω) begins to fall away even before the natural fre-
quency. The attenuation has no influence in the regions of very high or very low values
of ω (Fig. 7.122 b).

Normalisation:

Substituting jω with the complex frequency s and normalising this with respect to the
critical frequency ωc with s = ωcS yields:

F( s) = 1

1+ RC s+ LC s2
, with jω = s (7.150)

and

F(S) = 1

1+ ωcRCS+ ω2
cLCS2

, with S = s

ωc
(7.151)

If the S coefficients are replaced by general real coefficients a1 and b1, then an independent
general function of a second-order low-pass filter can be derived from the circuit:

F(S) = 1

1+ a1S+ b1S2
(7.152)
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A low-pass filter of higher order, i.e. a low-pass filter with a steeper drop from the critical
frequency, can be realised by connecting in series several low-pass filters, of first and
second order.

The general transfer function of a 2nth-order low-pass filter is then:

F(S) = F0

(1+ a1S+ b1S2) · (1+ a2S+ b2S2) · . . . · (1+ anS+ bnS2) (7.153)

• The second-order low-pass filter is the basic building block used to build low-pass filters
of higher order.

• A steeper fall-off about the critical frequency can be achieved if several low-pass filters
of first and second order are connected in series. First-order low-pass filters can be
considered as special versions of second order low-pass filters, for which the coefficient
b is equal to zero (Eq. (7.153)). The factor F0 in the expression takes into consideration
any frequency-independent amplification in the low-pass filter.

• The highest power in the denominator polynomial defines the filter order of the low-
pass filter. It defines the fall-off in the expression 7.153 around the critical frequency.
Each power of two in the order produces a fall-off of 20 dB/decade (see Sect. 5.3.2).

• The roots of the denominator polynomial are called the poles of F(S). They can be real
or complex conjugates, depending on the values of the coefficients ai and bi . Complex
conjugate poles cause a resonant bump in the region between the stop- and passbands.

• The number of poles is equal to the filter order.

• The coefficients ai and bi decide the form of the region between the stop- and passbands.
Functions with complex conjugate poles have a higher critical frequency compared with
functions that have real poles (Fig. 7.123) and therefore cause a steeper transition from
the pass- to the stop-band. For this reason most filters (almost without exception) are
built with complex conjugate poles.

Fig. 7.123. Frequency response of a 2nd order low-pass filter with complex conjugate and real poles
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Different filter characteristics are defined, depending on the choice of the coefficients ai

and bi (Fig. 7.124):

Butterworth: the magnitude response F(S) is flat at the level F0 almost as far as the
critical frequency.

Bessel: below the critical frequency this filter has an optimum square-wave transfer char-
acteristic.

Chebyshev: the magnitude response has a defined amount of ripple in the passband (res-
onance effect). The fall-off after the critical frequency is particularly steep.

Critical Damping: filters with real poles. All poles have the same value. The filter has no
resonance effects.

• Filters of the same order and the same critical frequency, but with different charac-
teristics are distinguished by their ai and bi coefficients. This means that filters with
different characteristics may be realised by the same circuits using different values for
the constituent components.

Fig. 7.124. Comparison of fourth-order low-pass filters: 1. Chebyshev, 2. Butterworth, 3. Bessel, 4. Filter
with critical damping

The coefficients for different filter characteristics are given in Tables 7.2 to 7.5 up to the
sixth order. The magnitude responses of the corresponding transfer functions are shown in
Figs. 7.125 to 7.128.Thefifth and sixth table columnsgive the normalised critical frequency
of the individual second-order filters and their Q-factors. These parameters are useful in
confirming the performance of the individual second-order filters by measurement.
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Butterworth:

Table 7.2. Butterworth-filter

Order n i ai bi fci/fc Qi

1 1 1.0000 0.0000 1.000 –

2 1 1.4142 1.0000 1.000 0.71

3 1 1.0000 0.0000 1.000 –

2 1.0000 1.0000 1.272 1.00

4 1 1.8478 1.0000 0.719 0.54

2 0.7654 1.0000 1.390 1.31

5 1 1.0000 0.0000 1.000 –

2 1.6180 1.0000 0.859 0.62

3 0.6180 1.0000 1.448 1.62

6 1 1.9319 1.0000 0.676 0.52

2 1.4142 1.0000 1.000 0.71

3 0.5176 1.0000 1.479 1.93

Fig. 7.125. Butterworth low-pass filters second to sixth order
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Bessel:

Table 7.3. Bessel-filter

Order n i ai bi fci/fc Qi

1 1 1.0000 0.0000 1.000 –

2 1 1.3617 0.6180 1.000 0.58

3 1 0.7560 0.0000 1.323 –

2 0.9996 0.4772 1.414 0.69

4 1 1.3397 0.4889 0.978 0.52

2 0.7743 0.3890 1.797 0.81

5 1 0.6656 0.0000 1.502 –

2 1.1402 0.4128 1.184 0.56

3 0.6216 0.3245 2.138 0.92

6 1 1.2217 0.3887 1.063 0.51

2 0.9686 0.3505 1.431 0.61

3 0.5131 0.2756 2.447 1.02

Fig. 7.126. Bessel low-pass filters second to sixth order
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Chebyshev with 0.5 dB ripple:

Table 7.4. Chebyshev-filter with 0.5 dB ripple

Order n i ai bi fci/fc Qi

1 1 1.0000 0.0000 1.0000 –

2 1 1.3614 1.3827 1.0000 0.86

3 1 1.8636 0.0000 0.537 –

2 0.6402 1.1931 1.335 1.71

4 1 2.6282 3.4341 0.538 0.71

2 0.3648 1.1509 1.419 2.94

5 1 2.9235 0.0000 0.342 –

2 1.3025 2.3534 0.881 1.18

3 0.2290 1.0833 1.480 4.54

6 1 3.8645 6.9797 0.366 0.68

2 0.7528 1.8573 1.078 1.81

3 0.1589 1.0711 1.495 6.51

Fig. 7.127. Chebyshev low-pass filters second to sixth order with 0.5 dB ripple
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Chebyshev with 3 dB ripple:

Table 7.5. Chebyshev-filter with 3 dB ripple

Order n i ai bi fci/fc Qi

1 1 1.0000 0.0000 1.000 –

2 1 1.0650 1.9305 1.000 1.30

3 1 3.3496 0.0000 0.299 –

2 0.3559 1.1923 1.396 3.07

4 1 2.1853 5.5339 0.557 1.08

2 0.1964 1.2009 1.410 5.58

5 1 5.6334 0.0000 0.178 –

2 0.7620 2.6530 0.917 2.14

3 0.1172 1.0686 1.500 8.82

6 1 3.2721 11.6773 0.379 1.04

2 0.4077 1.9873 1.086 3.46

3 0.0815 1.0861 1.489 12.78

Fig. 7.128. Chebyshev low-pass filters second to sixth order with 3 dB ripple
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7.7.1.2 Low-Pass Filter Calculations

Low-pass filter calculations are carried out in the following steps:

• Choice of the filter type, of the critical frequency and of the order.

• Choice of a filter circuit (see also Sect. 7.7.1.3).

• Calculation of the transfer function F(s) and normalisation with S = s/ωc.

• Conversion of the normalised transfer function according to Eq. (7.153).

• Determination of the component values by comparing the coefficients with the coeffi-
cients ai and bi (the number of equations is smaller than the number of variables, so that
some components can be chosen freely).

• If some component values are unsuitable, the values can be changed without repeating
the complete calculation:

A change of C into C ′ changes R and L to: R′ = R
C

C ′
, and L′ = L

C

C ′

A change of R into R′ changes C and L to: C ′ = C
R

R′
, and L′ = L

R′

R

A change of L into L′ changes R and C to: C ′ = C
L

L′
, and R′ = R

L′

L

• The fifth and sixth columns of the table, fci/fc and Qi , are useful for confirming the
performance of the individual filters of first or second order by measurement.

Example: Calculation of a third-order Chebyshev low-pass filter with 3 dB ripple with a
critical frequency fc = 10 kHz.
For the realisation, the circuit in Fig. 7.129 was chosen

Fig. 7.129. Low-pass filter of third order

The transfer function of the circuit is:

F( s) = 1

1+ R1C1 s
· 1

1+ R2C2 s+ L2C2 s2

with S = s/wc follows

F(S) = 1

1+ ωcR1C1︸ ︷︷ ︸
a1

S
· 1

1+ ωcR2C2︸ ︷︷ ︸
a2

S+ ω2
cL2C2︸ ︷︷ ︸

b2

S2

Table 7.5 yields:

a1 = 3.3496, b1 = 0.0000, a2 = 0.3559, b2 = 1.1923 .
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C1 and C2 are chosen in advance: C1 = 10 nF, and C2 = 10 nF. This yields
for R1, R2 and L2:

R1 = a1

ωc · C1
= 3.3496

2� · 10kHz · 10 nF
= 5.334 k�

R2 = a2

ωc · C2
= 0.3559

2� · 10kHz · 10 nF
= 567 �

L2 = b2

ω2
c · C2

= 1.1923

(2�)2 · 100 · 106Hz2 · 10 nF
= 30 mH

7.7.1.3 Low-Pass Filter Circuits

Noninverting First-Order Low-Pass Filter

Fig. 7.130. Noninverting first-order low-pass filter a with operational amplifier; b with emitter follower as
impedance converter

The transfer function is:

F(S) = F0

1+ aS
= 1+ R2/R3

1+ ωcR1C1︸ ︷︷ ︸
a

S
(7.154)

Inverting First-Order Low-Pass Filter

Fig. 7.131. Inverting first-order low-pass filter

The transfer function is:

F(S) = F0

1+ aS
= −R2/R1

1+ ωcR2C1︸ ︷︷ ︸
a

S
(7.155)
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Inverting Second-Order Low-Pass Filter

Fig. 7.132. Inverting second-order low-pass filter

The transfer function is:

F(S) = F0

1+ aS+ bS2
= −R2/R1

1+ ωcC1(R2 + R3 + R2R3/R1)︸ ︷︷ ︸
a

S+ ω2
cC1C2R2R3︸ ︷︷ ︸

b

S2
(7.156)

C1 and C2 are chosen in advance. Then:

R2 =
a C2 −

√
a2C2

2 − 4C1C2b(1− F0)

2ωcC1C2
, R1 = −R2

F0
, R3 = b

ω2
cC1C2R2

In order to obtain a real value for R2 it must hold that:

C2

C1
≥ 4b(1− F0)

a2

Noninverting Second-Order Low-Pass Filter

Fig. 7.133. Noninverting second-order low-pass filter a with operational amplifier; b with emitter follower
as impedance converter

The transfer function is:

F(S) = F0

1+ aS+ bS2
= 1

1+ ωcC1(R1 + R2)︸ ︷︷ ︸
a

S+ ω2
cC1C2R1R2︸ ︷︷ ︸

b

S2
(7.157)

C1 and C2 are chosen in advance. Then:

R2, R1 =
a C2 ±

√
a2C2

2 − 4bC1C2

2ωcC1C2



7.7 Active Filters 359

In order to obtain a real value for R2 it must hold that:

C2

C1
≥ 4b

a2

7.7.2 High-Pass Filters

7.7.2.1 Theory of High-Pass Filters

See also Sect. 7.7.1.1: Theory of low-pass filters.

The general transfer function of an nth-order high-pass filter is:

F(S) = F∞(
1+ a1

S
+ b1

S2

)
·
(
1+ a2

S
+ b2

S2

)
· . . . ·

(
1+ an

S
+ bn

S2

)
(7.158)

As in the case for low-pass filters, a distinction is made between Chebyshev, Butterworth
and Bessel high-pass filters. Tables 7.2 to 7.5 are valid for the coefficients ai and bi , and
F∞ gives the gain for very high frequencies (f →∞).

7.7.2.2 High-Pass Filter Circuits

First-Order Noninverting High-Pass Filter

Fig. 7.134. First-order noninverting high-pass filter a with operational amplifier; b with emitter follower as
impedance converter

The transfer function is:

F(S) = F∞

1+ a

S

=
1+ R2

R3

1+ 1

ωcR1C1
· 1
S

, a = 1

ωcR1C1
(7.159)
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First-Order Inverting High-Pass Filter

The transfer function is:

F(S) = F∞

1+ a

S

=
−R2

R1

1+ 1

ωcR1C1
· 1
S

, a = 1

ωcR1C1
(7.160)

Fig. 7.135. First-order inverting high-pass filter

Second-Order Noninverting High-Pass Filter

Fig. 7.136. Second-order noninverting high-pass filter

The transfer function is:

F(S) = F∞

1+ a

S
+ b

S2

=
−R2

R1

1+ C1 + C2

ωcR1C1C2
· 1
S
+ 1

ω2
cR1R2C1C2

1

S2

(7.161)

with

a = 1

ωcR1C1C2
, b = 1

ω2
cR1R2C1C2

If C1 = C2 = C, it then holds that:

R1 = 2

a · ωcC
, and R2 = a

2b · ωcC
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7.7.3 Bandpass Filters

7.7.3.1 Second-Order Bandpass Filter

The transfer function of a bandpass filter of second order is similar to that of an RLC
bandpass filter (Fig. 7.137):

Fig. 7.137. Second-order RLC bandpass filter a circuit diagram; b amplitude response

• The magnitude response |F(f )| has the value of 1 at the resonant frequency f0.

• The centre frequency of the bandpass filter is equal to the resonant frequency f0.

• The bandwidth B is the frequency range between the −3 dB-points.

The transfer function of the bandpass filter according to Fig. 7.137 is:

F( s) = sRC

1+ s RC︸︷︷︸
2D/ω0

+ s2 LC︸︷︷︸
1/ω2

0

(7.162)

whereD is the damping,ω0 is the resonant frequency, see also Sect. 1.2.6.1. If the damping
D is substituted for by the bandwidth B, and the resonant frequency ω0 by the resonant
frequency f0, then

B = 2D
ω0

2�
and f0 = ω0

2�
a general expression for a bandpass filter of second order:

F( s) =
F0 · s B

2�f 2
0

1+ sB/2�f 2
0 + s21/(2�f0)2

(7.163)

The factorF0 takes into account a frequency-independent amplification, so that the transfer
function does not have to have the value of 1 at the resonant frequency.

• The centre frequency and the bandwidth of each bandpass filter of second order can be
determined by coefficient comparison with this general transfer function.

Example: For the RLC bandpass filter given above:

RC = B

2�f 2
0

, and LC = 1

(2�f0)2
,

and it follows that

f0 = 1

2�
√

LC
, and B = 1

2�
· R

L
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7.7.3.2 Second-Order Bandpass Filter Circuit

The transfer function of the bandpass filter shown in Fig. 7.138 is:

F(s) = s · β · RC

1+ sRC(3− β)︸ ︷︷ ︸
B/2�f 2

0

+s2 R2C2︸ ︷︷ ︸
1/(2�f0)

2

, with β = 1+ R1

R2 (7.164)

Resonant frequency: f0 = 1

2�RC

Bandwidth: B = 3− β

2�RC

Fig. 7.138. Second-order bandpass filter

The resonant frequency and the bandwidth can be chosen independently of each other. The

amplification at the resonant frequency is not equal to 1. It is given by |F(f0)| = β

3− β
.

To be able to freely select the amplification, a corresponding amplifier must be connected
in after the filter circuit.

7.7.3.3 Fourth- and Higher-Order Bandpass Filters

Fourth Order Bandpass Filter

Fourth-order bandpass filters fall off at 40 dB/decade. They can be realised by connecting
in series two second-order bandpass filters whose centre frequencies are slightly different.
The bandwidthB = (1/2)

√
2f0 yields amaximally flat passband. The gain in the passband

decreases in proportion to the mismatch of the resonant frequencies.

Higher-Order Bandpass Filters with Larger Bandwidth

Bandpass filters of higher orders with a larger bandwidth can be realised by connecting in
series a low-pass filter and a high-pass filter with the same characteristics. The bandpass
filter fall-off is equal to the low-pass filter and high-pass filter fall-offs. The filter charac-
teristics agree even more for larger values of bandwidth. For Butterworth and Bessel filters
this is approximately the case if the critical frequencies from the low- and high-pass filters
are separated by a factor of 10. For Chebyshev filters the bandwidth must increase as the
order of filter increases (Figs. 7.127 and 7.128).
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7.7.4 Universal Filter

A filter can be realised using integrators with feedback (Fig. 7.139).

Fig. 7.139. Block diagram of a universal filter

The circuit shown in Fig. 7.139 offers three different output possibilities, depending on
whether a high-pass, a low-pass or a bandpass filter is required. The transfer functions are
given by:

Low-pass filter:

FLPF = 1

1+ sT2 + s2T1T2
= 1

1+ ωgT2︸︷︷︸
a

S+ ω2
gT1T2︸ ︷︷ ︸

b

S2
(7.165)

Bandpass filter:

FBPF = sT2

1+ s T2︸︷︷︸
B/2�f 2

0

+ s2 T1T2︸︷︷︸
1/(2�f0)

2

, f0 = 1

2�
√

T1T2
, B = 1

2�T1 (7.166)

High-pass filter:

FHPF = 1

1+ 1

T1
· 1
s
+ 1

T1T2
· 1

s2

= 1

1+ 1

ωgT1︸ ︷︷ ︸
a

·1
S
+ 1

ω2
gT1T2︸ ︷︷ ︸

b

· 1
S2

(7.167)

7.7.5 Switched-Capacitor Filter

In Sect. 7.7.4 it was shown how an active filter can be realised using integrators with
feedback. Fig. 7.140 shows an integrator created with a switched capacitor.

Fig. 7.140. Integrator with a switched capacitor
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The capacitor C1 charges and discharges at a frequency f . The average integration current
is proportional to the value of f . Thus the integrator time constant T can be controlled by
the frequency f .

The output voltage is:

Vout = − 1

C2

∫
iC2 d t

With iC2 = f ·Q = f · Vin · C1 it follows that

F( s) = −C1

C2
f · 1

s
(7.168)

The integrator time constant is: T = C2

f · C1

If a universal filter is built using such integrators, then the critical frequency as well as
the filter characteristics can be controlled and determined by using various switching
frequencies for the individual integrators.

7.8 Oscillators

Systems with feedback can only oscillate, provided the loop gain is

β(jω) · A(jω) ≥ 1 (Barkhausen criterion) (7.169)

(see also Sect. 7.5.4). An independent oscillation occurs exactly at the frequency at which
the phase shift for the feedback loop is

(ϕβ + ϕA) = 0, 2�, 4�, . . . (phase criterion) (7.170)

and the gain for the feedback loop is

|β| · |A| ≥ 1 (gain criterion) (7.171)

Fig. 7.141. System with positive feedback

• An independent oscillation occurs in systems with feedback, if the phase shift is 0◦ or
integer multiples of 360◦ and the loop gain is greater than 1.

• Oscillators oscillate with exponentially growing amplitude if the phase criterion is met
and the loop gain is larger than 1. The amplitude remains constant when the loop gain
is equal to 1.

Frequency-selective networks are used in the feedback arm if oscillations are to be produced
at a definite frequency value. This means that the phase-shift criterion in particular is valid
at only one frequency. Such frequency-selective networks are usually RC stages, resonant
circuits or quartz crystals.
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Example: The feedback loop gain of the circuit in Fig. 7.142 is:

β · A = V1

Vout

Vout

V1
= R1

R1 + R + j(ωL− 1/ωC)︸ ︷︷ ︸
β

· A
(7.172)

Fig. 7.142. Simple oscillator with series resonant circuit

The phase-shift criterion is fulfilled when the imaginary part of β is equal to
zero. This is true at the resonant frequency ω0 = √1/LC. The feedback-loop
gain criterion is fulfilled when A · R1/(R1 + R) ≥ 1, i.e. the noninverting
amplifier gain is chosen to be greater than (R + R1)/R1.

Figure 7.143 shows the oscillator from Fig. 7.142 with amplitude stabilisation. The JFET
increases its impedance with increasing amplitude and thus reduces the noninverting am-
plifier gain until the loop gain is 1.

Fig. 7.143. Oscillator with amplitude stabilisation

7.8.1 RC Oscillators

7.8.1.1 Phase-Shift Oscillator

The phase-shift circuit β shifts the phase by at most 270◦. The phase shift criterion is
fulfilled atϕβ = −180◦, as a further 180◦ shift occurs at the inverting amplifier (Fig. 7.144).
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Fig. 7.144. Phase-shift oscillator

The phase-shift criterion is fulfilled by

f0 = 1

2�RC
√
6
= 1

15.4 · RC
(7.173)

The feedback loop gain criterion is fulfilled by

|A| ≥ 29 (7.174)

(Bode plot in Fig. 7.144).

7.8.1.2 Wien Bridge Oscillator

The Wien bridge oscillator feedback circuit is a Wien bandpass filter. The feedback loop
transfer function is:

β · A = 1

3+ j(ωRC − 1/ωRC)
· A (7.175)

The phase-shift criterion is fulfilled when the imaginary part of the loop gain is zero, i.e.
at ω = 1/RC. The feedback loop gain is then one-third. The feedback-loop gain criterion
is fulfilled when A ≥ 3.

Fig. 7.145. Wien bridge oscillator

Amplitude stabilisation of the Wien bridge oscillator is possible (Fig. 7.143).
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7.8.2 LC Tuned Oscillators

LC oscillators use tuned circuits for frequency selection. These can either be series or
parallel tuned circuits. They are more stable than RC oscillators, as the phase shift is very
large in the range of resonance.

7.8.2.1 Meissner Oscillator

The loop gain is:

β · A = 1

1/RP + j(ωC − 1/ωL)
· N1

N2

βAC

rBE
(7.176)

The resistor RP represents the tuned circuit damping. The equivalent resistance rBE repre-
sents the input impedance of the common-emitter circuit and can be assumed to be given
by rBE ≈ VT/IB ≈ VT · (βDC/IC) where VT is the thermal voltage (approximately 25mV),
and IB is the DC base current (Fig. 7.146).

Fig. 7.146. Meissner oscillator in a common-emitter circuit: a circuit, b equivalent circuit, c block diagram

The phase-shift criterion is fulfilled when ω = 1/
√

LC, i.e. at the tuned-circuit resonant
frequency.

The feedback-loop gain criterion is fulfilled when
N1

N2
≥ rBE

βACRP
.

• The transformer ratio can be chosen to be very small as in practice the base winding
only requires a few turns.

7.8.2.2 Hartley Oscillator

TheHartley oscillator uses an inductive voltage divider for feedback. The phase-shift crite-
rion is fulfilled at the tuned circuit resonant frequency. The feedback-loop gain criterion is

approximately fulfilled for the circuit shown in Fig. 7.147a for L1 ≥ LrBE

βACRP
, or expressed

in terms of the turns: N1 ≥ N

√
rBE

βACRP
.
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• In practice, one or a small number of turns are sufficient for N1 (rBE, βAC and RP, see
Sect. 7.8.2.1).

Fig. 7.147. a Hartley oscillator; b Colpitts oscillator

7.8.2.3 Colpitts Oscillator

The Colpitts oscillator uses a capacitive voltage divider for feedback. The phase-shift
criterion is fulfilled at the resonant frequency for the tuned circuit. The feedback-loop gain

criterion is approximately fulfilled for the circuit shown in Fig. 7.147b forC1 ≤ C2
βACRP

rBE
.

• C1 is chosen to be very large with respect to C2 (rBE, βAC and RP, see Sect. 7.8.2.1).

7.8.3 Quartz/Crystal Oscillators

Fig. 7.148. Quartz: a symbol; b equivalent circuit

A quartz is a crystal; it is also an electrically excitable, mechanical device capable of
oscillating. It can be represented by an electrical equivalent circuit. The L1, C1 and R1

values are the electrical equivalent values for the mechanical oscillator. The capacitor C0

represents the capacitance between the electrical terminals of the quartz; its value depends
on the circuit layout. Typical values, for example, for a 1 MHz quartz are: L1 = 2.53 H,
C1 = 0.01 pF, R1 = 50 �, C0 = 5 pF.

It is worth noting in particular that such oscillators can achieve Q-factors that are not
realisable with electrical circuits. Values between 106 and 1010 can be achieved.
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The equivalent circuit shown in Fig. 7.148b has both a series and a parallel resonance
frequency.

The series resonance occurs at ω0S = 1√
L1C1

The parallel resonance occurs at ω0P = 1√
L1C1

√
1+ C1

C0

• The series resonance depends only on themechanical properties of the quartz, which can
be very accurate as quartz can be manufactured very precisely. The frequency stability
lies between �f/f0 = 10−4 . . . 10−10.

• The series and parallel resonances are very close to each other, as C0 is much greater
than C1 (Fig. 7.149).

If a capacitor CS is connected in series with the quartz, then a resonant frequency exists
between the series resonance ω0S and the parallel resonance ω0P:

ω0 = ω0S

√
1+ C1

C0 + CS (7.177)

The capacitor CS permits a high-precision tuning of the oscillation frequency.

Fig. 7.149. Frequency response of the quartz impedance

7.8.3.1 Pierce Oscillator

Figure 7.150a shows a Pierce oscillator with a CMOS inverter as a driver. This circuit is
usually used for CMOS microprocessor clock generation. The oscillator works like the
Colpitts oscillator. The current i1 flows in a closed loop, which is formed by the quartz
crystal and the capacitors C1 and C2. Because of this, the voltages across C1 and C2 are
in antiphase. Then vout ≈ −vin. The quartz crystal has a large inductive impedance in
this configuration and oscillates close to its parallel resonance. The phase-shift criterion is
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Fig. 7.150. Pierce oscillator: a with CMOS inverter; b with common-emitter stage as an amplifier

fulfilled in this case, as a further 180◦ is supplied by the inverter. The feedback loop gain
criterion is fulfilled by the very high gain of the inverter. The amplitude of oscillation is
limited by the supply voltage, so that the output voltage is approximately a square wave.
The resistor R ensures that the circuit will start oscillating by initially charging C2. It can
have a very large value (10 M�).

7.8.3.2 Quartz Oscillator with TTL Gates

Here the quartz crystal oscillates at its series resonance frequency. The TTL gates are
used as linear amplifiers (Fig. 7.151). The phase-shift criterion is fulfilled if the Quartz
impedance is real. The loop gain is greatest when the quartz impedance is at its minimum
(feedback-loop gain criterion).

Fig. 7.151. Quartz oscillator with TTL gates

7.8.4 Multivibrators

Multivibrators are self-oscillating digital circuits (Fig. 7.152). The feedback contains a
time delay that determines the oscillation frequency. It is unusual to describemultivibrators
using the criterion for oscillation.

7.9 Heating and Cooling

Electronic circuits produce power losses, which must be given off as heat into the local
environment. The power dissipation is usually given, for example, in the choice of the
operating point for a transistor (PV = VCE, IC). The temperature on the component depends
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Fig. 7.152. Multivibrators: a and b with inverters; c and d with Schmitt triggers

on the geometry of its construction, on the heat-conducting material and the air flow. A
large surface area and a good air flow facilitate the heat dissipation. A component with a
small surface area and bad air flow will reach a higher temperature.

A heatsink and a fan are suitable means to keep the component temperature low. A
thermal paste or compound used between the mounting area of the semiconductor and
the heatsink, improves the heat conductivity.

7.9.1 Reliability and Lifetime

In electronics the reliability of a component is its ability to function without failure over
an acceptable time span. In order to quantify this property the failure rate λ is defined:

λ = failures

total number · time
= �N

N ·�t

�N : Number of failures;
N : Number of components;
�t : Test time.

The failure rate defines the average number of failures for usage of the component and

over time. The failure rate is measured in fit (failure in time), 1 fit= 10−91

h
.

In addition to the failure rate, the mean time between failures (MTBF) is defined:

Tm = 1

λ
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The MTBF defines the average amount of time before failure. For a large number of equal
test components, then after a time Tm probably 63% of the components will have failed.

For a group of ni electronic devices, containing i different devices and for a device failure
rate of λi , there is an overall failure rate λtotal and an average MTBF Tm tot of the group of:

λtotal =
∑

i

ni · λi , and Tm total = 1

λtotal

The reliability, i.e. the failure rate and the lifetime, of electronic components is mainly
dependent on the temperature. The Arrhenius law defines this relationship. The failure
rate λ is:

λ = failures

total number · time
= dN

N · d t
= e−

Va
kT (7.178)

with N : Number of components;
Va: Activation energy (eV), 1 eV= 1.602 · 10−19 J;
k: Boltzmann’s constant, 1.38 · 10−23 J/K;
T : Absolute temperature.

• The reliability and lifetime of an electronic circuit is mainly dependent on the temper-
ature of the components. The failure rate increases exponentially with the temperature.

The activation energy lies between 0.3 and 1.3 eV, with a typical value of 0.5 eV.

If for a temperature T1 the failure rate λ1 is known, then the failure rate for a temperature
T2 is:

λ2 = λ1e
−Va

k

(
1
T1
− 1

T2

)
(7.179)

Fig. 7.153. Typical increase in the failure rate as a function of the temperature for two different activation
energies Va

Figure 7.153 shows a typical relationship between the failure rate and the device temper-
ature. The aim of a heatsink calculation therefore should not be to stay directly below the
temperature limits given in the data sheets, but rather to keep the temperature as low as
possible – in an economical manner.

• The temperature of an electronic circuit should be kept as low as possible – taking
financial restraints into account.
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7.9.2 Temperature Calculation

Heat dissipation can be modelled and calculated using an electrical equivalent circuit.

7.9.2.1 Thermal Resistance

Fig. 7.154. The thermal resistance

A heat power P , travelling through a spatial path, causes a temperature difference �ϑ .
Such a spatial path could be, for example, the path from a p–n junction, where the heat
power occurs, to the surrounding environment where the heat is given off. The geometry,
material qualities and the air flow of the heat path define the temperature difference.

Thermal resistance Rth is defined in a similar manner to electrical resistance using Ohm’s
law. The thermal resistance replaces the electrical resistance, the heat power P replaces
the electrical current and the temperature difference �ϑ replaces the voltage drop.

Ohm’s law for heat conduction is given by:

�ϑ = Rth · P (7.180)

• The thermal resistance Rth is given in
K

W
(degrees kelvin per watt).

The thermal resistances Rth for individual heat junctions are given in the corresponding
data sheets. Thus, for example, the thermal resistance RthJC (JC: junction-case) is given in
the transistor data sheets or the thermal resistance of a heatsink is given in the specifications
of a heatsink manufacturer. The thermal resistance of a heatsink is given if necessary for
forced and natural convection. Figure 7.155 shows the relative change in thermal resistance
with forced convection as a function of the air-flow rate.

Fig. 7.155. Relative change in thermal resistance with forced convection as a function of the air-flow rate

Example: The power dissipation in the p–n junction is passed on from there to the tran-
sistor housing, from there via the insulation (e.g. a mica wafer or an aluminium
oxide wafer) to the heatsink and from there to the surrounding environment.
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Each of these heat junctions has a thermal resistance. Thus the thermal resis-
tance between the p–n junction and the housing RthJC, (JC: junction-case), the
thermal resistance of the insulation RthINS and the thermal resistance between
the heatsink and the surrounding environment RthHS (Fig. 7.156). The elec-
trical equivalent circuit for these heat junctions in the static case is shown in
Fig. 7.157.

Fig. 7.156. Heat transfer for a transistor p–n junction to the environment

Fig. 7.157. Equivalent circuit for static heat junctions used for the construction of the previous diagram

The junction temperature ϑJ is:

ϑJ = �ϑJC +�ϑINS +�ϑHS + ϑenv = P (RthJC + RthINS + RthHS)+ ϑenv

(7.181)

7.9.2.2 Thermal Capacity

In addition to the heat conductivity of the material carrying the heat, the thermal capacity
must also be taken into consideration (Fig. 7.158). This can absorb heat energy. Thus a
device will not heat up in an abrupt fashion, but rather will heat up slowly depending on
the thermal capacity and amount of heat power.

Fig. 7.158. The thermal capacity

The relationship between power and temperature across the thermal capacity corresponds
to the analogy of the electrical capacitance:

P = Cth · dϑ

d t
, or �ϑ = 1

Cth

∫
P d t +�ϑ0 (7.182)
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The thermal capacity Cth is given in Ws/K (watt-seconds per degree kelvin).

It is calculated from the specific thermal capacity cth (Ws/kg K) and the mass m of the
material.

Cth = cth ·m (7.183)

The specific thermal capacity is

for copper: cthCu ≈ 400
Ws

kg · K
for aluminium: cthAl ≈ 900

Ws

kg · K
The thermal resistance Rth and the thermal capacity Cth together form the thermal time
constant τth. This is given by: τth = Rth·Cth. For transistors it lies between a fewhundredths
to a few seconds, for heatsinks between minutes and hours.

• For pulsating power dissipation the device temperature can be calculated using the
average power, if the thermal time constant is large compared with the periodic time of
the power pulses.

Example: If the thermal capacities are considered in the construction shown in Fig. 7.156,
then this yields the equivalent circuit shown in Fig. 7.159. The transistor case
and the heatsink have a thermal capacity. The thermal capacity of the insulation
was neglected in this equivalent circuit. The thermal resistance and the thermal
capacity together form the thermal time constants τJC = RthJCCthJC and τHS =
RthHSCthHS.

Fig. 7.159. Equivalent circuit for the transient heat junction in the construction of the example in Fig. 7.157

7.9.2.3 Transient Thermal Impedance

Semiconductors can support very large power dissipation for a short time. For impulsive
power dissipation the thermal capacities in the vicinity of the junction store the dissipated
energy.

For very high frequency power pulses calculations can be performed using the average
power. If the power pulses’ periodic time is in the range of the thermal time constants, the
transient thermal responses are not negligible in the calculation of the junction temperature.
The semiconductor manufacturer therefore gives the transient thermal impedance Zth.

The transient thermal impedance Zth is given as a function of the impulse duration and
the duty cycle D (impulse duration/impulse repetition period, Fig. 7.160).

The temperature difference between the p–n junction and case can be then calculated as:

�ϑJC = P̂ · ZthJC(tP, T ) (7.184)

• The temperature difference is calculated using the amplitude of the dissipated power.
The power pulses and their duty cycle are considered in the different curves in the
transient thermal impedance diagram with D = tp/T .
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Fig. 7.160. Transient thermal impedance

• The transient thermal resistance is important in the frequency range from a few hertz
to a few kilohertz (especially rectifiers and thyristors at 50/60 Hz mains). For higher
frequency power pulses the average power and the thermal resistance are usually used
for calculations: �ϑ = Pavg. · Rth.

7.10 Power Amplifiers

Power amplifiers offer a large power output with a reasonably good efficiency. The output
can usually be regarded as a voltage sourcewith a low source resistance. The gain is usually
about 1. Good linearity is obtained as the power amplifier is operated in a feedback system
with a large open loop gain.

7.10.1 Emitter Follower

Fig. 7.161 shows the emitter follower.

Fig. 7.161. The emitter follower: a circuit; b voltage waveform
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Gain

The gain A = Vout/Vin is:

A ≈ 1 (7.185)

Input and Output Impedance

The input impedance rin is:

rin ≈ β · (RE ‖RL) where β is the small-signal current gain
(7.186)

The output impedance rout is:

rout ≈ Rint + rBE

β
(7.187)

with Rint: internal resistance of the input voltage source
rBE: dynamic input resistance of the base–emitter junction

rBE = h11E ≈ VT

IB
, VT: thermal voltage 25 mV at T = 25◦C

IB: DC base current

Operating Limits

Positive operating limit:
V̂out max ≈ +VCC

Negative operating limit:

V̂out min ≈ −VCC · RL

RE + RL
(7.188)

Maximum Output Power

The maximum available output power is calculated for the case where the peak value of
the output voltage is equal to the negative output voltage limit, i.e. that a sinusoidal output
is still just about possible.

V̂out = V̂out min ≈ VCC · RL

(RE + RL)
, Pout = 1

2
· V̂ 2

out

RL
= 1

2
· V 2

CC ·
R2

L

(RE + RL)2 RL

The derivative dPout/ dRL is calculated and made equal to zero, to discover which load
resistance RL causes the maximum power transfer.

dPout

dRL
= 1

2
· V 2

CC ·
(RE + RL)2 − RL · 2 · (RE + RL)

(RE + RL)4
= 0
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It follows that:

RL = RE (7.189)

The maximum output voltage for RL = RE is:

V̂out = VCC

2
(7.190)

• The maximum power is delivered to the load resistance RL, when RL is equal to the
emitter resistance RE and the amplitude of the output voltage is Vout = VCC/2.

The Transistor Power Dissipation

The transistor power dissipation PT1 for a sinusoidal output voltage is given by:

PT1 = 1

T

T∫
0

vCE(t) · iC (t) d t

= 1

T

T∫
0

(
VCC − V̂out sinωt

)
·
(

VCC + V̂out sinωt

RE
+ V̂out sinωt

RL

)
d t

PT1 = V 2
CC

RE
− 1

2

V̂ 2
out

RL
− 1

2

V̂ 2
out

RE
(7.191)

PT1max = V 2
CC

RE
(7.192)

• The transistor power dissipation is a maximum when the output is zero.

• The maximum transistor power dissipation is given by
V 2
CC

RE

The Total Input Power

The total input power is given by:

Ptot = Pout + PT1 + PRE (7.193)

Pout: output power
PT1: transistor power dissipation
PRE: power loss in the emitter resistor RE

Pout = 1

2
· V̂ 2

out

RL
, PRE = 1

T

T∫
0

v2
RE

RE
d t = 1

T

T∫
0

(VCC + V̂out sinωt)2

RE
d t = V 2

CC

RE
+ 1

2

V̂ 2
out

RE

PT1 = V 2
CC

RE
− 1

2

V̂ 2
out

RL
− 1

2

V̂ 2
out

RE
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Pout + PT1 + PRE = Ptotal = 2
V 2
CC

RE
(7.194)

• The total input power Ptotal of the emitter follower is 2
V 2
CC

RE
and is independent of the

load RL and independent of the output voltage Vout.

Efficiency

The efficiency is defined as

η = delivered power

total power
= output power

input power
= Pout

Ptotal

The efficiency η reaches its maximum value when the output power is highest, i.e. if
RE = RL and Vout = VCC/2.

The efficiency is:

ηmax = Pout max

Ptotal
= V 2

CC/8RL

2V 2
CC/RE

= 1

16
= 6.25% (7.195)

• The maximum efficiency of the emitter follower is 6.25%.

Class A Operation

Class A operation of an amplifier is defined by:

• the total input power is constant and independent of the load and the output voltage, and

• the transistor current is never zero.

• The emitter follower is an amplifier in class A operation.

7.10.2 Complementary Emitter Follower in Class B Operation

Fig. 7.162. Complementary emitter follower: a circuit; b diagram of the voltages and currents
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In the complementary emitter follower only one transistor conducts at any one time. For a
positive input voltage transistorQ1 conducts, and for a negative input voltageQ2 conducts.
Neither transistor conducts at the zero-crossing point of the input voltage (−0.7 V < Vin <

+0.7 V), the gain in this case being approximately zero. As the transfer characteristic is
nonlinear in this region, this is known as crossover distortion.

Gain

The gain is:

A ≈ 1 (7.196)

Output Voltage Limit

The output voltage limit is:

V̂out ≈ ±VCC (7.197)

Input and Output Impedance

The input impedance rin is:

rin = β · RL, where β is the small-signal current gain (7.198)

The output impedance rout is:

rout ≈ Rint + rBE

β
(7.199)

with Rint: source resistance of the input voltage source
rBE: dynamic input resistance of the base–emitter junction

rBE ≈ VT

IB
, VT : thermal voltage 25 mV at T = 25◦C

IB: DC base current

Maximum Output Power

The maximum output power is:

Pout = 1

2

V̂ 2
out

RL
≈ 1

2

V 2
CC

RL
(7.200)
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Transistor Power Dissipation

The transistor power dissipation for a sinusoidal output voltage per transistor is :

PT1 = PT2 = 1

T

T/2∫
0

(
VCC − V̂out sinωt

)
︸ ︷︷ ︸

VCE1

·
(

V̂out sinωt

RL

)
︸ ︷︷ ︸

IC1

d t = VCC · V̂out

� · RL
− V̂ 2

out

4RL

In the calculation of the maximum transistor power dissipation the derivative
dPT

dV̂out

is set

to zero. This yields the output voltage at which the maximum transistor power dissipation
occurs:

dPT

dV̂out

= VCC

� · RL
− 2

V̂out

4RL
= 0 ⇒ V̂out = 2

�
VCC = 0.64 · VCC

• The maximum transistor power dissipation occurs at an output voltage swing of 64% of
the supply voltage (Fig. 7.163).

The maximum transistor power dissipation per transistor is:

PT1max = PT2max = V 2
CC

�2RL
(7.201)

Input Power

The total input power is given by (Fig. 7.163)

Ptotal = Pout + PT1 + PT2 ⇒ Ptotal = 2VCCV̂out

�RL

and has its maximum in V̂out = VCC

Efficiency

η = Pout

Ptotal
=

1

2

V̂ 2
out

RL

2VCC · V̂out

� · RL
− 1

2

V̂ 2
out

RL
+ 1

2

V̂ 2
out

RL

= V̂out

VCC
· �
4
= 0.785 · V̂out

VCC

η has its maximum for V̂out = VCC:

ηmax = 78.5% (7.202)
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Class B operation

Class B operation of an amplifier is defined by:

• the total input power increases proportionally to V̂out, and

• each transistor conducts only for half a period.

• The complimentary emitter follower is a class B amplifier.

Fig. 7.163. Output power, power dissipated and total input power as function of the level of output voltage
swing

7.10.3 Complementary Emitter Follower in Class C Operation

Fig. 7.164. Complementary emitter follower in class C operation

In class C operation the complementary transistors do not conduct in the range of −V0 <

Vin < +V0. This causes the amplifier efficiency to improve compared to the class B
operation. This is important if the amplifier is activated by a constant amplitude and where
the crossover distortion is unimportant, e.g. radio transmitter amplifiers.
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7.10.4 The Characteristic Curves of the Operation Classes

Fig. 7.165a shows the operational point in the transistor output characteristics for different
operation classes of power amplifiers. Fig. 7.165b shows the corresponding transistor
current.

Fig. 7.165. a The characteristic curves of the operation classes (for the transistor T1); b time variation of the
collector current with a sinusoidal activation

7.10.5 Complementary Emitter Follower in Class AB Operation

Fig. 7.166. Complementary emitter follower in class AB operation
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In class AB operation equal-value bias voltages V0 are applied to the complementary
transistors. V0 is chosen so that a small quiescent current flows in the transistors at the
zero-crossing of the input voltage. The transfer characteristic is thus linearised, and the
crossover distortion is reduced (Fig. 7.166).The small quiescent current is chosen so that the
heat dissipation in the transistors for no input voltage is small (the power dissipated should
be about 10–30% of themaximum power dissipation). The small quiescent current usually
lies between 1–5 % of the peak output current. The small quiescent current is limited by
the feedback resistor RE. This is important particularly in heating of the transistors and
the related drop in the base–emitter voltage. If RE is too small thermal runaway can occur:
The transistors heat up, the base–emitter voltage decreases, the small quiescent current
increases, the transistor power dissipation also increases causing the transistors to heat up
further, the base–emitter voltage further decreases and so on.

7.10.5.1 Biasing for Class AB Operation

Figure 7.167a: The bias voltage is produced by two diode stages. The resistors Rq are
chosen so that at maximum-output voltage swing sufficient base current is supplied to
the power transistors. This often means that Rq has to be very low, as the voltage drop
across them will be very small at maximum-output voltage swing. This also leads in the
quiescent case (when Vin = 0 V) to a large power loss in the Rq resistors as about VCC/2
drops across them. The circuits shown in Fig. 7.167d provides some relief by replacing
the Rq resistors by current sources.
The RE feedback resistors prevent the small quiescent current of the power transistors
from increasing uncontrollably. The base–emitter voltage of the power transistors drops
in the event of heating occurring!. TheRE resistors are chosen so that the small quiescent
current is about 1–5 % of the peak output current or, alternatively, when the amplifier
is operating at full-output voltage swing that 0.7–2 V are dropped across them. The
feedback resistors can be bypassed with diodes, so that the power dissipated in them at
full-output voltage swing is not too high.

Figure 7.167b: The bias voltage diodes are replaced by the transistors Q3 and Q4. The
amplifier input signal power is thus decreased.

Figure 7.167c: The bias voltage diodes are replaced by a transistor circuit Q3. The
transistor circuit appears like a voltage source. The bias voltage is given by: 2V0 =
0.7 V

R1 + R2

R2
. The resistors R1 and R2 can be a potentiometer for a precise quiescent

current adjustment. This is particularly important if the power transistors are Darling-
tons. In that case, the bias voltage is chosen as: 2V0 ≈ 2.8 V.

Figure 7.167d: The Rq resistors are replaced by current sources. In the quiescent case
(Vin = 0 V) the power dissipation is therefore clearly reduced or, alternatively, the
maximum amplifier output swing increases. The current source is chosen so that at peak-
output voltage swing the current requirement of the power transistors is guaranteed.

Figure 7.167e: The amplifier input comes from a common-emitter stage for high voltage
gain. This common-emitter stage can be driven directly by a differential amplifier.

Figure 7.167f: The Rq resistor is replaced by the resistors Rq1 and Rq2, with Rq1 � Rq2.
In the quiescent case a voltage of about VCC drops across the bootstrap capacitor C. For
the output voltage swing the bootstrap capacitor shifts the positive voltage half-cycle of
the voltage between Rq1 and Rq2 to values higher than the supply voltage VCC. Therefore
sufficient voltage remains across Rq2, even at full-output voltage swing, to guarantee the
base current requirement. Rq2 is chosen so that a little more than the maximum required
base current flows under quiescent conditions. The bootstrap-capacitor is chosen so that
an approximately steady DC voltage appears across it (it is a short circuit for AC volt-
ages). The critical frequency of the bootstrap circuit is: fc ≈ 1/2�Rq1C for Rq1 � Rq2.
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Fig. 7.167. Bias voltage production for AB amplifiers

7.10.5.2 Complementary Emitter Follower with Darlington Transistors

For amplifiers with a large output power or, alternatively, with a large output current, power
transistors are created using Darlington or pseudo-Darlington circuits. The transistors Q1
and Q2 are power transistors. The transistors Q′1 and Q′2 are driver transistors.

Figure 7.168a: The power transistors Q1 and Q2 do not conduct in the quiescent state
(Vin = 0 V). The bias voltage V0 is chosen so that the drop across the feedback resistors
RE is about 0.4 V in the quiescent state (i.e. V0 = 2.2 V). A good linearity is therefore
achieved in the crossover region. For larger output voltage swing the power transistors
take over the output current.

Figure 7.168b: The bias voltage is chosen at about V0 = 2.8 V. The quiescent current
usually lies around 1–5 % of the peak output current.

Figure 7.168c: The pseudo-Darlington circuit uses identical transistor types as the power
transistors. The bias voltage V0 is chosen so that the voltage drop across the feedback
resistors RE in the quiescent state is about 0.4 V (i.e. V0 = 1.8 V).
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Fig. 7.168. Complementary emitter follower in a and b Darlington pair, c pseudo-Darlington circuit

7.10.5.3 Current-Limiting Complementary Emitter Follower

The current-limiting circuit shown in Fig. 7.169 measures the output current using the
resistor RM (which can be identical to the feedback resistor RE). If a critical voltage is
exceeded, then the base current flows away through the current-limiter circuit, i.e. the
output current cannot increase further.

Fig. 7.169. Current-limiting complementary emitter follower

7.10.6 Input Signal Injection to Power Amplifiers

7.10.6.1 Input Signal Injection using a Differential Amplifier

A high linearity and a broad independence from the semiconductor parameters can be
achieved by using feedback principles. The differential amplifier uses the difference be-
tween the output and the input signals to provide the input signal to a power amplifier. The
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overall open-loop gain is given by the product of the differential amplifier gain A1 and the
common-emitter stage gain A2. If the open-loop gain is very large, then the closed-loop
gain depends only on the feedback (Fig. 7.170).

The feedback also makes the amplifier input impedance very large and the output
impedance very small.

For theAC voltage gain the feedback acts like a voltage divider
R2

R1 + R2
, and C2 acts like

a short circuit. The gain is therefore:

V∼ = V1 V2

1+ V1 V2
R2

R1 + R2

≈ R1 + R2

R2
(7.203)

Fig. 7.170. Input signal injection to a power amplifier using a differential amplifier

The feedback capacitor C2 ensures that for DC input voltages the amplifier has complete
feedback. This provides a particularly good output voltage zero stability. The DC gain is
therefore 1 (Fig. 7.171).

Fig. 7.171. a Block diagram; b frequency response of the amplifier with feedback

The compensation capacitor Ccomp decreases the loop gain at high frequencies (see
Sect. 7.6.2) in order to reduce the risk of oscillations. Ccomp should be determined ex-
perimentally.
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7.10.6.2 Input Signal Injection Using an Op-Amp

Fig. 7.172. Input signal injection to power amplifiers using operational amplifiers

The power amplifier is included in the op-amp feedback path. The op-amp open-loop gain
acts in the feedback loop to produce good linearity.

7.10.7 Switched-Mode Amplifiers

In switched-mode amplifiers the transistors Q1 and Q2 work like switches that are alter-
nately switched. The transistor control voltages are created by a pulse-width modulator
(PWM). The output voltages of the transistors can only have the values +VCC or −VCC.
This voltage contains, on the one hand, the pulse-width modulator clock frequency and,
on the other hand, the input signal (Fig. 7.173). The clock frequency is suppressed by a
second-order LC low-pass filter. Therefore the output signal is a true representation of the
input signal.

The switching transistors are usually MOSFETs because of their low losses and short
switching time. The switching frequencies are usually in a range of some tens to several
hundred kilohertz. In theory the switched mode amplifier is loss free. In practice the
efficiency lies between 80 and 90%.

Fig. 7.173. Switched-mode amplifier
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7.11 Notation Index

a, ai filter coefficient, see Tables 7.2 to 7.5
A gain
ACL closed-loop gain of a feedback system
Ad differential mode gain, open-loop gain of an operational amplifier
AOL open-loop gain of a feedback system
b, bi filter coefficient, see Tables 7.2 to 7.5
B DC gain of bipolar transistors
B bandwidth
B as index: base
C as index: collector
C capacitance
Cth, cth thermal capacity (Ws/K), specific thermal capacity (Ws/kg K)
CM as index: common mode
CMRR common-mode rejection ratio
d as index: difference
D damping ratio
D as index: drain
E as index: emitter
f frequency
fc critical frequency
fT transit frequency
F transfer function (in the Laplace frequency domain)
gm transconductance
G as index: gate
i time-varying current, AC current
is/c short-circuit current
in as index: input quantity
I DC current, RMS value of an AC current
IF diode forward current
L inductance
out as index: output quantity
P power
r differential-mode resistance, AC resistance
rBE differential resistance base–emitter path, VT/IB

rCE differential output resistance of the collector current source
rDS differential output resistance the drain current source
rint differential source resistance of a current source
R resistance
Rint internal resistance of the source, source resistance
RL load resistance
Rth thermal resistance (K/W)
s complex frequency
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S as index: source
S normalised complex frequency, S = s/ωg

t time
T absolute temperature
T time constant
Tm mean time between failure, MTBF
v time-varying voltage, AC voltage
vo/c open circuit voltage
vo/l open loop voltage

V̂ peak magnitude of an AC voltage
V DC voltage, RMS value of an AC voltage
V0 offset voltage
V0, I0 operating point
�VBE thermal voltage drift of the base–emitter path
VCC supply voltage
VF diode forward voltage
VT thermal voltage, about 25 mV at room temperature
z differential impedance
Z impedance
Zth transient thermal resistance (K/W)
β feedback factor, transfer function of the feedback circuit
β differential mode current gain
β0 differential mode short-circuit current gain
�ϑ temperature difference
η efficiency
ϕ phase angle between output and input of a circuit
λ failure rate
ϑ temperature
ω angular frequency
ω0 resonant angular frequency, centre frequency
ωc critical or cutoff angular frequency

7.12 Further Reading

Bird, J. O.: Electrical Circuit Theory and Technology
Butterworth/Heinemann (1999)

Boylestad, R. L.; Nashelsky, L.: Electronic Devices and Circuit Theory, 6th Edition
Prentice Hall (2000)

Crecraft, D. I.; Gorham, D.A.; Sparkes, J. J.: Electronics
Chapman & Hall (1993)



7.12 Further Reading 391

Floyd, T. L.: Principles of Electric Circuits, 6th Edition
Prentice Hall (2000)

Floyd, T. L.: Electric Circuits Fundamentals, 5th Edition
Prentice Hall (2001)

Floyd, T. L.: Electronic Devices, 5th Edition
Prentice Hall (1999)

Floyd, T. L.: Electronics Fundamentals: Circuits, Devices, and Applications
Prentice Hall (1997)

Grob, B.: Basic Electronics, 8th Edition
McGraw-Hill (1996)

Harper, C. A.: Active Electronic Component Handbook, 2nd Edition
McGraw-Hill (1996)

Horowitz, P.; Hill, W.: The Art of Electronics, 2nd Edition
Cambridge University Press (1989)

Horowitz, P.; Hayes, T. C.: Student Manual for The Art of Electronics
Cambridge University Press (1989)

Singh, J.: Semiconductor Devices: Basic Principles, 1st Edition
John Wiley & Sons (2000)

Zverev, A. I.: Handbook of Filter Synthesis
John Wiley & Sons (1967)



8 Digital Electronics

8.1 Logic Algebra

8.1.1 Logic Variables and Logic Gates

For many signals in electronics only two distinct signal conditions are of interest. For
example:

current flowing / current not flowing
voltage is positive / voltage is negative

short circuit / open circuit

A mathematical model for such a system would be a logic variable, which can only have
two distinct values: usually either zero or one.

x = 0, or x = 1

Logic functions can translate a logic variable into a new logic variable. In mathematics
systems of logic variables that are related by logic functions are known asBooleanAlgebra.

8.1.1.1 Inversion

The inversion of a variable x is written as x.

q = x

The logic variable q assumes the opposite value from x. Any logic function can be repre-
sented by a truth table.

x x

0 1

1 0

The following holds
0 = 1, 1 = 0

as well as
x = x

• If a logic variable is inverted twice, then it assumes its original value.

8.1.1.2 And Function

The And function combines two logic variables.

q = x · y

Spoken as: x and y.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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The truth table for the And function is

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

Two logic variables can each independently assume either of two values. The four possible
combinations are represented in the truth table.

The following then holds for the And function

x · 0 = 0, x · x = x (8.1)

x · 1 = x, x · x = 0 (8.2)

8.1.1.3 Or Function

q = x+ y (not to be confused with the arithmetic ‘plus’)

Spoken as: x or y.

The truth table of the Or function

x y x+ y

0 0 0
0 1 1
1 0 1
1 1 1

The following then holds for the Or function

x+ 0 = x, x+ x = x (8.3)

x+ 1 = 1, x+ x = 1 (8.4)

8.1.2 Logic Functions and their Symbols

Logic variables describe electronic signals, while logic functions explain their relationship.
The basic elements used to realise these functions are known as gates. Special symbols
are used as standard for logic gates.

Note: The logic symbols used in this chapter are according to EN60617-12 (formerly
IEC 617) and IEEE/ANSI standards. The IEEE standard provides two different
types of symbols, distinctive-shape symbols and rectangular-shape symbols.
The first distinguishes the function from the form of the symbol, while the
latter consists of a rectangle with a label describing the logic function. In this
book the rectangular-shape convention is followed.
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8.1.2.1 Inverter (Not)

q = x

An inverter inverts the input signal. The circle at the output side is used to symbolise the
inversion (Figs. 8.1 and 8.2).

x Not
0 1
1 0

Fig. 8.1. Truth table and symbol for the inverter

• The output of the inverter is 1 only if the input variable has the value of zero.

Fig. 8.2. Distinctive-shape symbol for the inverter

8.1.2.2 And Gate

q = x · y

x y And
0 0 0
0 1 0
1 0 0
1 1 1

Fig. 8.3. Truth table and symbol for the And gate

• The And function output is 1 only if both input variables have the value of 1 (Fig. 8.3),

or:

• The And function output is zero if at least one of the input variables has the value of
zero.

Fig. 8.4. Distinctive-shape symbol for the And gate

8.1.2.3 Or Gate

q = x + y

• The Or function output is 1 if at least one of the input variables has the value of 1,

or:
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x y Or
0 0 0
0 1 1
1 0 1
1 1 1

Fig. 8.5. Truth table and symbol of the Or gate

• The Or function output is zero only if both input variables have the value of zero
(Fig. 8.5).

Fig. 8.6. Distinctive-shape symbol for the Or gate

8.1.2.4 Nand Gate

q = x · y

x y Nand
0 0 1
0 1 1
1 0 1
1 1 0

Fig. 8.7. Truth table and symbol of the Nand gate

TheNand gate is anAnd gate followed by an inversion. The circle on the output represents
the inversion (Figs. 8.7 and 8.8).

• The Nand function is zero if both input variables have the value of 1.

Fig. 8.8. Distinctive-shape symbol of the Nand gate

8.1.2.5 Nor Gate

q = x + y

The Nor gate is an Or gate followed by an inversion. The circle on the output represents
the inversion (Figs. 8.9 and 8.10).

• The Nor function is 1 if both input variables have the value of zero,

or:

• The Nor function is zero if at least one of the input variables has the value of 1.
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x y Nor
0 0 1
0 1 0
1 0 0
1 1 0

Fig. 8.9. Truth table and symbol for the Nor gate

Fig. 8.10. Distinctive-shape symbol of the Nor gate

8.1.2.6 Xor Gate, Exclusive Or

q = x · y + x · y
q = x ⊕ y.

x y Xor
0 0 0
0 1 1
1 0 1
1 1 0

Fig. 8.11. Truth table and symbol for the Xor gate

• The Xor function is 1 if exactly one of the two input variables has the value of 1,

or:

• The Xor function outputs a 1 only if both input variables are different from each other
(Fig. 8.11),

or:

• The Xor function outputs a zero if both input variables are the same.

Fig. 8.12. Distinctive-shape symbol of the Xor gate

An Xor gate can also be regarded as a controlled inverter (Fig. 8.13). If the second input
S is used as the controlling input, then for S = 0 the gate is noninverting, and for S = 1 it
inverts.

8.1.3 Logic Transformations

8.1.3.1 Commutative Laws

x · y = y · x , x+ y = y+ x (8.5)
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S x q

0
0
1

0
1

}
as x

1
0
1

1
0

}
as x

Fig. 8.13. Xor gate as a controlled inverter

Variables are interchangeable. In circuit terms: the inputs from And gates or Or gates can
be interchanged.

8.1.3.2 Associative Laws

(x · y) · z = x · (y · z) = x · y · z (8.6)

(x+ y)+ z = x+ (y+ z) = x+ y+ z (8.7)

The evaluation of the expressions is the same in each case. In circuit terms: the order of
the combination of any two inputs is arbitrary (Fig. 8.14).

Fig. 8.14. All three circuits are equal according to the associative law; the same is true for Or gates

8.1.3.3 Distributive Laws

(x · y)+ (x · z) = x · (y+ z) (8.8)

(x+ y) · (x+ z) = x+ (y · z) (8.9)

Any variable that is common to two logic expressions can be taken out of the parentheses
(Fig. 8.15). there is no equivalent rule in algebra to the one expressed in Eq. 8.9.

Fig. 8.15. Both circuits are identical according to the distributive law; swapping the And and Or gates
demonstrates an application of the second distributive law
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8.1.3.4 Inversion Laws (DeMorgan’s Rules)

The inversion laws, also known as DeMorgan’s rules, are given by Eqs. 8.10 and 8.11 and
are shown in Figs. 8.16 and 8.17.

x · y = x+ y (8.10)

x+ y = x · y (8.11)

Fig. 8.16. The inversion can be shifted from the input to the output; the And gate is then changed to Nor

Fig. 8.17. The inversion can be shifted from the input to the output; the Or gate is then changed to Nand

Evaluation Rules

The inversion of a variable is always carried out first. All other logic expressions are
evaluated from left to right. Any deviation from that order must use suitable parentheses
to separate the relevant expressions.

Note: When +-signs are used for the Or expression and ‘ · ’ for the And expres-
sion the same algebra is employed: And expressions take precedence over Or
expressions. In this notation the ‘ · ’ can be also left out.

Example:

(x · y)+ (x · y) = x · y + x · y = xy + xy

8.1.4 Overview: Logic Transformations

Example: The following logic term should be simplified using the rules in Table 8.1:

q = (x · y) · (x+ y) DeMorgan’s rule (14)
= x · y+ x+ y DeMorgan’s rules (14) and (15)
= (x+ y)+ (x · y) Distributive law (27)
= [x+ (x · y)]︸ ︷︷ ︸

x

+ [y+ (x · y)]︸ ︷︷ ︸
y+ x

From rules (19) and (21)

= x+ y+ x = x+ y
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Table 8.1. Summary of logic transformations

One variable
(1) x = x

(2) x · x = x (3) x+ x = x

(4) x · x = 0 (5) x+ x = 1

One variable and constants
(6) x · 0 = 0 (7) x+ 0 = x

(8) x · 1 = x (9) x+ 1 = 1

Two variables
(10) x · y = y · x (11) x+ y = y+ x

(12) x · y = x+ y (13) x+ y = x · y
(14) x · y = x+ y (15) x+ y = x · y
(16) x · y = x+ y (17) x+ y = x · y
(18) x · (x+ y) = x (19) x+ (x · y) = x

(20) x · (x+ y) = x · y (21) x+ (x · y) = x+ y

(22) (x · y)+ (x · y) = y (23) (x+ y) · (x+ y) = y

(24) (x · y)+ (x · y) = y (25) (x+ y) · (x+ y) = y

Three variables
(26) x · (y+ z) =

(x · y)+ (x · z)
(27) x+ (y · z) =

(x+ y) · (x+ z)

8.1.5 Analysis of Logic Circuits

Fig. 8.18. Analysis of logic circuits by segmentation and introduction of variables

To calculate the truth table of a complex logic circuit, the circuit should be broken up at
suitable points and the logic value at that point assigned a new variable name. Therefore in
the example shown in Fig. 8.18 the temporary variable a is introduced for x · y. The circle
at the input of the And gate indicates an inversion. The temporary variable b is introduced
for x+ y. The output variable q is the result of a and b passing through a Nand gate. The
following truth table shows each of the variables:

x y a = x · y b = x+ y q = a · b
0 0 0 0 1
0 1 0 1 1
1 0 1 1 0
1 1 0 1 1

The final column of the table shows that the entire circuit expression can be written as
q = x+ y. For circuits with several output variables each variable is represented by its
own truth table.
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8.1.6 Sum of Products and Product of Sums

Solving a problem in digital logic design usually implies using a truth table, which rep-
resents the logical relationship between the input and output values. This yields a logical
expression for each output variable, and thus the design of the logic circuit. The case where
each input variable appears in either inverted or noninverted form in each partial term of
the output expression is of particular interest.

8.1.6.1 Sum of Products

The sum of products (SOP, also canonical sum of products) may be obtained as follows:

• Only rows in the truth table in which the output variable is a logic 1 are considered as
partial terms.

• In each of these rows the input variables are operated on by theAnd function.A variable
in the term is represented by its inverted form if it is 0 in the relevant row, otherwise it
is not inverted.

• All partial terms are operated on together by the Or function.

Example: In the example the output variables Q and R result from the input variables A,
B, C.

A B C Q R

0 0 0 0 1
0 0 1 1 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

The output variable Q in the truth table has the value of 1 in three cases. This
yields the following partial terms:

A ·B ·C from the second row,
A ·B ·C from the fifth row,
A ·B ·C from the last row.

The output variable Q is then given by:

Q = (A ·B ·C)+ (A ·B ·C)+ (A ·B ·C)

The sum of products yields a two-layer combinational circuit as shown in
Fig. 8.19.
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Fig. 8.19. Two-layer combinational circuit using the sum of products

8.1.6.2 Product of Sums

The product of sums (POS, also canonical product of sums) may be obtained as follows:

• Only the rows in the truth table in which the output variable is a logic 0, are considered
for the partial terms.

• In each of these rows the input variables are operated on together by the OR function.
A variable in the partial term is inverted if it is 1 in the relevant row, otherwise it is not
inverted.

• All partial terms are operated on together by the And function.

Example: The output variable R in the previous truth table has the value 0 in two cases.
This yields the following partial terms:

A+B +C from the fifth row,
A+B +C from the last row.

The output variable R is given by:

R = (A+B +C) · (A+B +C)

The product of sums yields a two-layer combinational circuit as shown in
Fig. 8.20.

• Both POS and SOP solutions may still contain redundancies, i.e. they can be further
simplified. The sum of products yields short expressions for variables that have the value
1 in a few cases. For the opposite case the product of sums yields the more compact
solution.

Note: The sumof products is preferred inTTLdesign.The product of sums is preferred
in the realisation of logic functions using programmable logic devices (PLDs).
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Fig. 8.20. Two-layer combinational circuit using the product of sums

8.1.7 Systematic Reduction of a Logic Function

Both of the following techniques are methods to find the reduced logic functions of a
given truth table. Aim: to have the lowest possible number of logic gates in the electronic
realisation.

• Karnaugh map: Graphic technique limited to a few input variables;

• Quine–McCluskey technique: For any number of variables; more sophisticated tech-
nique, nevertheless easy to program for computer-aided engineering.

8.1.7.1 Karnaugh Map

The Karnaugh map is a representation of the truth table in rows and columns, in a manner
that from one entry to the next only one input variable changes. The Karnaugh map for
four input variables A, B, C and D is shown in Table 8.2. The configuration used in the
sum of products is shown first, followed by the product of sums representation. The input
variables are shown in each entry. The number in the upper right of each cell in the table
is the decimal value of the combined input bits.

For each table entry the output level is entered that corresponds to that input variable
combination. In moving from one table entry to the next in either the horizontal or vertical
direction only one input variable changes. Table cells on the edge of the table are not
hemmed in, however, as they are considered as also being neighbours of the corresponding
extreme cell in the same row or column. Therefore, the far-right cell in the first row is
adjacent to the far-left cell in the same row, and also to the far-right cell in the last row. The
table can be considered as being overlaid on a toroidal surface. For three input variables
the table size is reduced by two rows. It is not possible to visibly represent more than four
input variables.

The following steps are taken to arrive at the reduced sum of products:

• Adjacent cells with 1 as an entry are grouped together. The group size can only be in
powers of two, that is, 1, 2, 4 or 8 cells. The largest possible groupings should be made.

• All cells must be in at least one group. Each cell can ,however, be in more than one
group.
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Table 8.2. Karnaugh map for four input variables

SOP A ·B A ·B A ·B A ·B
C ·D 0000 0 0100 4 1100 12 1000 8

C ·D 0001 1 0101 5 1101 13 1001 9

C ·D 0011 3 0111 7 1111 15 1011 11

C ·D 0010 2 0110 6 1110 14 1010 10

POS A+B A+B A+B A+B

C+D 0000 0 0100 4 1100 12 1000 8

C+D 0001 1 0101 5 1101 13 1001 9

C+D 0011 3 0111 7 1111 15 1011 11

C+D 0010 2 0110 6 1110 14 1010 10

• An And-ed term should be noted for each group that represents only the variables
contained within the group. For groups with two cells one variable can be discarded, for
groups with four cells two etc.

• The resultant terms are Or-ed.

Example: The reduced sum of product of the logic variableQ is found using the following
truth table (Table 8.3).

Table 8.3. Truth table

A B C D Q

0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 1

Q A ·B A ·B A ·B A ·B

C ·D 1 0 1 4 12 8

C ·D 1 1 1 5 13 9

C ·D 3 7 1 15 1 11

C ·D 1 2 6 14 1 10

This results in the Karnaugh map shown above. For clarity only the cells con-
taining a 1 have been represented in the map. In the upper left corner a group of
four 1 s can be formed. Two cells can be grouped in the third row. It is pointless
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to form a group with 1 in the lower right corner with the 1 directly over it. It is
far better to group it with the 1 in the lower left corner. This yields the following
terms:

Group (0, 4, 1, 5): A ·C
Group (15, 11): A ·C ·D
Group (2, 10): B ·C ·D
Complete expression:

Q = (A ·C)+ (A ·C ·D)+ (B ·C ·D)

Instead of the original eight terms each with four variables, only one term with
two and two terms with three variables remain after the reduction.

The following steps are taken to arrive at the reduced products of sums:

• Adjacent cells with 0 as an entry are grouped together. The group size can only be in
powers of two, that is, 1, 2, 4 or 8 cells. The largest possible groupings should be made.

• All cells must be in at least one group. Each cell can, however, be in more than one
group.

• An Or-ed term should be noted for each group, that represents only the variables con-
tained within the group. For groups with two cells one variable can be discarded, and
for groups with four cells two, etc.

• The resultant terms are And-ed.

Example: The reduced product of sums of the logic variableR is found using the following
truth table (Table 8.4).

Table 8.4. Truth table

A B C D R

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 1

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

R A+B A+B A+B A+B

C+D 0 0 4 12 0 8

C+D
1 0 5 0 13 9

C+D
3 7 0 15 11

C+D 0 2 6 14 0 10

These results are shown in the Karnaugh map alongside. For clarity only the
cells containing a 0 have been represented in the map. The four cells in the
corners can form a group together by crossing over the edges. Two cells in the
middle form a horizontal group. A further vertical group can be formed in the
middle right. This yields the following terms:
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Group (0, 8, 2, 10): B +D

Group (5, 13): B +C+D

Group (13, 15): A+B +C

The overall expression is then:

R = (B +D) · (B +C+D) · (A+B +C)

Instead of the original seven terms each with four variables, only one term with
two and two terms with three variables remain after the reduction.

Consideration of Undefined States

Occasionally, the state of the output variables for a certain combination of input variables
is not defined or is not relevant. Such states are denoted by an ×. The states are said to be
undefined or don’t care states. In the Karnaugh map undefined states can be organised into
groups at will. The grouping is chosen for the best simplification of the output expression.

Example: The reduced form of the logic variable S is found using the following truth
table (Table 8.5).

Table 8.5. Truth table

A B C D S

0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 ×
4 0 1 0 0 ×
5 0 1 0 1 ×
6 0 1 1 0 ×
7 0 1 1 1 ×
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 ×
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 ×

S A ·B A ·B A ·B A ·B
C ·D 1 0 × 4 1 12 8

C ·D 1 1 × 5 13 9

C ·D × 3 × 7 × 15 × 11

C ·D 2 × 6 1 14 10

S A+B A+B A+B A+B

C+D
0 × 4 12 0 8

C+D
1 × 5 0 13 0 9

C+D × 3 × 7 × 15 × 11

C+D 0 2 × 6 14 0 10

To calculate the sum of products the undefined states in the first and second
rows should be defined as 1. This yields a group of four in the upper left corner
of the Karnaugh map. Equally, the two 1 s in the third column can be grouped
together by traversing the table boundary. This yields the following terms:

S1 = (A ·C)+ (A ·B ·D)

For the product of sums the 0 s in the last column can be grouped together
with the undefined states in the third row to form a group of four.

The 0 in lower left corner can be made into another group of four by combining
with the three undefined states. The 0 in the third column has not yet been
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grouped. The undefined states to the left and below allow it to form another
group of four. This yields the following terms:

S2 = (A+B) · (A+D) · (B +C)

Both functions S1 and S2 correctly represent the truth table, although they lead
to different logic expressions.

8.1.7.2 The Quine–McCluskey Technique

The Quine–McCluskey minimisation technique proceeds from the sum of products repre-
sentation of the function to be minimised. For the sum of products, the product terms in
which each variable appears are known as minterms.

Example: The first term of the logic variable Q = ABCD +ABD is a minterm, but the
second is not, as it does not contain the variable C.

Note: Sum terms in which each variable appears once are known as maxterms.

A product term P is called implicant of Q if for P = 1, Q = 1 holds.

Example: The minterm ABCD is an implicant of Q, since if ABCD = 1, then also
Q = 1. The same is true for the product term ABD.

A prime implicant is a term that is no longer an implicant if one of the variables is omitted.

Example: For Q = ABCD+ABC+A BCD the second term is a prime implicant. The
first and third terms are not prime implicants, as for BCD = 1 it follows that
Q = 1.

The Quine–McCluskey technique works in two steps:

1. Define the prime implicants;

2. Define the minimum overlap.

Defining the Prime Implicants

For the term

Q = ABCD + ABCD + ABCD + ABC D + ABC D + AB C D

the prime implicants should be defined. To that end all of the product terms are entered
into a list. For each variable the value entered is the one required to make it equal to 1.

ABCD ABCD ABCD

(1) 1 1 0 1 * (14) 1 1 0 - (2435) - 1 - 0
(2) 1 1 1 0 * (23) - 1 1 0 * (2345) - 1 - 0
(3) 0 1 1 0 * (24) 1 1 - 0 *
(4) 1 1 0 0 * (35) 0 1 - 0 *
(5) 0 1 0 0 * (45) - 1 0 0 *
(6) 1 0 0 0 * (46) 1 - 0 0
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Terms that differ only in the value of one variable are said to be adjacent. This is true,
for example for the terms in the first and fourth row (1101 and 1100). The related product
terms are ABCD and ABC D. Such terms can be shortened by the variable that appears
as its own complement in the expressions.

ABCD + ABC D = ABC(D +D) = ABC

Such adjacent terms are searched for in each table entry. These are marked (in this example
by a star), and the shortened form is entered into a new table (the second column). The
variable to be removed is marked by a dash. The numbers in parentheses refer to rows in
the previous column that gave rise to the shortening.

In the new table the search for similar terms is resumed. The process ends when no further
terms can be shortened. Identical terms, like the last two in the third column, are only taken
into consideration once.

All terms that have no marking in a table could not be shortened, and are therefore prime
entries. In the example shown, these are the terms (14), (46) and (2435). The prime entries
for the function Q are therefore

ABC, AC D and BD

Some of the prime entries possibly still contain redundancies. These can be minimised as
follows.

Defining the Minimum Overlap

All of the product terms of the original expression that was to be minimised are entered
into a table. Then those prime implicants are marked for which the product terms in the row
are implicants. (Or all possible prime implicants that are fully contained within a product
term mean that that term must be marked.)

ABC AC D BD

ABCD ×
ABCD ×
ABCD ×
ABC D × × ×
ABC D ×
AB C D ×

Starting with the longest term, the prime implicants are discard as long as at least one X
remains in each row.

In the example, no prime implicant contains redundancy, so the minimum expression is
given by

Q = ABC + AC D + BD

Computer programmes can easily carry out the searching, ordering and marking of the
tables and can also handle larger numbers of variables.
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8.1.8 Synthesis of Combinational Circuits

A combinational circuit is a logic circuit whose output variable depends only on the
values of the applied inputs. Combinational circuits have no internal memory. Opposite:
sequential circuit (Sect. 8.3).

The product of sums and sum of products expressions make it possible to build combina-
tional circuits using And, Or and inverter gates. And and Or gates as well as inverters
can also be represented byNand or Nor gates (Fig. 8.21). Each combinational circuit can
be realised using various combinations of Nand or Nor gates.

Nand Nor

And

Or

Inverter

Fig. 8.21. Representation of the basic logic functions using only Nand or Nor gates

8.1.8.1 Implementation Using only Nand Gates

Fig. 8.22. Implementation of a combinational circuit using only Nand gates

Starting with the sum of products expression, bothAnd as well asOr gates can be replaced
byNand gates (Fig. 8.22). The equivalence of both circuits can be seen from DeMorgan’s
rule:

(A ·B)+ (C ·D) = A ·B ·C ·D

8.1.8.2 Implementation Using only Nor Gates

Starting with the products of sums, both And as well asOr gates can be replaced by Nors
(Fig. 8.23). The equivalence of both circuits can be seen from DeMorgan’s rule:

(A+B) · (C+D) = A+B +C+D

Note: There are two alternatives to this approach: using multiplexers (Sect. 8.4.2) or
using programmable logic devices (Sect. 8.6.5).
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Fig. 8.23. Implementation of a combinational circuit using only Nor gates

8.2 Electronic Realisation of Logic Circuits

8.2.1 Electrical Specification

8.2.1.1 Voltage Levels

Logic states are represented by voltage levels in digital circuits. There is a defined voltage
range for each logic level.

Logic high voltage level range (H): Range closer to +∞
Logic low voltage level range (L): Range closer to −∞

For any logic family the voltage level ranges are standardised. The actual output voltage
of a logic gate depends on the loading, on the temperature and on the supply voltage.
Moreover, the output voltage level may vary from device to device, for the same operating
conditions (sample variations).Typical output voltage levels specify the midvalues of the
defined range of voltages. Voltage values in between the ranges for H and L do occur for
a short time in logic gates, but they are undefined states.

The mapping of voltage level ranges to logic values is an arbitrary process.

Positive logic: H =̂ 1, L =̂0
Negative logic: L =̂ 1, H =̂ 0

Unless otherwise specified, positive logic is presumed to apply. It is by far the most
commonly employed.

8.2.1.2 Transfer Characteristic

The transfer characteristic shows the relationship between the output and input voltage of
a logic gate. Figure 8.24 shows the transfer characteristic of an inverter. The ideal shape
is in the form of a step. The actual shape of the transfer characteristic depends on the
temperature.

Any circuit must be suitably designed, in order to connect the outputs of logic gates directly
to the inputs of the following logic gates. This is guaranteed within any given logic family.

The threshold voltage is the input voltage for which both input and output voltages are
the same. It is at the intersection of the transfer characteristic with the straight line of slope
1 emanating from the origin (note the different scales on the axes).
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VO: output voltage
VI: input voltage
Vth: threshold voltage

Fig. 8.24. Transfer characteristic of an inverter

8.2.1.3 Loading

For any logic family the loading data can be used to estimate the number of inputs in
subsequent logic gates a given logic-circuit output can drive.

Fan-in: is a measure of the input current expressed in multiples of the standard input
current of that logic family.

Fan-out: number of standard inputs a given output is able to drive.

• The sum of the fan-ins of all gate inputs driven from the the same output must not exceed
its stated fan-out.

Note: Fan-outs may be different for logic high and low voltage levels. The smaller of
the two values must be observed for the logic design.

8.2.1.4 Noise Margin

For serially connected logic gates it must be ensured that the output signal of the first gate
is recognised correctly by the second gate. Manufacturers give the so-called guaranteed
static noise margin for their gates, which hold even for the worst operating conditions
(temperature, load, supply voltage).

• The static noise margin of the logic high state is the difference between the lowest
output voltage VOHmin and the lowest allowable input voltage VIHmin of the following
gates that will still be accepted as a logic high voltage level.

• The static noise margin of the logic low state is the difference between the highest
output voltage VOLmax and the highest allowable input voltage VILmax of the following
gates that will still be accepted as a logic low voltage level.

The noise margin gives the maximum value a noise voltage may have without causing an
error to occur at the gates (see Fig. 8.25). In the example these are 0.7 V for the H state and
0.4 V for the L state. This holds for noise signals that last longer than the gates’propagation
delay (tens of nanoseconds).
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VO: output voltage
VOHmin: minimum output voltage

in the H state
VOLmax: maximum output voltage

in the L state
VI: input voltage
VIHmin: minimum input voltage

for the H state
VILmax: maximum input voltage

for the L state

Fig. 8.25. Definition of the noise margin (sample data are examples from TTL-LS Gates)

The behaviour for very short spikes is described by the dynamic noise margin. This
depends on the spike duration. For very short spikes a higher voltage is allowed before the
device will produce an error.

The typical noise margin is the difference between typical output voltage and the threshold
voltage Vth.

8.2.1.5 Propagation Delay Time

The propagation delay time is the time difference between the edges of the input signal
and the resulting change in the output signal. Edges are defined by input or output voltage
crossing the threshold voltage, respectively (Fig. 8.26).

Vth: threshold voltage
tPHL: propagation delay

time
for negative edges

tPLH: propagation delay
time
for positive edges

Fig. 8.26. Definition of the propagation delay time

• For a state change from H to L the propagation delay time tPHL applies.

• For a state change from L to H the propagation delay time tPLH applies.

8.2.1.6 Rise Times

Transition times are defined as follows:

Rise time: tLH for a (positive) logic low–high transition

Fall time: tHL for a (negative) logic high–low transition
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• The time between 10% and 90% of the steady-state value is measured.

Note: In some data sheets other reference points are used.

Note: Rise and fall times for a given logic element can differ significantly. For normal
gates they lie in the range of a few nanoseconds. This is why the oscilloscope
rise time cannot be neglected when measuring their rise time. The measured
time is given by

tmeas =
√

t2LH + t2oscil

and must be corrected accordingly.

• Rise and fall times depend on the load. In particular, the load capacitance is important,
because it must be discharged by the output current.

8.2.1.7 Power Loss

The power loss in a digital logic circuit is consists of a static component, caused by the
quiescent currents, and a dynamic component, which depends on the discharge currents
of the internal and external capacitances.

The power loss depends therefore on the load and the frequency. It also depends funda-
mentally on the fabrication process. See also the sections from 8.2.3.

8.2.1.8 Minimum Slew Rate

Logic circuit inputs require input signals with steep slopes, otherwise the output signals
will be unstable. The minimum required slew rate is usually given in the data sheets in
V/s.

Output signals from digital logic circuits have the minimum slew rate for the permissible
load. External signals with slow transits can be a problem.Application of Schmitt triggers
solve this problem (see Sect. 8.2.6.4).

8.2.1.9 Integration

Logic gates are nowadays almost exclusively realised by integrated circuits.The integration
results in a space savings as well as a reduction of propagation times, power requirements
and cost. However, integrated logic circuits for normal use are only produced in standard-
ised function elements. For the design of logic circuits the availability of the desired logic
combination must always be checked.

Integrated logic circuits are realised in two completely different processes. This results in
two logic families, the TTL and the CMOS families. The former is based on the application
of bipolar technology,;the latter on the integrated field effect transistor technology.

8.2.2 Overview: Notation in Data Sheets

fmax (maximum clock frequency): Maximum clock frequency at the input of a bistable
circuit for which the operation of the device according to the data sheet is still
guaranteed.
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Note: If such circuits are employed with feedback, then the frequency can be
lower. Observe comments in data sheets.

ICC (supply current): The average current drawn from the voltage supply by the circuit.

ICCPD (power-down supply current): The current drawn by the circuit when in power-down
mode (caused by a power-down signal).

IIH (high-level input current): The current flowing into the input of a circuit when a
logic high voltage level has been applied.

IIL (low-level input current): The current flowing into the input of a circuit when a
logic low voltage level has been applied.

IOH (high-level output current): The current flowing into the output of a circuit for an
output logic high voltage level.

Note: This value is usually negative, as the current flows from the output.

IOL (low-level output current): The current flowing into the output of a circuit for an
output logic low voltage level.

IOS (short-circuit output current): The current flowing into the output of a circuit when
the output is connected with ground. This is usually given for the output voltage
level H.

Note: This value is negative.

IOZH (high-impedance state output current with high-level voltage applied): The maxi-
mum current that flows into the three-state output of a circuit, where the output is
in a high-impedance state, and an external logic high voltage level is applied at the
output.

IOZL (high-impedance state output current with low-level voltage applied): The maxi-
mum current that flows into the three-state output of a circuit, where the output is
in a high-impedance state, and an external logic low voltage level is applied at the
output.

Note: This value is negative.

VIH (high-level input voltage): The input voltage that corresponds to the voltage level
H. Mostly given as the minimum allowable applied voltage that the circuit element
will accept as a logic high voltage level.

VIL (low-level input voltage): The input voltage that corresponds to the logic low voltage
level. Mostly given as the maximum allowable applied voltage, that the circuit
element will accept as a logic low voltage level.

VOH (high-level output voltage): The output voltage that appears when the logic device
is excited so that a logic high voltage level appears at the output. Mostly given as
the minimum guaranteed value.

Note: VOH depends strongly on load and temperature.

VOL (low-level output voltage): The output voltage that appears when the logic device
is excited so that a logic low voltage level appears at the output. Mostly given as a
maximum guaranteed value.

Note: VOL depends strongly on load and temperature.

tdis (disable time):Valid for three-state outputs. This is the propagation delay measured
between reference points of the switch-off signal and the output signal, where the
output switches from a defined voltage level to a high-impedance state.
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Note: Sometimes there are differences between tPLZ and tPHZ depending on the
active output voltage level.

th (hold time): Minimum time necessary for a signal to be applied, to achieve the
desired reaction.

tw (pulse width): Time interval between the defined reference points on the first and
the second edges of an impulse.

tpd (propagation delay time): Propagation delay time of a logic element. Time between
the reference points of an input signal and of the resulting output signals.

Note: Sometimes there are differences between tpLH and tpHL depending on the
edges chosen.

tr (rise time): Time interval between the signal passing through 10% and 90% of its
steady state for a rising edge.

tf (fall time): Time interval between the signal passing through 90% and 10% of its
steady state for a falling edge.

tpxz see tdis for both logic high and low voltage level.

Table 8.6. Signal representation in data sheets

Signal Input Output

Must be constant Is constant

May change from high to
low

Changes from high to
low

May change from low to
high

Changes from low to
high

Either change is allowed Unpredictable state

—
Centreline represents the
high-impedance state
(for three-state outputs)

8.2.3 TTL Family

The transistor–transistor logic (TTL)devices are produced in different series.The following
holds for each of them:

• +5 V supply voltage;

• arbitrary connection of components because of compatible input and output signals;

• pin compatibility for devices of the same name even if they are different TTL series.

8.2.3.1 TTL Devices

The essential qualities of the different devices are given below and in Table 8.7 (in paren-
theses the notation is given for a four-Nand gate device):
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Fig. 8.27. Switching times and power dissipation of different TTL devices

Table 8.7. Electrical specifications for TTL devices

VCC = 5 V TTL devices
ϑ = 25◦C 74LS00 74ALS00 74F00
Input voltage VILmax 0.8 V 0.8 V 0.8 V

VIHmin 2.0 V 2.0 V 2.0 V
Output voltage VOLmax 0.5 V 0.5 V 0.5 V

VOHmin 2.7 V 2.7 V 2.7 V
Threshold voltage Vth 1.3 V 1.5 V 1.5 V
Fan-out 20 20 33
Output current IOLsink 8 mA 8 mA 20 mA
Propagation delay time typ./max. tPLH 9/15 ns 4 ns 4/5 ns

tPHL 10/15 ns 5 ns 3/4 ns
Rise time tLH 10 ns 5 ns 3 ns
Fall time tHL 6 ns 5 ns 3 ns
(for a 15 pF load)

Minimum slew rate 1V/s 5V/s
(of the input voltage )

Power dissipation
(per gate) 2 mW 1.2 mW 4 mW

Standard TTL series (7400). Historically the first device; very low-priced; was the in-
dustry standard for decades.

High-speed TTL series (74H00). Slightly faster than the standard series because lower
resistance in the layout; sales are no longer significant.

Low-power TTL series (74L00). Much slower than the standard series; lower power dis-
sipation; sales are no longer significant.

Schottky TTL series (74S00). Insertion of Schottky transistors and diodes gave rise to
much shorter switching times; small number of different types.
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Low-power Schottky TTL series (74LS00). Insertion of Schottky transistors; lower
power dissipation; device with up to now the greatest number of different types; in-
dustry standard.

Advanced low-power Schottky TTL series (74ALS00). Shorter switching times than
the LS series; lower power dissipation; great number of different types; very complex
circuits for microprocessor applications can occasionally be found exclusively as ALS
types.

FAST series (74F00). Fast devices; only a few manufacturers.
Advanced Schottky TTL series (74AS00). Extremely short switching times between 1

and 2 ns, however, moderate power loss; can be used to replace high-speed ECL circuits.

High-speed CMOS series (74HC00). Not a TTL device, but this CMOS series is pin and
function compatible with the TTL series; for qualities and comparison see Sect. 8.2.4.

8.2.3.2 Basic TTL Gate Circuit

Fig. 8.28. Basic circuit of a TTL–Nand gate

The basic structure of one (of four) Nand gates in the 7400 device is shown in Fig. 8.28.
If one of the emitters (I1 or I2) is connected to ground, then the transistor Q1 is turned on.
This turns Q2 off, and Q4 is then also turned off. The base of Q3 is connected via R2 to the
supply voltage. Q3 is turned on. The output Q is connected to the logic H potential via R3,
Q3, D1. R3 (150–500 �) limits the current.

For a positive input voltage on I1 and I2 the current no longer flows through R1 and out
through the emitter, but rather flows over the Q2 base–emitter junction. Q2 turns on and
then turns Q4 on. Q4 bypasses the resistance R4, which provides feedback for Q2. This
rapidly forces the amplification of Q2 upwards. Q4 is completely on and can sink current
from the output Q.

The characteristic output stage with the three-semiconductor structure of Q3, D1, Q4 on
top of each other like the faces of a totem pole leads to the notation totem pole.

The basic structure of the TTL circuit has the following characteristics:

• For a logic low voltage level at the input, the driver circuit must sink current.

• For a logic high voltage level at the input, the driver circuit must source a small current.
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• The totem pole has a fairly high impedance for the logic high voltage level. The output
functions as a current source. The output current is limited by the resistor. The logic
high potential drops below the allowable limit if the output current is too large.

• The output stage has a low impedance for the logic low potential when it operates as a
current sink. The dynamic resistance of the lower output transistor and thermal loading
are the limits on this operation.

• The totem-pole configuration means that TTL outputs cannot be connected in parallel.
(For other output stages see Sect. 8.2.6.)

Note: Some manufacturers permit the parallel connection of the outputs of two
gates if the same logic signal is applied within the same device.

Fig. 8.29. Input and output currents for TTL gates; the values given apply to LS gates

A fan-out of 20 for logic high and logic low voltage levels can be calculated from the
values given.

8.2.4 CMOS Family

Complementary metal-oxide semiconductor (CMOS) devices are manufactured in differ-
ent series. The following holds for each of them:

• +5 V–15 V supply voltage (also 3 V–18 V);

• extremely low input currents;

• very small power dissipation in static operation and for low frequencies;

• output currents in the logic high and low states are equally large.

The essential qualities of the different series are (the notation for a four-Nand gate device
is given in parentheses):

CMOS series A (CD4011A). Historically the first device; has been superseded since then.
CMOS series B (CD4011B). Industry-standard; largest spectrum of different types; stan-

dardised, manufacturer-independent static specification data.
LOCMOS series (HEF4011B). Higher switching times than the CMOS series B; transfer

characteristic step-like.
High-speed CMOS series (74HC00). Pin and function compatible to the equivalently

numbered TTL devices; tenfold faster switching times and higher output currents than
the CMOS series B; for frequencies below 20MHz lower power dissipation than the LS
TTL series; differs from the TTL supply voltage 2 V–6 V.

High-speed CMOS series (74HCT00). Offshoot of the HC series with a more limited
input voltage range 4.5 V–5.5 V; the input side is TTL voltage level compatible.

Advanced high-speed CMOS series (74AC00 or 74ACT00). Even faster than the HC
series; very high output currents of 24 mA in the logic high and low states; input side is
TTL voltage level compatible.

The electrical specification data for the CMOS series, which are dependent on the supply
voltage, are given in Table 8.8.
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Table 8.8. Electrical specification for CMOS devices

ϑ = 25 ◦C CMOS device
HEF4011B 74HC00 74AC00

Supply voltage VCC 5V 10V 15V 4.5V

Input voltage VILmax 1.5 V 3 V 4 V 0.9 V 1.35 V

VIHmin 3.5 V 7 V 11 V 3.2 V 2.0 V

Output voltage VOLmax 50 mV 100 mV

(for IO � 1 A) VOHmin VCC − 50mV 4.9 V

Output current IOLmax 0.4 mA 1.1 mA 3.0 mA 20 mA 24 mA

Propagation delay time tPLH 35 ns 16 ns 13 ns 8 ns 5 ns

tPHL 16 ns 13 ns 12 ns 8 ns 4 ns

Rise/fall time tLH 25 ns 15 ns 11 ns 6 ns 1.5 ns

(with a 15 pF load)

Input current � 0.3 A 0.3 A 0.1 A

Propagation delay times and the output rise/fall times depend strongly on the load capac-
itance. For a load of 50 pF the times for the HEF series approximately double.

8.2.5 Comparison of TTL and CMOS

Because of the low input currents in the 74HC CMOS series, the number of gates that can
be connected is not defined by the resistive load. Themaximum allowable load capacitance
is much more of a limit (typically, 5 pF per gate input ).

Table 8.9. Fan-outs of TTL and CMOS devices

TTL devices CMOS devices
↓Input 74xx 74LSxx 74Sxx 74ALSxx 74Fxx 74HCxx 74ACxx

74xx 10 5 12 5 12 2 15

74LSxx 20 20 50 20 50 10 60

74Sxx 8 4 10 4 10 2 12

74ALSxx 20 20 50 20 50 20 120

74Fxx 20 13 33 13 33 6 40

74HCxx > 50

74ACxx >50

8.2.5.1 Other Logic Families

Other logic families apart from the successful CMOS and TTL logic families are also in
use:

ECL (emitter-coupled logic): Achieves switching times below 1 ns, as the transistors are
not operated as saturated switches; technical data: high-impedance differential-inputs,
low-impedance outputs; high power dissipation of about 50 mW per gate; ECL circuits
always offer Q and Q outputs; currents are not switched off, but are rerouted, so there
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Table 8.10. Comparison of TTL and CMOS data

LS–TTL CMOS
Switching speed 10 ns 40 ns (5 V) –

15 ns (15 V)

Power dissipation Up to about 3 MHz
constant, then rising

Linearly with fre-
quency; above 5 MHz
(at 5 V) higher than
LS–TTL

Fan-out 20 > 50
Output impedance 25 � (for low) 250 � (high and low)

Fig. 8.30. Power dissipation for TTL and CMOS devices

are lower noise voltages on the supply lines; operating voltage is −5.2 V, and very fast
circuits require an additional supply voltage of −2.0 V.

Application: Computers, high-speed signal processing.

LSL (low speed logic, with high noise immunity): Logic circuits with high immunity can
be realised by raising the voltage and increasing the switching times; the switching times
can be further increased by using external capacitors; internal Zener diodes at the input
lift the threshold voltage up to about 6 V; for a 12 V supply voltage the noise margin
amounts to 5 V; the switching times are 150 ns and more.

Application: Industrial control in noisy environments.

RTL (resistor–transistor logic): Predecessor of the TTL circuits, which was replaced by
DTL; a simplification was achieved using resistors; great limitations due to the influence
of adjacent gates.

DTL (diode–transistor logic): Predecessor of TTL; fan-in using diodes.
GaAs : This is not a new logic family, but rather a new kind of transistor manufacturing

technology using gallium-arsenide; very short switching times in the range of 10 ps
(=0.01 ns!); optoelectronic components are prepared using the same technology; the
development of a combined opto-electronic logic is anticipated (circuits with light or
current).
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8.2.6 Special Circuit Variations

8.2.6.1 Outputs with Open Collector

Fig. 8.31. Open collector-output and circuit symbol

Devices with open collector output connect the collector of the output transistor to the
output, without connecting it to the supply voltage via a transistor as in the totem-pole
output (Fig. 8.31). For CMOS circuits this implies an open drain output.

• An open-collector output must always be connected via a resistor to the positive supply
voltage.

Advantages:

• Open-collector outputs can be connected in parallel without causing problems (see also
Sect. 8.2.6.2).

• The load can be connected to a voltage that is higher than the supply voltage of the
logic device. The only limit is the maximum allowable breakdown voltage of the output
transistor.

8.2.6.2 Wired And/Or

A ‘wired And’ circuit is made by connecting together two outputs with open collectors
(Fig. 8.32). It is sufficient that one of the output transistors conducts for a logic low voltage
level to be present on the common output. The truth tables show the logic levels at the
collectors of the transistors that would be present, if each transistor were present alone:

Y X Q

Low Low Low
Low High Low
High Low Low
High High High

Y X Q

0 0 0
0 1 0
1 0 0
1 1 1

Y X Q

1 1 1
1 0 1
0 1 1
0 0 0

For positive logic the circuit behaves like a logicAnd gate (middle table), and for negative
logic like an Or gate (right table). Hence the notation wired And or Or.

In this manner several outputs can be connected together creating a bus.

To make sure valid logic levels appear during operation, the common collector (pull-up)
resistor RC must be suitably selected (Fig. 8.33).
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Fig. 8.32. Principle of a wired-And-circuit and related circuit symbol

For a logic high voltage level the currents IQH the of the output transistors and the input
currents IIH flow through the resistor. It must be sufficiently small so that the output volt-
age level does not drop below the allowable logic high voltage input level of subsequent
circuits.

For a logic low voltage level in the worst case only one transistor is switched on. The
resistance must be at least large enough so that the maximum collector current IOLmax is
not exceeded. In addition, the input currents IIL of the connected inputs flow through it.

Fig. 8.33. Selection of the size of the pull-up resistor

Rmax = VCC − 2.4 V

K · IQH +N · IIH K: Number of outputs connected
in parallel

Rmin = VCC − 0.4 V

IOLmax −N · |IIL| N : Number of inputs the paral-
lel connected in parallel (each
fan-in = 1)

Note: In practice the smallest allowable value is chosen, to achieve the maximum
switching speed.

Example: For the 74LS TTL family the output leakage current amounts to
IQH < 250 A, the input current |IIL| < 0.4 mA per input and the maximum
collector current IOLmax = 8 mA.

For LS–TTL: RC = 5 V− 0.4 V

8 mA −N · 0.4 mA
= 4.6 V

(20−N) · 0.4 mA
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8.2.6.3 Tri-State Outputs

In a circuit with tri-state∗ output both transistors of the final push–pull stage can be
switched into the high-impedance state by an enable signal. Such devices are suitable for
bus systems (Fig. 8.34). In the high-impedance state the device acts as if it were not present.

• The three output states are denoted by H, L and Z.

Fig. 8.34. Connection of several tri-state devices to a bus

8.2.6.4 Schmitt Trigger Inputs

Devices with Schmitt trigger inputs have two different threshold voltages, depending on
whether the output state is high or low. The transfer characteristic of a Schmitt trigger is
therefore different for turning on from turning off.

Fig. 8.35. Transfer characteristic of a Schmitt trigger; circuit symbol of gates with Schmitt trigger inputs

The difference between turn-on and turn-off is known as hysteresis (Fig. 8.35). For TTL
circuits this typically amounts to about 0.8V, for CMOS circuits it depends on the applied
voltage:
VH = 0.27 · VCC − 0.55 V

Application:

• Inputswith very slowedges can be usedwith theSchmitt trigger,which leads to reduction
of transition time.

• In conjunction with RC gates, they can be used for pulse stretching or to build an
oscillator (Fig. 8.36).

∗ The notation tri-state was originally a trade name. It is more widely used than the notation three-state output
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t0 ≈ tp + 0.5 · RC for TTL

Fig. 8.36. Pulse stretching using Schmitt trigger gates; the falling edges are delayed

8.3 Combinational Circuits and Sequential Logic
• A combinational circuit is a logic circuit whose output states only depend on the signal

state applied at its inputs. This is known as combinational logic.

• A sequential circuit employs internal memory. The output states depend not only on
the present input states but also on previous states. This is known as sequential logic.

8.3.1 Dependency Notation

The dependency notation is based on the DIN 40 900 Norm (Part 12). It gives a represen-
tation of the effects of external signals in complex digital circuits (Fig. 8.37).A distinction
is made between controlling and controlled connections. The following rules apply:

• Each input is labelled by an identifying symbol. This is noted within the circuit symbols.

• Inputs affecting other inputs are identified by a letter that denotes the kind of influences.
The identifying symbol of the affected input will also be denoted.

The dependency notation is different for the following cases (cited from the DIN 40 900)
and is summarised in Table 8.11:

G-dependency: This represents an And gate with its dependent connections. A Gx-input
in state 0 internally drives the connections controlled by it to 0, otherwise they remain
unchanged.

V-dependency: This represents an Or gate with its dependent connections. A Vx-input
in state 1 internally drives the connections controlled by it to 1, otherwise they remain
unchanged.

N-dependency: This represents Xor gate with its dependent connections. A controllable
inversion is thereby realised. A Nx-connection in state 1 inverts the controlled connec-
tions. Otherwise it leaves its state unaffected.

Z-dependency: This function acts like an internal connection. Z-dependent connections
copy their logic value. Z-dependency often is combined with other dependencies.

C-dependency: This realises a control function. A Cx-connection in state 0 causes all
dependent connections to be ineffective. Else it can exercise its intended function.

S-dependency: Connections that are dependent on an Sx-input assume the state that they
would assume for the combination of S = 1, R = 0. This happens independently of the
actual state at the R-input. In state 0 the controlling connection is ineffective.
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a b c d

0 0 c−1 c−1

0 1 0 1
1 0 1 0
1 1 ? ?

a b c d

0 0 c−1 c−1

0 1 0 1
1 0 1 0
1 1 0 1

a b c d

0 0 c−1 c−1

0 1 0 1
1 0 1 0
1 1 1 1

c−1: previous state is stored ?: undefined state

Fig. 8.37. Explanation of the dependency notation

R-dependency: Connections that are dependent on an Rx-input assume the state that they
would assume for the combination of R = 1, S = 0. This happens independently of the
actual state at the S-input. In state 0 the controlling connection is ineffective.

EN-dependency: This describes an enable dependency (enable). EN-controlled inputs
become only effective when they are in the state 1. The EN-dependency can often be
found for open-collector and tri-state outputs. The outputs are set to the high-impedance
state by the 0 state of the controlling inputs.

A-dependency: This denotes the choice of an address, in particular for memory. The
controlling inputs are weighted to the power of 2. The Ax-inputs have the same effect
as an enable signal on the resulting address.

M-dependency: This denotes a switching in different operating conditions (modes), e.g.
up/down counting.

T-dependency: Tx-controlled connections change their state as soon as the controlling
input has the value 1.

CT-dependency: Denotes that for a certain counter state or register contents an action
will be carried out, e.g. a carry signal.
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8.3.1.1 Overview: Dependency Notation

Table 8.11. Dependency notation

Symbol Dependency Action for 1/0
A Address Address selected/not selected
C Clock, control Allows/inhibits action
CT Contents Permitted action/inputs blocked
EN Enable Permitted action/outputs high impedance
G And Unaltered state/state = 0
M Mode Mode selected/not selected
N Controlled inversion Inverted state/noninverted state
R Reset Reaction as for R = 1, S = 0/no reaction
S Set Reaction as for S = 1, R = 0/no reaction
T Toggle State changes/stays the same
V Or State = 1/unaltered state
Z Connection State = 1/state = 0

The notation ‘action’ means that controlled inputs have their normally defined effect on
the function of the circuit elements and that controlled outputs assume the internal logic
state that is given by the function of the circuit elements.

8.3.2 Circuit Symbols for Combinational and Sequential Logic

Figure 8.38 shows some examples of circuits illustrating the the use of the dependency
notation. The first example shows a buffer whose output signal can be inverted by choice.
Multiple dependencies can be combined, as can be seen in the second example. The logic
sequence is given by the numbers on the affected connection. The third example shows a
bidirectional buffer whose tri-state outputs can be driven into the high-impedance state,
depending on the state of the inputs c. Thereby the direction of data transmission is defined.

A 2-to-1-multiplexer is shown in the next example. The variable c is fed into the control
block and selects, through the And gate, which of the inputs to connect to the output.
This is an additional example for the notation that the controlling signal influences the
connection inverted (1).

A ROM with 32 × 4-bit memory capacity is shown in the following example. The five
address lines a0 . . . a4 select the addresses 0 to 31. The four outputs of the ROM are
controlled by an enable input.

The last example shows a counter that counts from 0 to 7. The edge-triggered clock input
influences the counter state, whose binary value in each position is entered in parentheses.
The output in the upper right will be active synchronous to the clock only for counter state
7 (CT = 7).
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c = a � b

d = (c · a) � b

For c = 0 a: input b: output
For c = 1 a: output b: input

b = (a1 · c)+ (a2 · c)

Fig. 8.38. Examples of circuit symbols with the dependency notation

8.4 Examples of Combinational Circuits

8.4.1 1-to-n Decoder

A decoder activates exactly one of n possible outputs. The selection is made using control
signal inputs. The active state is often a logic low state. One-to-ten-decoders are also known
as BCD-decimal decoders.

Example: Truth table of a 1-to-4 decoder (Fig. 8.39):

Application: Code conversion, selection of memory elements in microprocessor sys-
tems.

8.4.2 Multiplexer and Demultiplexer

Multiplexers are electronically controlled selection circuits.
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A1 A0 Y0 Y1 Y2 Y3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Fig. 8.39. Truth table and circuit of a 1-to-4 decoder

Fig. 8.40. Multiplexer and demultiplexer

A multiplexer connects one of n input signals to a single output line. The selection is
carried out using an address (Fig. 8.40). Multiplexers are also known as data selectors.

The opposite operation holds for the demultiplexer, as it connects a signal from a single
input to one of n outputs using an address.

The demultiplexer follows from the 1-to-n decoder. The addressed output does not go high,
but rather passes on the voltage level of the input signal.

• Multiplexers are also suitable for realising arbitrary logic functions.

Example: The circuit of a logic function with four input variables is to be found. The logic
function is described in a truth table. The voltage level of the input variables
is fed to the four address lines of a multiplexer with 16 inputs. Each of the 16
inputs is fixed high or low, depending on the truth table. Any logic function
with four variables can be realised in this way.
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Fig. 8.41. Circuit of a demultiplexer and its circuit symbol

8.4.2.1 Overview of Circuits

Multiplexer

CMOS TTL Inputs

4515 74150 16

4512 74151 8

4539 74153 2×4

Demultiplexer
Outputs CMOS TTL

16 4514 74154
8 74HCT138 74138

2×4 74HCT139 74139

8.5 Latches and Flip-Flops

Flip-flops are bistable triggered switches. A flip-flop is said to be set when its output is
high, otherwise it is said to be reset.

8.5.1 Flip-Flop Applications

Flip-flops are used in:

• registers (see Sect. 8.7);

• shift registers (see Sect. 8.7);

• memories (see Sect. 8.6);

• counters (see Sect. 8.8);

• frequency dividers;

• state memories (see Sect. 8.9).
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8.5.2 SR Flip-Flop

Fig. 8.42. SR flip-flop and its circuit symbol

A feature of this kind of flip-flop are the cross-coupled inverting gates. An SR flip-flop,
shown in Fig. 8.42, is composed of Nor gates. The inputs are known as set or reset,
respectively. The truth table is given by:

S R Q Q

0 0 Q−1 Q−1

0 1 0 1

1 0 1 0

1 1 0 0

Q−1: previous state

The output state will not change if the inputs are S = 0, R = 0. For inputs of S = R = 1
the output is Q = Q = 0, which is logically impossible. By changing both input signals to
S = R = 0 the output state cannot be specified without other information being supplied.
This should therefore be avoided.

Fig. 8.43. SR-latch with Nand gates and its circuit symbol

A flip-flop that is set or reset by a logic low level is shown in Fig. 8.43. The truth table is
then:

S R Q Q

0 0 1 1

0 1 1 0

1 0 0 1

1 1 Q−1 Q−1

Q−1: previous state
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8.5.2.1 SR Flip-Flop with Clock Input

Fig. 8.44. SR flip-flop with clock input and its circuit symbol

The SR flip-flop can be expanded to become a gated SR flip-flop (Fig. 8.44). Only while
CLK is in the high state, can the output states be changed by the RS-inputs. In state
CLK = low the previous state remains as it was, independent of the RS inputs. The truth
table is:

CLK S R Q Q

1

1

1

1

0

0

1

1

0

1

0

1

Q−1

0

1

?

Q1

1

0

?

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
as SR flip-flop

0 X X Q−1 Q−1 memory state

8.5.3 D Flip-Flop

With a D flip-flop the illegal input combinations are avoided by arranging the circuit
elements suitably. The truth table is:

CLK D Q Q

0 X Q−1 Q−1 memory

1

1

0

1

0

1

1

0

}
transparent

Fig. 8.45. D flip-flop and its circuit symbol
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As long as the clock signal CLK = 1, the flip-flop is transparent for the data signal
D, i.e. the output signal follows the data signal. If the gate signal assumes the value 0,
then the present state of the data line is stored and is independent of further changes on D

(Fig. 8.45). The D flip-flop is also known as the D-latch.

8.5.4 Master–Slave Flip-Flop

The transparency of the D flip-flop is lost when two are connected in series. The flip-
flops are controlled by two complementary clock signals. This configuration is known
as a master–slave flip-flop. The Q′ output of the master follows the D-signal as long as
CLK = 1. The slave flip-flop remains locked. If the clock signal drops to 0, then the
master flip-flop locks up, and the subsequent following slave flip-flop copies the logic
state of the master’s Q output.

Fig. 8.46. Edge-triggered D flip-flop

Figure 8.47 shows a master–slave flip-flop, composed of two SR flip-flops in series.

Fig. 8.47. SR master–slave flip-flop

The two flip-flops are alternatively blocked by the complementary clock signal. When the
clock signal CLK = 1 the state of the first flip-flop is given by the RS input signals. If the
clock signal drops to 0, the master flip-flop is blocked and stores its state that was present
before the clock transition. The slave flip-flop receives the complement signal T = 1
and thus becomes transparent. The state of the first flip-flop appears at the output. This
master–slave flip-flop is not transparent at any moment. Input states of R = S = 1 cause
undefined output states as for the simple SR flip-flop.
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8.5.5 JK Flip-Flop

Fig. 8.48. JK master–slave flip-flop

Undefinedoutput states are avoidedby the JKflip-flopby coupling back the complementary
output states Q and Q. The flip-flop inputs are preparatory inputs and are denoted by
J and K . The information read in on the positive edges appears at the output only on the
following negative edges. This is known as delayed outputs. They are denoted by ¬ at
the output. The truth table for an applied clock signal CLK = 010 is shown in Fig. 8.49:

J K Q

0 0 Q−1

0 1 0
1 0 1
1 1 Q−1

Fig. 8.49. Truth table of the JK flip-flop and circuit as a binary divider

The states J/K = 0/1 and J/K = 1/0 set the flip-flop to the respective state of the
J -input synchronously with the negative edge of the clock signal.

A special case applies for J = K = 1. The JK flip-flop inverts its previous state. The
flip-flop operates as a frequency divider or scaler (Fig. 8.49). This is also known as a
toggle flip-flop.

Most flip-flops have additional asynchronous set or reset inputs. These have priority over
the JK inputs.

Note: As long as the clock CLK = 1, the states at the JK inputs may not change. For
flip-flops with JK data lockout this limitation is not valid.

8.5.6 Flip-Flop Triggering

Different kinds of triggering are used with flip-flops.

Unclocked flip-flops: Their state depends only on the set/reset inputs.
Clocked flip-flops: The actual time when the information is passed on is defined by a

clock signal.
Level-triggered flip-flops: The information transfer is defined by the voltage level of the

control signal.
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Edge-triggered flip-flops: The information transfer is defined by the state transition of
the control signal.

8.5.7 Notation for Flip-Flop Circuit Symbols

The circuit symbols denoted by DIN 40 900 (Part 12) are as follows:

Dynamic input: The (transient) internal 1-state corresponds to the transition
from the external 0-state to the 1-state. Otherwise the internal logic state is 0.

Dynamic input with inversion: The (transient) internal 1-state corresponds to
the transition from the external 1-state to the 0-state. Otherwise the internal
logic state is 0.

Dynamic input with polarity indicator: The (transient) internal 1-state corre-
sponds to the transition from the external high state to the low state. Otherwise
the internal logic state is 0.

Delayed output: The state change at this output is postponed until the triggering
signal returns to its original state.

Note: The internal logic state of inputs affecting the output states must not
change as long as the input causing the change is still in the internal
1-state.

D-input: The internal logic state of the D-input is stored by the element.

Note: The internal logic state of this input is always dependent on a gating
input or output.

J-input: If this input assumes the internal state 1, a 1 is stored in the element.
In the internal state 0 it has no effect on the element.

K-input: If this input assumes the internal state 1, a 0 is stored in the element.
In the internal state 0 it has no effect on the element.

Note: The combination J = K = 1 causes a change of the internal logic
state into its complementary state.

R-input (reset): If this input assumes the internal state 1, a 1 is stored in the
element. In the internal state 0 it has no effect on the element.

S-input (set): If this input assumes the internal state 1, a 0 is stored in the
element. In the internal state 0 it has no effect on the element.

Note: The effect of the combination R = S = 1 is not defined by the
symbol.

T-input (toggle): If this input assumes the internal state 1, the internal state of
the output changes to its complementary state. In the internal state 0 it has no
effect on the element.
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8.5.8 Overview: Flip-Flops

The most popular flip-flop types are listed in Table 8.12:

Table 8.12. Types of flip-flops

Circuit symbol Flip-flop Triggering

T flip-flop Edge-triggered,
clocked

Not clocked,
level-triggered

SR flip-flop Clocked,
one-level triggered

Clocked,
edge-triggered

JK flip-flop

Clocked,
two-level triggered

Clocked,
two-edge triggered

D flip-flop

Clocked,
one-level triggered

Clocked,
edge-triggered

8.5.9 Overview: Edge-Triggered Flip-Flops

Edge-triggered flip-flops make the design of sequential circuits very clear and therefore
are also frequently used in programmable logic devices (PLD). Figure 8.50 shows the
waveform diagram for the four types of edge-triggered flip-flops. All flip-flops shown are
positive edge-triggered.

The SR flip-flop is set by the positive edges of the clock signal if the set input is high.
Repeated set levels do not change the output state. The flip-flop is reset if the reset input
is high at the time of the positive clock edge. R = S = 1 at the time of the positive clock
edge leads to an undefined state. Otherwise the combination is allowed.

The D flip-flop assumes the value at the data input with the positive clock edge. The
sloped edges in the waveform diagram indicate that the precise timing of the transients is
irrelevant for the circuit’s function.

TheT flip-flopdivides the clock signal by 2. For an approximately constant clock frequency
this is known as a frequency divider.
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Fig. 8.50. Waveform diagram of the four edge-triggered flip-flop types

For the edge-triggered JK flip-flop the output signals depend on the asynchronous inputs
J and K. For the combination J = K = 1, the flip-flop operates as a T flip-flop, and for
the combination J = K = 0 it stores the previous state.

Flip-flops are storage elements. The truth table descriptions must therefore take into ac-
count the state before the triggering clock edge arrived. This is denoted by Q−1. The truth
table in sequential logic leads to the flip-flop transition table. This is the synthesis table
required to define any output state transition from Q−1 to Q for a given input signal. The
output states after the relevant clock edge can be given as a function of the state before the
edges and other control signals. This is known as the characteristic expression for the
given logic element.
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8.5.10 Synthesis of Edge-Triggered Flip-Flops

When building a circuit using programmable logic devices (PLD), it is often necessary to
realise various edge-triggered flip-flops from simple logic elements.The following sections
show the necessary steps in a successful design.

SR Flip-Flop (Edge-Triggered)

As there can be several combinations of signals that can cause the same state transition
Q−1 → Q, the transition table can contain several entries in a single row.

• Characteristic expression: Q = S+ (R ·Q−1) = S + R ·Q−1.

The condition S ·R = 0 must be maintained to avoid the undefined state.

SR flip-flop
R S Q−1 Q

0 0 0 0
0 0 1 1
0 1 × 1
1 0 × 0
1 1 × ?

×: don’t care
? : undefined state

Synthesis table
Q−1 Q R S
0 0 0 0

1 0
0 1 0 1
1 0 1 0
1 1 0 0

0 1

Compact Form
Q−1 Q R S

0 0 × 0
0 1 0 1
1 0 1 0
1 1 0 ×

D Flip-Flop (Edge-Triggered)

D flip-flop
D Q−1 Q

0 0 0
0 1 0
1 0 1
1 1 1

Synthesis table
Q−1 Q D

0 0 0
0 1 1
1 0 0
1 1 1
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• Characteristic expression: Q = D

D flip-flop
Clear Preset D Q−1 Q

0 0 0 0 0
0 1 0
1 0 1
1 1 1

0 1 × × 1
1 0 × × 0
1 1 × × ?

×: don’t care
? : undefined state

Sometimes the preset and clear inputs govern the operation of these flip-flops. They have
priority over the data inputs. Asynchronous preset and clear inputs operate immediately
on the output signal, synchronous only at the next relevant clock edge.

T Flip-Flop (Edge-Triggered)

A T flip-flop with preset and clear inputs has the following truth table:

T flip-flop
Clear Preset Q−1 Q

0 0 0 1
0 0 1 0
0 1 × 1
1 0 × 0
1 1 × ?

×: don’t care
? : undefined state

Synthesis table

Q−1 Q Clr Pre

0 0 1 0
0 1 0 0

0 1
1 0 0 0

1 0
1 1 0 1

Compact Form

Q−1 Q Clear Preset

0 0 1 0
0 1 0 x

1 0 × 0
1 1 0 1

• Characteristic expression:

Q = (Q−1 ·Clear)+ Preset = Q−1 · Clear + Preset

with the condition that Clear · Preset = 0
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JK Flip-Flop (Edge-Triggered)

JK flip-flop
J K Q−1 Q

0 0 0 0
0 0 1 1
0 1 × 0
1 0 × 1
1 1 0 1
1 1 1 0

×: don’t care

By including the preset and clear inputs the transition table can be expanded to:

JK flip-flop
Clear Preset J K Q−1 Q

0 0 0 0 0 0
0 0 1 1
0 1 × 0
1 0 × 1
1 1 0 1
1 1 1 0

0 1 × × × 1
1 0 × × × 0
1 1 × × × ?

×: don’t care
? : undefined state

Synthesis table
Q−1 Q J K

0 0 0 0
0 1

0 1 1 0
1 1

1 0 0 1
1 1

1 1 0 0
1 0

Compact Form
Q−1 Q J K

0 0 0 ×
0 1 1 ×
1 0 × 1
1 1 × 0

• Characteristic expression:

Q = (J ·Q−1)+ (K ·Q−1) = J ·Q−1 +K ·Q−1

8.5.11 Overview: Flip-Flop Circuits

TTL Function CMOS
74118 Six SR flip-flops 4042a

7474b Two D flip-flops, edge-triggered 4013
7475b Four D flip-flops 4042
7473b Two JK flip-flops
74107b Two JK flip-flops
7476b Two JK master–slave flip-flops 4027
74111 Two JK master–slave flip-flops

with data lockout
a Only four flip-flops.
bAlso available as 74HCxxx or 74HCTxxx
high-speed CMOS series.
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8.6 Memory

Strictly speaking, semiconductor memory can be divided into

• addressable memory;

• programmable logic devices.

Addressablememory are used for data, programs, etc.These arewhat is usuallymeantwhen
referring to memory. Programmable logic devices memorise logic function connections.
These are described in Sect. 8.6.5.

Addressable memory can be categorised according to its access points:

• ROM (read-only memory) permanent memory;

• RAM (random access memory) read–write memory.

ROM-storage is non-volatile, that is, the memory contents are not lost on removal of the
supply voltage. Also, the memory contents cannot be altered.

RAM-storage is volatile, that is, the memory contents are lost on removal of the supply
voltage. Also, the memory contents can be both written and read.

The notation random access memory (unconstrained memory access) is for historical
reasons. Bothmemory types can be accessed as the user chooses. Semiconductormemories
are organised in a way that the memory location is freely accessible for reading or writing
if its address has been specified correctly. The memory capacity is always to powers of 2,
as the addresses are encoded in binary.

• Bit-oriented memories store a single bit at each address.

• Word-oriented memories store 4, 8, 16 or 32 bits at each address.

8.6.1 Memory Construction

Memory elements are organised in matrix form. The address is divided internally into row
and column addresses. Each is decoded by a row or column decoder. The memory element
at the intersection of the selected row and column is selected by And-ing. It is connected
to the data bus. The R/W (read/write) signal selects whether the memory element is to be
written to or read from (Fig. 8.51).

In addition to the read/write signal R/W, a CS (chip select) signal is employed. This selects
the overall memory device. For CS = 0 the data output is in a high-impedance state. This
permits the use of several memory elements on a bus system.

The CS and R/W gate signals generate a write enable WE. This enables the D flip-flop in
the addressed memory location (Fig. 8.52). For memories that store entire words several of
these memory locations are situated in parallel. For any given address an entire memory
cell can be accessed. For permanent memory (ROM) the R/W line can be eliminated. The
data lines Din and Dout are connected internally, the R/W signal switches the output gates
into a high-impedance state in the write mode.
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Fig. 8.51. Principle of construction of a memory element

Fig. 8.52. Equivalent circuit for a memory element

8.6.2 Memory Access

All signals must meet certain conditions for proper memory access.

Reading:

• A certain amount of time tAA must pass after applying the address, because of the
internal propagation delays before the data is valid at the output. This is the address
access time tAA or simply access time.
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Writing:

• A certain amount of time tAS must pass after applying the address, before the write
enable R/W goes low (address setup time).

• The write enable R/W must stay low for a minimum amount of time tWp (write pulse
width).

• The data is read in at the positive edges of the R/W write-enable signal. Also the data
must be applied in a stable manner for a minimum amount of time tDW (data valid to
end of write).

• After the change of the R/W write-enable signal the data and address lines must
maintain their values for a minimum amount of time tH (hold time).

Fig. 8.53. Waveform diagram of a read and a write operation

The minimum total time for a write operation is

tW = tAS + tWp + tH

where tW is the write cycle time.

8.6.3 Static and Dynamic RAMs

• Static RAMsmaintain theirmemory contents in the presence of a supply voltagewithout
requiring extra external circuitry (SRAM).

• Dynamic RAMs have to be periodically refreshed, or else the memory contents are lost
(DRAM).

In static RAM each memory element is realised using a flip-flop. For CMOS RAM six
transistors are required per bit.
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In the effort to use the smallest chip area per bit possible, memory elements have been
realised using a single MOSFET transistor. The memorisation is achieved using charge
packets in the transistor’s gate–source capacitor. The charge is held for a relatively short
time, so the memory must be refreshed every few milliseconds.

During a read access the entire memory row is refreshed. If the application does not
automatically access each row in the memory to refresh it, this must be realised with
separate circuitry. It is worth the extra outlay as DRAM have roughly 4 times higher
integration density. For higher memory capacity many address lines are required. This
implies a large housing for the IC. Column and row addresses are multiplexed to reduce
the number of external pins, as shown in Fig. 8.54. The address conversion occurs in the
internal interim memory using the column address strobe (CAS) and row address strobe
(RAS) signals.

Fig. 8.54. Address multiplexing and interim memories in a 1 MBit DRAM

8.6.3.1 Variations of RAM

Dynamic RAM controller: Logic taking care of automatic refreshing of DRAMmemory
contents.

Pseudostatic RAMs: Dynamic RAM where the refresh logic is already integrated.

Multiport RAM: Frequent design where one port maybe written to, while the other can
only be read.

Example: Video memory: each port has separate address and data lines.

Arbiter: Priority logic that resolves access conflicts inmultiport memories. In small mem-
ory devices this is integrated in the multiport memory chip.

FIFO: (first in, first out) memory realising a buffer (Fig. 8.55). The memory is equipped
with input and output ports. Addressing is automatically performed internally. The data
are output in the order in which they were originally input. A FIFO uses two address
registers that point to the first and last entries in the buffer queue.Addressing is arranged
in cyclic fashion, hence the name ring memory.
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ECC memory: (error-correcting code) is memory that stores redundant bits for error con-
trol purposes. Individual bit errors can be detected and corrected (EDC error detection
and correction). Popular combinations of information/parity bits are 8/5, 16/6 and 32/7.

EDC controller: Logic circuit realising the ECC memory error detection and correction.

Fig. 8.55. Logic model of a FIFO memory

8.6.4 Read-Only Memory

Read-only memory (ROM) is read-only during normal operation. It is nonvolatile, i.e. the
memory contents remain intact even after removal of supply voltage. The basic structure
is a diode array. Diodes are located at the intersection of row and column conductors.
Actually, the memory contents are not realised by the presence of a diode, but by their
electrical connection to the column conductor (Fig. 8.56).

Fig. 8.56. Principle of memorisation of a bit in a ROM

There are different types of ROM:

• ROM (read-only memory): Data contents are burnt in during the last step of the man-
ufacturing process in the form of a metallisation mask (mask-programmable ROM).
The lead time is high. This is economical only for large production quantities.

• PROM (programmable read-only memory): Can be irreversibly programmed by the
user. A precisely specified overcurrent/overvoltage pulse stream either burns through
a link (fusible link) or p n junctions of the coupling elements are shorted (avalanche-
induced migration).

• EPROM (erasable programmable read-only memory): Can be completely erased by
the user using intensive exposure to ultraviolet light. Distinguishing feature: quartz
window on the top of the IC housing. Coupling elements are FETs with ‘floating gates’.
This creates a highly isolated capacitor whose charge, influenced by the FET’s threshold
voltage, represents the information storage. EPROMs are generally slower than PROMs.
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• EEPROM (electrically erasable read-only memory), also EAROM (electrically alter-
able read-only memory): Memory cells can be selectively electrically programmed and
erased. The total number of programme/erase cycles is limited to about 104. Because
of lower prices EEPROMs replace EPROMs.

EEPROMs are also combined with RAM (known as flash EEPROM) in a single device,
to gain the advantages of RAM (fast and frequent access) and of EEPROM (nonvolatile).

8.6.5 Programmable Logic Devices

Programmable logic devices (PLD) store logic connections. Their structure is oriented
along the normal representation of logic functions. Each has an array of And and Or
connections that can be programmed by the user to make or break, i.e. the user can modify
the array to achieve the desired function.

8.6.5.1 Principle of Operation

Fig. 8.57. Principle of a programmable logic device

Figure 8.57 shows the principle of a PLD. Two input signals are stored/appear on column
conductors in both inverted and noninverted form. These are then connected to several
And gates whose outputs connect to an Or gate. Programmability here simply means
making the proper breaks in the connections.A simpler representation of the configuration
in Fig. 8.57 is shown in Fig. 8.58. The crosses represent connections.

The programming process therefore is the same as that of a PROM. Figure 8.59 shows a
comparison of three PLD structures.

• PROMs consists of a fixed And array that provides the address decoding. TheOr array
is programmable and holds the the memory contents.

• PALs on the other hand consist of a programmable And array, whereas the Or array is
fixed.
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Fig. 8.58. Compact representation of the PLD circuit

Fig. 8.59. Principle structure of PROM, PAL and PLA

• PLAs offer both programmable And as well as Or arrays. They are therefore more
flexible than PROMs or PALs; however, the propagation time through the array is higher.

8.6.5.2 PLD Types

The basic structure of the PLD architecture means that there are several variations of
programmable logic array elements. The differences lie in the method used to program the
array (using fuses, diodes or FETs), and in the programmability of the And and Or arrays
as well as in their ability to be subsequently reprogrammed.

PROM: Fixed And array that provides the address decoding and a programmable Or
array. The connections are metallic and behave like fuses that can be burnt.

EPROM: (erasable programmable read-only memory) PROM version. Fixed And array.
Programmable Or array. The coupling elements are FETs with isolated gates. The
information is stored as charge in the gate capacitor. Erasure is achieved by removing
the charge.

PAL: (programmable array logic) Fixed Or array. The And array is programmable.
HAL: (hardware array logic) A mask-programmed version of the PAL produced by the

manufacturer.
PLA: (programmable logic array) Both the And as well as the Or array are pro-

grammable. PLAs are therefore more flexible, but also require more design effort. Will
be replaced by LCA (logic cell array).

EPLD: (erasable programmable logic device) This has the same structure as the PAL. The
coupling elements are the same as for EPROMs. In this manner EPLDs are UV-erasable
and reusable.
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IFL: (integrated fuse logic) General expression for different kinds of programmable logic
devices.

FPGA: (field-programmable gate array)
FPLA: (field-programmable logic array)
FPLS: (field-programmable logic sequencer)

LCA: (logic cell array) offers reconfigurable logic blocks.The kind of connection is stored
in a nonvolatile memory. This is how the LCA is programmed (trademark of XILINX).

AGA: (alterable gate-array logic) alterable gate array.
GAL: (generic array logic) electrically erasable gate array, with a PAL structure and

programmable output configurations. Can replace many PAL types.

Table 8.13 shows an overview of the different kinds of PLD. The ROM is included for
comparison:

Table 8.13. Properties of PDAs

PLD Type And array Or array Memory
ROM Fixed Mask Mask
PROM Fixed Programmable Fuse
EPROM Fixed Programmable Stored charge
PAL Programmable Fixed Fuse
HAL Mask Fixed Mask
PLA Programmable Programmable Fuse
EPLD Programmable Fixed Stored charge
LCA Programmable Programmable Stored charge
AGA Programmable Programmable Stored charge
GAL Programmable Fixed Stored charge

A characteristic of the PLDs is a ‘last fuse’. If these are burnt through then the contents
of the programmed array are no longer electrically reachable. Therefore there is a certain
amount of security against unauthorised copying of the internal structure.

8.6.5.3 Output Circuits

PALs are equipped with various output circuits. These are shown in Fig. 8.60.

The following types are realised:

High-H output: The signal is available after the Or gate.
Low-L output: The signal is inverted.
Complement-C output: The signal and its complement are both output. This is a rare

and uneconomical solution since many output pins are required.
Programmable-P output: The polarity of the output can be selected by using anXor gate

as a controlled inverter. The controlling input of the Xor gate is connected to ground
by a fuse.

XOR-X output: TwoOr outputs areXor-ed. This structure is applied almost exclusively
in arithmetic units.

Sharing-S output: Creates a ‘poor man’s’ FPLA out of a PAL. This version of the PLD
offers a small programmable output Or array.
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Fig. 8.60. PAL output circuits
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Bidirectional-B outputs: Can be programmed as inputs or as feedback of interim results
(multiple use of a partial term). The output circuit is tri-state capable. The enable signal
can be derived of a logic combination of the input signals.

Register-R outputs: At defined point in time the outputs states are transferred into D flip-
flops. The clock line is common to all gates. This structure is suitable for the synthesis
of sequential logic circuits.

Asynchronously registered AR output: Set, reset and clock signal are obtained as logic
terms.

Variable-V output: New variation of PAL (or GAL) are equippedwith output macro cells
(OLMC: output logic macro cell) that can be programmed using control bits to realise
one of the output versions H, L or R.

8.7 Registers and Shift Registers

Registers are flip-flop configurations for the interim storage of signal states. The 4-, 8-
or 16-bit register (latch) is a parallel configuration of D flip-flops, which have a common
clock.

Fig. 8.61. 3 bit register using D flip-flops

Shift registers are flip-flops in a ring circuit, i.e. the output of one flip-flop is connected to
the input of the next flip-flop.

Fig. 8.62. 3 bit shift register

All flip-flops are clocked by the same clock signal. The delayed input signal appears at the
output.

The connection between the inputs and outputs can be separated, and an external signal
can be input by using a multiplexer. This is known as loadable shift register with parallel
access. The signal load controls the acceptance of the data. Such a shift register is known
as a parallel in serial out (PISO) and as a serial in parallel out (SIPO).



8.8 Counters 449

Shift registers are available as 4, 8, 16 and more flip-flop suites.

Fig. 8.63. Loadable shift register

8.8 Counters

Counters are sequential logic that have a defined series of internal flip-flop states dependent
on the applied clock signals. The internal states do not necessarily correspond to a common
number representation. The type of control is used to differentiate between them:

• Synchronous counters: All flip-flops are clocked in parallel (simultaneously).

• Asynchronous counters: At least one of the flip-flops receives a clock signal that has
been generated within the circuit.

• Semisynchronous counters: Synchronous counter elements are connected in series.
Such counters are synchronous in sections, but overall are asynchronous.

Forms of representation of counter states:

• Binary counter: The counter state is represented in binary form.

• BCD counter: Each decimal place of the counter state is individually represented in
binary form.

• Others: The counter state represents other codes (1 of 10, biquinary (e.g. 74 393), etc.).

Forms of counting direction:

• Up counter,
• Down counter,
• Up/Down counter,
• Counters with separate up and down count inputs.

Forms of flip-flop configuration:

• Walking-ring counter: Consist of a shift register whose contents are cyclically shifted.

• Johnson counter (switch tail ring counter):A special form of the walking-ring counter.

Forms of control options:

• Programmable counter (up counter): This allows a defined counter state to be loaded
in parallel and the count to proceed from this new state.
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8.8.1 Asynchronous Counters

8.8.1.1 Binary Counter

The following relationship can be read from the truth table of a binary counter:

• An output variable zi changes value, if the next lowest variable zi−1 changes state from
1 to 0. This rule is highlighted by the horizontal lines in the following table.

Counter z2 z1 z0

state 22 21 20

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

The realisation of an asynchronous binary counter, as shown in Fig. 8.64, follows from this
table. The complementary output of the D flip-flop is fed back to its input. In this manner
each flip-flop, at each relevant clock edge, takes a complementary signal at its D-input
(toggle flip-flop). Each flip-flop functions as a 1 : 2 frequency divider. It can be seen from
the waveform diagram that the counter state can be directly read from the output variables.

The counter shown in the diagram returns to the start state of 0 after the counter state 7.
It runs through a total of 8 states. It is therefore called a modulo-8 counter. Each extra
flip-flop extends the range of the counter by a power of 2.

The transition of the counter state 7 to the counter state 0 shows an essential disadvantage
of the asynchronous counter: The positive clock edges at the first flip-flop’s input cause
it to toggle. The complementary output changes from 0 → 1 and changes the following
flip-flop and so on. However, each flip-flop can only toggle once the previous flip-flops has
toggled. The clock input positive edge is delayed at each flip-flop by the propagation delay
time tPH. The counter state is correct only after all flip-flops have settled. In the meantime,
incorrect output states are on the output lines. Because of this carryover delay this counter
is known as a ripple-through counter.

Figure 8.65 shows an asynchronous binary counter created from JK flip-flops. The flip-
flops are edge-triggered on the positive edge.

Figure 8.66 shows the circuit symbol for an asynchronous binary counter. The reset input
11 forms part of the control block for all of the flip-flops. The input 10 is negative edge-
triggered. The output 9 influences the input 1 internally (Z-dependency). For a transition
from 0 to 1 its state changes (T-dependency). The other outputs work in a corresponding
manner. The simplified circuit symbol is shown next to it. This is used if the asynchronous
operation does not have to be explicitly identified.

8.8.1.2 Decimal Counter

Decimal counters are often used in applicationswhere the counter state is shown in decimal
form. In order to keep the decoder requirement low, a counter is used for each decimal
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Fig. 8.64. Asynchronous binary counter with D flip-flops

Fig. 8.65. Asynchronous binary counter with JK flip-flops

Fig. 8.66. Circuit symbols for the asynchronous binary counter
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place that counts from 0 to 9. Normally the counter states are represented in binary form
so the counters are known as BCD counters (binary coded decimal).

The truth table shows the internal representation of the counter state for a BCD-counter.
As each entry has a weighting of 8, 4, 2 and 1, this is known as an 8421-code.

The decimal counter in Fig. 8.67 derives from a 4-bit binary counter. TheNand gate resets
all of the flip-flops the moment both z1 and z3 assume the value 1. That occurs for the
(irregular) counter state 10. This state lasts only for the duration of the signal delays in the
counter. The reset signal is therefore a spike.

Counter z3 z2 z1 z0

state 23 22 21 20

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10† 1 0 1 0

†transient irregular state

Fig. 8.67. Asynchronous decimal counter

In practice such circuits are avoided, as their correct operation depends critically on the
propagation delays. The configuration shown in Fig. 8.68 avoids this problem by blocking
the counter stages via preparation inputs. This means that the counter goes directly to state
0 at the following clock edge after counter state 9.

Fig. 8.68. Asynchronous decimal counter
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Figure 8.69 shows the circuit symbol of a decimal counter. The input 1 is negative edge-
triggered and causes the counter to count upwards (plus-sign). The counter divides by 10
(CTRDIV 10). The counter state is available at the connections 3, 5, 6, 7 encoded in binary
form. The braces gather the outputs their power to the base two is written as [0..3]. Input 2
causes a reset, recognisable by a signal CT = 0. Resetting is carried out asynchronously,
as no C-dependency is given.

Fig. 8.69. Circuit symbol of a decimal counter

Any arbitrary number of digits can be realised by connecting several decade counters
serially (Fig. 8.70).

Fig. 8.70. Decimal counter with three decades

The counter state of each decade is transformed through a BCD/7 segment decoder for
display purposes. The Z3 output signal is carried over to the next-higher decade. This
signal has a negative edge only when resetting of the counters occurs, which triggers the
following counter. The carryover signal of the highest decade can be used to set an SR
flip-flop and thereby indicate the overflow of the count.

8.8.1.3 Down Counter

A down counter decreases the counter state at each input pulse.

The following relationship can be seen from the truth table of a down counter:

• An output variable Zi changes its value if the next lowest variable Zi−1 changes state
from 0 to 1. This rule is highlighted at the horizontal lines.
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Counter Z2 Z1 Z0

state 22 21 20

0 0 0 0
7 1 1 1
6 1 1 0
5 1 0 1
4 1 0 0
3 0 1 1
2 0 1 0
1 0 0 1

Fig. 8.71. Asynchronous 3-bit down counter

Unlike the up counter, the flip-flop complementary outputs are connected to the subsequent
clock inputs.

8.8.1.4 Up/Down Counter

A counter with programmable counting direction is obtained if the outputs of the flip-flops
are fed into Xor gates (Fig. 8.72). This allows the toggling of the output polarity over a
common control line and thus determines either up or down counting.

Fig. 8.72. Asynchronous switchable up/down counter

Note: Changing the count direction should not occur during a count process, as this
causes a polarity change at the flip-flop inputs and causes uncontrolled counting.
The Z-input blocks the J -K inputs during the switch.

8.8.1.5 Programmable Counter

Programmable counters can be (pre)loaded with a defined counter state.

Figure 8.73 shows a programmable 4-bit counter. A logic high voltage level at the load
input causes all flip-flops to be set or reset, depending on the applied signals at the parallel
inputs.

Figure 8.74 shows the circuit symbol for a programmable 4-bit counter on the left. The
loading process is triggered by the input marked with load (C-dependency). The value of
the individual stages is shown in the parentheses. The output in the control block on the
right for counter state 15 (CT = 15) assumes the state 1. It supplies a carryover signal for
further expansion of the counter.

Programmable down counters that stop on reaching the zero state or begin a new loaded
count are of particular importance, especially in microprocessor systems. Such counters
are called presettable counters. Figure 8.74 shows on the right side a down counter
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Fig. 8.73. Programmable 4-bit counter

Fig. 8.74. Circuit symbols for the programmable counter

that loads a new count state when it reaches count state zero. It can be seen from the
dependency notation for the load and clock input that the load signal is effective only after
the subsequent clock signal. If the counter is also loaded with the number m, then it runs
through m+ 1 cycles. It then functions as a modulo-(m+ 1) counter.

Application: Such counters are employed in programmable frequency dividers or timers.

8.8.2 Synchronous Counters

Up counter
counter- z2 z1 z0
state 22 21 20

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Down counter
counter- z2 z1 z0
state 22 21 20

7 1 1 1
6 1 1 0
5 1 0 1
4 1 0 0
3 0 1 1
2 0 1 0
1 0 0 1
0 0 0 0

The table shows the count states for a binary counter. The following rule can be derived
from the truth table for an up counter:
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• An output variable zi changes its value when all lower value variables have a value of 1
and a new count impulse arrives.

This rule holds for counting downwards:

• An output variable zi changes its value when all lower value variables have a value of 0
and a new count impulse arrives.

These rules are taken into consideration in the design of synchronous counters (Fig. 8.75).
The characteristic feature of synchronous counters is that the clock signal is simultaneously
(synchronously) fed to all flip-flops. In order that the flip-flops toggle only at the permitted
states, the set-inputs of the flip-flops must be fed by a suitable combinational preparation
circuit.

Fig. 8.75. Principle of a synchronous counter

The nature of the input circuit follows from the rules just mentioned. For an up counter, a
flip-flop may only toggle at the clock edge when all lower value stages have the state 1. It
follows that:

S0 = 1, S1 = Z0, S2 = Z0 · Z1, S3 = Z0 · Z1 · Z2

The And gates in Fig. 8.76 implement these logic expressions.

Fig. 8.76. Synchronous binary counter

8.8.2.1 Cascading Synchronous Counters

It is often a problem to design synchronous counters whose count capacity exceeds the
capacity of an individual counter device. This is explained with the example of the 71 191
4-bit synchronous counter. The 71 191 is positive edge-triggered and is equipped with two
suitable outputs to extend the count range.
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Min/max: The outputmin/max goes lowwhen either the up counter reaches themaximum
counter state (15), or the down counter reaches zero.

RCE (ripple count enable): This output is logic 0 when the enable input and the min/max
input are low and count input is at logic 0.

Figure 8.77 shows the obvious circuit to extend the count range. The RCE output of each
counter stage is connected to the clock input of the following device. This can be described
as being semisynchronous or partially synchronous. The clock is fed in parallel only
to the flip-flops in the first counter device. The maximum count speed decreases with the
length of the counter.

Fig. 8.77. Semisynchronous binary counter

Fig. 8.78. Synchronous binary counter with serial carryover

In the circuit in Fig. 8.78 the entire multistage counter operates synchronously, but the
carryovers are produced serially. Each counter stage is equipped with an enable input that
blocks the counter and the carryover generation. The first counter is continuously enabled.
The enable input of the next stage is fed with the carryover signal of the preceding counter
stage. So, for example, the second counter device can only continue counting as long as
the first counter outputs the carryover signal. This is the case for exactly one clock period.

The circuit in Fig. 8.79 permits the fastest operation, as the carryover is output in parallel.
The output min/max goes low, when the maximum is reached in counting upwards, or zero
is reached when counting downwards. All counter stages are supplied with the same clock
signal in parallel.

Note: The carryover signal gates are already integrated in some counters (e.g. in
the 74 163). Figure 8.80 shows a circuit example (see also the manufacturer’s
application notes).
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Fig. 8.79. Synchronous binary counter with parallel carryover

Fig. 8.80. Synchronous binary counter with parallel carryover without external gates

8.8.3 Overview: TTL and CMOS Counters

Tables 8.14 and 8.15 give an overview of TTL and CMOS counter properties.

Explanation of table entries:

A – asynchronous counter
S – synchronous counter
± – up/down counter
↑ – counter triggers on positive edges
↓ – counter triggers on negative edges

BCD – BCD-counter
B – binary code
1/10 – 1-to-10 code
7-segment – seven-segment code
J – Johnson counter
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The range of the counter is given by the number of bits. If it is not a base 2 number, then
the amount of counter states is also given.

AC – asynchronous clear
SC – synchronous clear
AS – asynchronous set
AL – asynchronous load

SL – synchronous load
OC – open collector
ENT, ENP – inputs for parallel carryover

generation without external
gates

P – programmability

The clock frequencies that are given are guaranteed values. Typical values are around 50%
higher. Many of the listed TTL counters are also available as ALS devices with higher
clock frequencies.

8.8.3.1 TTL Counters

Table 8.14. Properties of TTL counters

Type A/S Edge Range Code P Reset Frequency Observations
[Bit]/Number (guaranteed)

[MHz]
LS 90 A ↓ 4/10 BCD AS AC 32 Can be set to 9
LS 92 A ↓ 4/12 B – AC 32
LS 93 A ↓ 4 B – AC 32 Succeeded by LS 293
LS 142 A ↑ 4/10 1/10 – AC 20 With latch, decoder, OC driver 60 V
LS 143 A ↑ 4/10 7-Seg – AC 12 As LS 142 with 7-segment decoder,

LED constant-current outputs
LS 144 as LS 143 with 15 V OC driver
LS 160 S ↑ 4/10 BCD AL AC 25
LS 161 S ↑ 4 B SL AC 25 As LS 163 with AC
LS 162 S ↑ 4/10 BCD SL SC 25
LS 163 S ↑ 4 B SL SC 25 As LS 161 with SC
LS 168 S± ↑ 4/10 BCD SL – 25 ENT, ENP inputs
LS 169 S± ↑ 4 B SL – 25
LS 176 A ↓ 4/10 BCD/5-2 AL AC 35 Depending on external circuitry: BCD

or biquinary code
LS 177 A ↓ 4 B AL AC 35
LS 190 S± ↑ 4/10 BCD AL – 20
LS 191 S± ↑ 4 B AL – 20
LS 192 S± ↑ 4/10 BCD AL AC 25 Separate clock inputs

for up/down counter
LS 193 S± ↑ 4 B AL AC 25 Separate clock inputs

for up/down counter
LS 196 A ↓ 4/10 BCD AL AC 30
LS 197 A ↓ 4 B AL AC 30
LS 290 A ↓ 4/10 BCD AS AC 32
LS 293 A ↓ 4 B – AC 32 As LS 93 with supply pins at corners
LS 390 A ↓ 8/100 BCD – AC 25 Two LS 290 in a single housing
LS 393 A ↓ 8 B – AC 25 Two LS 293 in a single housing

8.8.3.2 CMOS Counters

The frequencies given are for a 50 pF load at 5/10/15 V.
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Table 8.15. Properties of CMOS counters

Type A/S Edge Range Code P Reset Frequency Observations
[Bit]/Number (guaranteed)

[MHz]

4017 S ↑/↓ 5/10 1/10 – AC 3/8/12 Johnson counter
4018 S ↑ 5/2..10 J AL AC 2/6/8 Johnson counter
4020 A ↓ 14 B – AC 5/13/18
4022 S ↑ 4/8 1/8 – AC 3/8/12 Johnson counter
4024 A ↓ 7 B – AC 5/13/18
4029 S± ↑ 4 or 4/10 B/BCD AL – 4/12/18 Switchable

binary/decimal counter
4040 A ↓ 12 B – AC 5/13/18
4060 A ↓ 14 B – AC 4/10/15 Gates for oscillator
4510 S± ↑ 4/10 BCD AL AC 5/12/17
4516 S± ↑ 4 B AL AC 5/12/17
4518 S ↑/↓ 2×4/100 BCD – AC 3/7/10 Two decimal counters
4520 S ↑/↓ 2×4 B – AC 3/7/10 Two binary counters
4522 A- ↑/↓ 4/10 BCD AL AC 6/12/16 Down counter
4526 A- ↑/↓ 4 B AL AC 6/12/16 Down counter
4534 A ↑ 20/105 BCD – AC 2.5/6/8 BCD multiplex output
4737 A ↑ 16/20000 BCD AS AC 3/8/10 Multiplex output
40160 S ↑ 4/10 BCD SL AC 5/12/17
40161 S ↑ 4 B SL AC 5/12/17
40162 S ↑ 4/10 BCD SL SC 5/12/17
40163 S ↑ 4 B SL SC 5/12/17
40192 S± ↑ 4/10 BCD AL AC 3/9/13 Separate clock inputs for up/down

counter
40193 S± ↑ 4 B AL AC 3/9/13 Separate clock inputs for up/down

counter

Some of the devices are also available as HCT-CMOS devices with significantly higher
allowable clock frequencies.

8.9 Design and Synthesis of Sequential Logic

Two design methods for sequential logic are presented aiming for different implementa-
tions, namely

• Sequential logic realised with programmable logic devices (PLD);

• Sequential logic realised with addressable memory (ROM).

Example A

Implementation of a programmable 3-bit counter. All data are in positive logic.

Requirements:
Reset: Reset counter states to zero.
Load: Load parallel applied data into counter.
Mode: L counts up, H counts down.
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Inputs:
D0 . . . D2: data inputs

Outputs:
z0 . . . z2: counter state encoded in
binary

Carry/borrow: not used in this example for clarity reasons.

Fig. 8.81. Circuit symbol of the sequential logic to be realised

The following state transition table describes the operation of the control signals reset,
load, mode as well as the data inputs Di (i = 0 . . . 2) and the outputs zi (i = 0 . . . 2).
Counter state z∗−i means the counter state before the triggering edge.

reset load Di zi zi

0 0 × z∗i
‡ z∗i

0 1 0 0 1
0 1 1 1 0

1 × × 0 1

The following logic expression holds for any counter output zi:

zi = reset · load · z∗i + reset · load ·Di (8.12)

Note: For PLDs with inverting outputs an expression for zi can be derived. It can be
seen from the table that:

zi = reset · load · z∗i + reset · load ·Di + reset

The same applies to the following expressions.

A further state transition table must be created for the actual count process. The count
state order is influenced by the count direction or mode signal. ZS is a quantity that gives
the counter state. The quantities with an asterisk denote the new states after the triggering
clock signal.
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mode ZS z2 z1 z0 ZS∗ z∗2 z∗1 z∗0
0 0 0 0 1 0 0 1
1 0 0 1 2 0 1 0
2 0 1 0 3 0 1 1
3 0 1 1 4 1 0 0

0 4 1 0 0 5 1 0 1
5 1 0 1 6 1 1 0
6 1 1 0 7 1 1 1
7 1 1 1 0 0 0 0
0 0 0 0 7 1 1 1
1 0 0 1 0 0 0 0
2 0 1 0 1 0 0 1
3 0 1 1 2 0 1 0

1 4 1 0 0 3 0 1 1
5 1 0 1 4 1 0 0
6 1 1 0 5 1 0 1
7 1 1 1 6 1 1 0

Therefore each counter position can be represented by a truth table, in which the only
signal combinations that are entered are the ones that lead to z∗i = 1. A synthesis table can
be derived from this to describe the transition zi → z∗i .
Least significant bit (LSB):

z0 z∗0 mode z2 z1 z0

0 0 - - - -
0 1 0 × × 0

1 × × 0
1 0 0 × × 1

1 × × 1
1 1 - - - -

This yields the expression

z∗0 = z0 (8.13)

Middle counter digit:

z∗1 = 1 for
mode z2 z1 z0

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

z∗1 = 1 for
mode z2 z1 z0

0 × 0 1
0 × 1 0
1 × 0 0
1 × 1 1
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The table on the right is a summary of the table on the left. This yields the expression for
z∗1

z∗1 = mode · z1 · z0 +mode · z1 · z0 +mode · z1 · z0 +mode · z1 · z0
(8.14)

Most significant bit (MSB):

z∗2 = 1 for
mode z2 z1 z0

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
1 0 0 0
1 1 0 1
1 1 1 0
1 1 1 1

z∗2 = 1 for
mode z2 z1 z0

0 0 1 1
0 1 0 ×
× 1 1 0
1 0 0 0
1 1 × 1

The table on the right is a summary of the table on the left. This yields the expression for
z∗2

z∗2 = mode · z2 · z1 · z0 +mode · z2 · z1 + z2 · z1 · z0 +mode · z2 · z1 · z0
+mode · z2 · z0 (8.15)

The following expressions for the individual counter bits can be derived by inserting
expressions (8.13) to (8.15) into expression (8.12):

z∗0 = reset · load ·D0 + reset · load · z0
z∗1 = reset · load ·D1

+ reset · load ·mode · z1 · z0 + reset · load ·mode · z1 · z0
+ reset · load ·mode · z1 · z0 + reset · load ·mode · z1 · z0

z∗2 = reset · load ·D2

+ reset · load ·mode · z2 · z1 · z0 + reset · load ·mode · z2 · z1
+ reset · load · z2 · z1 · z0 + reset · load ·mode · z2 · z1 · z0
+ reset · load ·mode · z2 · z0

These expressions in the sum of products or product of sums form can be directly realised
in a suitable PLD with output registers. In practice, the logic expressions are produced
using computer-aided engineering software, which can generate the required layout (PAL
assembler).

A method that is less focussed on the logic expressions for the combinational circuit but
more on the states of the circuit to be designed is shown in the next example.

Example B

A circuit is to be designed that controls a traffic light at a pedestrian crossing. The sequence
of the individual traffic lights, to which the circuit states should correspond, are represented
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in a state diagram (Fig. 8.82). Each state of the circuit is represented by a circle, and possible
transitions from one state to another are represented by arrows. If the transitions can only
occur under certain conditions, then the conditions are written beside the arrow.

State Car Pedes- Next
trian state

0 Green r 1
1 Amber r 2
2 Red r 3
3 Red g 4
4 Red r 5
5 Red/Amber r 0

Fig. 8.82. State diagram of the traffic light control

For synchronous circuits a transition must only happen at the relevant clock edge. An
arrow pointing back to the same circle means that the state is unchanged. Systems that can
be described by a number of states and their transitions are known as finite state machines.

The table in Fig. 8.82 shows the individual states of the traffic light controller. The traffic
light colours are denoted by their capitalised names for cars and by lower case letters for
pedestrians.

Figure 8.82 shows the state diagram related to the table. The system should go to state
1 after being powered on. This is shown by the arrow with the notation pon (power on).
Although states 2 and 4 activate the same traffic light colour, they are defined by different
states as they have different subsequent states. The six states are passed through cyclically.
The circuit can be very easily realised using a modulo-6 counter, whose outputs control a
small memory element (ROM). This would translate the counter state in the table above
into its corresponding traffic light colour (Fig. 8.83).

Fig. 8.83. Circuit realisation with a counter and ROM

Fig. 8.84. Expanded traffic light control state diagram



8.9 Design and Synthesis of Sequential Logic 465

Areal pedestrian crossing traffic light responds to the pressing of a button.The state diagram
should therefore be expanded to include a button. In addition, the amber light should flash
if an external off signal is received, and the pedestrian signals should deactivate (Fig. 8.84).

The state transition table then becomes:

State Car Pedes- Condition Next
trian state

0 Gr r Button ·off 1

off 6

Button · off 0

1 A r 2

2 R r 3

3 R g 4

4 R r 5

5 R/A r 0

6 A - off 7

off 0

7 - - 6

The circuit shown in Fig. 8.85 is suitable to realise the required control.

Fig. 8.85. Circuit with memory states, transition combinational and output circuits

The counter in Fig. 8.83 is replaced by a state memory. It stores the current state that
is encoded into the state vector z(tn) as a series of binary digits. The subsequent state
z(tn+1) is given by the actual state and any possible input quantities, i.e. the input vector
x (qualifier). The processing of the input vector x and state vector z is performed in the
transition logic (usually a ROM). The state vector z is processed in the output logic.
The result is the output vector y. In the case of the traffic light controller these are the
signals for the traffic light colours. The state memory is also influenced by the clock and
the power-on signal pon.

The traffic light controller passes through eight states, for which three flip-flops are suf-
ficient. The state vector width is therefore 3. It is useful to employ a (P)ROM for the
transition logic. Part of the address of the ROM consists of the state vector, and the rest is
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the input vector. The input signals can modify the next states under certain conditions and
are therefore known as qualifiers. The ROM addresses are formed by the off and button
qualifiers as well as the state vector.

Qualifier︷ ︸︸ ︷
x1 x0

State︷ ︸︸ ︷
z2 z1 z0︸ ︷︷ ︸

ROM address

The ROM contents are therefore:

Table 8.16. Memory content of transition circuit

ROM State off Button Next
address state

0 0 0 0 0
1 0 1 1
2 1 0 6
3 1 1 6
4 2
... 1 × ...

7 2
8 3
... 2 × ...

11 3
12 4
... 3 × ...

15 4
16 5
... 4 × ...

19 5
20 0
... 5 × ...

23 0
24 6 0 0 0
25 0 1 0
26 1 0 7
27 1 1 7
28 6
... 7 × ...

31 6

For the traffic light controller in the example above a 32 × 3-bit ROM s required for the
transition logic. The output combinational logic requires an 8 × 5-bit ROM. For such a
small amount ofmemory itmakes sense to give the combinational logic circuit the structure
shown in Fig. 8.86.

The transition logic here unites both functions of the previous combinational logic circuits.
A row of this 32× 8-bit memory has the contents shown in Table 8.17. The table shows a
section of this memory.

Note: Traffic light colours usually last for different durations. That can be achieved
by splitting up one traffic light phase over several states of the circuit or by
influencing the clock generator with additional output signals.
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Table 8.17. Memory section of the 32× 8-bit memory

ROM State off Button Next Light Colour Contents
address state R Ge Gr r g (dec.)

...
...

...
...

...

3 0 1 1 6 0 0 1 1 0 198
...

...
...

...
...

Fig. 8.86. Circuit with memory states and transition logic

For the coding of 9 states, 4 flip-flops are required that can assume in total 16
states. It is good practice to code out all 7 illegal states so that every state yields
a defined output state for a transition. Thus it can be avoided that a circuit is
left stuck in unreachable states after a noise glitch.

The transition logic in the circuit in Fig. 8.85 contains the transitions from one
state to the following, where the input variables can modify the target state. For
processors this is known as a conditional jump. For this reason this memory is
also known as program ROM. The ROM used to decode the states into output
signals is called the output ROM.

Extensive state diagrams with many transition conditions are often more read-
ily realised using microprocessors, which moreover offer a greater amount of
flexibility.
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9 Power Supplies

Power supplies are electronic circuits that are designed to supply other electronic circuits or
applications in a suitable way with electric energy. For example they can convert the mains
voltage into a stabilised DC voltage for a microcontroller. So-called uninterruptable
power supplies (UPS) convert the DC voltage of a battery to 230V/50 HzAC voltage, for
instance, to supply a computer.

The most common application is the conversion of mains voltage into a smaller voltage,
which is suitable for the connected circuits.

To achieve this it is necessary

• to isolate the mains from the electronics for the protection of the user, and

• to provide a stabilised DC voltage, i.e. the DC voltage has to be independent from
variations in the mains voltage and also in the load.

The isolation is always achieved with transformers. These can either be operated at the
mains frequency, or at high frequencies in switched-mode power supplies. High frequency
allows the use of smaller components at similar ratings.

The stabilisation of the voltage can be done with a transistor operating in its active region.
It can also be done by using switched-mode techniques, which optimise the efficiency of
the power supply and reduce the physical dimensions.

9.1 Power Transformers

Transformers convert the mains voltage to a lower level and realise the electrical isolation
between the mains and the low voltage. It is important that transformers are safely con-
structed components and therefore have to be approved according to national standards.
The national signs of approval are printed on transformers (Fig. 9.1).

Fig. 9.1. National approval signs

In the European Community the EU sign of conformity, or in short the CE sign, has
replaced the individual approval signs (Fig. 9.2). The CE sign states that for a component
(in this case, a transformer) all relevant EU standards have been maintained. The manu-
facturer is responsible for the tests and has to confirm this in the so-called EU conformity
declaration. The tests themselves can be done by a certified tester. The approval of the test
only becomes relevant in the case of a dispute.

R. Kories et al., Electrical Engineering
© Springer-Verlag Berlin Heidelberg 2003
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Fig. 9.2. EU sign of conformity

• The primary winding of the transformer is the mains winding, and the secondary
winding is the electrically isolated low-voltage winding.

• The rated power is the product of the secondary rated voltage and the RMS value of
the maximum secondary current. The value of the rated power is given in VA.

• The rated voltage is the mains voltage for the primary side, and for the secondary side
the voltage at the rated current, i.e. the voltage when supplying the rated power.

• The loss factor is the ratio of no-load voltage to the rated voltage. Common values are
between 1.35 and 1.15 for transformers with a rated power between 3 and 20 VA.

The internal resistance of the transformer can be calculated from the no-load voltage and
the rated voltage.

Rint = no-load voltage− rated voltage

rated current
(9.1)

Note: Very small transformers are sometimes designed with a high internal resistance
in order to make them short-circuit proof. This is done to avoid the need for
fuses.

• On the primary side the protection of the transformer against overload is achieved
with a fuse. In the case where the load is unevenly distributed between the secondary
windings, they each have to be protected additionally.

• In order to make the transformer short-circuit proof, the manufacturer inserts a positive
temperature coefficient element (PTC) or a heat-sensitive switch in the primarywinding.
In this case the use of a fuse is not necessary.

9.2 Rectification and Filtering

Usually the secondary voltage is rectified and filtered, i.e. the pulsating DC voltage after
the rectifier is smoothed with a capacitor.

The filter capacitor is charged by a pulsating current for a period defined by the angle ϕ

(Fig. 9.3). It is dependent on the internal resistance of the transformer and the capacitance
of the filtering capacitor. Common values are between 30◦ and 50◦.

The output current Iout equals the average value of the diode current IF. The RMS value
of the diode current can reach values up to twice the output current. The peak value of the
diode current lies between 4 and 6 times the output current (Fig. 9.3).

ĪF = Iout, IF RMS ≈ 1.5 . . . 2 · Iout, ÎF ≈ 4 . . . 6 · Iout

The RMS value of the diode current equals the RMS value of the secondary transformer
current. This must be considered when choosing the apparent power of the transformer.
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Fig. 9.3. Rectification and filtering

• The apparent power of the transformer SN must be approximately twice the value of the
output power Vout · Iout.

The filter capacitor is usually chosen so that the peak-to-peak ripple voltage VRpp is
approximately 20% of the output voltage Vout. The discharge time of the capacitor is
approximately half of the periodic time of themains frequency.Using the capacitor formula

i = C
dv

d t
, the required capacitance can be determined as:

C ≈ Iout · T/2

VRpp
= Iout · T/2

Vout · 0.2
(9.2)

For the 50 Hz mains the capacitor C is chosen thus:

C (F) ≈ Iout ( mA)

Vout ( V)
· 50 (9.3)

Assuming the mains voltage is 10% under its rated value, the ripple voltage is 20%. If the
diode voltage drops are not considered, then it holds for the minimum output voltage
Vout min:

Vout min ≈ 0.9 · VN ·
√
2 · 0.8 (9.4)

Therefore for the required transformer rated voltage VN:

VN � Vout min (9.5)

Note: In most power supplies a voltage regulator follows the filtering capacitor. Usu-
ally voltage regulators require a voltage drop of approximately 3 V. For this
reason the minimum output voltage of the filtering circuit is very important: its
value must be approximately 3 V higher than the regulated voltage.
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9.2.1 Different Rectifier Circuits

Vout max = V̂in − VF

VDbreak = 2 V̂in

PD ≈ Iout · VF

C(F) ≈ Iout( mA)

Vout( V)
· 100

Vout min ≈ 0.7 V̂in

Vout max = V̂in − 2VF

VDbreak = V̂in

PD tot = 2Iout · VF

C(F) ≈ Iout( mA)

Vout( V)
· 50

Vout min ≈ 0.7 V̂in

Vout max = V̂in − VF

VDbreak = 2 V̂in

PD tot ≈ Iout · VF

C(F) ≈ Iout( mA)

Vout( V)
· 50

Vout min ≈ 0.7 V̂in

Fig. 9.4. A variety of rectifying circuits (value for C is valid for 50 Hz mains frequency)
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Vout max = V̂in − VF

VDbreak = 2 V̂in

PD tot ≈ (I1 out + I2 out) · VF

C(F) ≈ Iout( mA)

Vout( V)
· 50

Vout min ≈ 0.7 V̂in

VDbreak: Diode breakdown voltage
PD tot: Total diode power dissipation

Fig. 9.5. A variety of rectifying circuits (value for C is valid for 50 Hz mains frequency)

Table 9.1. Comparison of the rectifier circuits

Advantages Disadvantages

Half-wave rectifier Simple circuit Large capacitor, high
current RMS value

Bridge rectifier One secondary winding,
breakdown voltage
VDbreak = V̂in

High diode losses

Full-wave rectifier Low diode losses
(suitable for high currents)

Two secondary windings,
breakdown voltage
VDbreak = 2V̂in

Full-wave dual-
supply rectifier

One bridge rectifier for two out-
put voltages, similar load on both
secondary windings

Breakdown voltage
VDbreak = 2V̂in

9.3 Analogue Voltage Stabilisation

Voltage regulators are used tomaintain a voltage at a constant level, independent of voltage
variation in the mains and the load variation.

9.3.1 Voltage Stabilisation with Zener Diode

Fig. 9.6. Voltage stabilisation with zener diode
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The output voltage is equal to the zener voltage (Fig. 9.6):

Vout = Vz (9.6)

The maximum power loss PLz in the zener diode occurs when no load is connected to the
circuit (Iout = 0):

PLz = Vin max − Vz

R
· Vz (9.7)

The maximum available output current is given by:

Iout max = Vin min − Vz

R
(9.8)

If the output current becomes larger than Iout max no current will flow through the zener
diode and Vout drops below Vz. The maximum short-circuit current is:

Is/c = Vin max

R

9.3.2 Analogue Stabilisation with Transistor

The output voltage is:

Vout = Vz − VBE ≈ Vz − 0.7 V (9.9)

The transistor Q2 is configured as a current source with a current of Is = 0.7 V/R1. The
source current is chosen so that at the rated load the transistor Q1 receives the required
base current, and a small current flows through the zener diode(Fig. 9.7). Hence, the output
voltage is kept at Vout = Vz − 0.7 V for all different loads, between no-load and the rated
load. If there is an overload the transistor Q3 opens, thus reducing the base current of Q1
so that the maximum output current is limited to Iout max = 0.7 V/RM.

Fig. 9.7. Analogue regulation with transistors
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9.3.3 Voltage Regulation

The output voltage is:

Vout = Vref · R1 + R2

R2
(9.10)

Fig. 9.8. Voltage regulation

The operational amplifier amplifies the difference (Vref − V ′
out), which is the difference

between the desired value and the actual value of the output voltage.With its open collector
output it controls the base current of Q1 by sinkingmore or less of the source current IS. For
example, if Vout is too high, the operational amplifier takes the base current from transistor
Q1, turning the transistor down and thus lowering the output voltage. The transistor Q2

takes the current IS in the case of an overload, i.e. when Iout >
VBE

RM
≈ 0.7 V

RM
. If the loop

gain was too large causing the circuit to oscillate, then a PI controller may be used as the
amplifier (R3, C3 in Fig. 9.8).

To obtain a variable output voltage it is possible to create the reference voltage with a
potentiometer and to feed this voltage into the inverting input of the operational amplifier.
Then the desired value is adjustable. It is always better to vary the reference value than to
change R1 and R2, since this does not affect the control loop and therefore the stability of
the system. The range of the adjustment via R1/R2 is only appropriate for fine tuning of
output voltage.

9.3.3.1 Integrated Voltage Regulators

There is a large variety of integrated voltage regulators available. Usually they are short-
circuit proof, no-load proof and have temperature protection. The 78xx series for positive
voltages and the 79xx series for negative voltages are well known for fixed voltages. These
fixed voltage regulators are available for different current ratings.

Example: Figure 9.9 shows an example of a ±12 V voltage supply. In addition to the
previously described circuits there are some ceramic capacitors of 100 nF close
to the voltage regulator. Their purpose is to reduce possible oscillations in the
regulator.
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230V
50Hz

230V/2 15V
12VA


B80
C1500

100nF

100nF

12V,300mA

�12V,100mA

100nF

100nF

1000 F
50V



330 F
50V



7812

7912

Fig. 9.9. Example: voltage supply with fixed voltage regulators

9.4 Switched Mode Power Supplies

Switched-mode power supplies (SMPS) are used in nearly all electronic systems. Every
television set and computer is powered by an SMPS, as is most state-of-the-art industrial
equipment. Battery-powered equipment also uses SMPS to provide a constant internal sup-
ply voltage independent of the charge state of the battery. SMPS are also used to achieve a
higher supply voltage than that of the powering battery voltage. This is normally required
for tape recorders, CD players, notebooks, mobile phones and cameras. SMPS have re-
markable advantages when compared to linear regulated power supplies. Theoretically,
SMPS work loss-free, and in practice efficiencies of about 70% to 95% are achieved. This
results in low-temperature operation and consequently high reliability. The other major
advantage is that SMPS operate at high frequencies, which results in small low-weight
components. Compared to linear power supplies SMPS are therefore inherently more ef-
ficient, smaller, lighter and cheaper to manufacture.

In general, all SMPS have the same principle of operation. Small quantities of energy are
taken from an input voltage by an electronic switch (transistor), which switches at high
frequency. The switching frequencies are normally in the range of 20 kHz to 300 kHz,
depending on the required performance. The ratio between turn-on and turn-off time of the
switch determines the average energy flow. A low-pass filter is placed at the output of all
SMPS to smooth the discontinuous energy flow. The high efficiency of SMPS is a direct
result of the theoretically loss-free switching component and low-pass filter.

There are a number of different types of SMPS, as described below. Although similar in
principle, the manner of operation differs greatly between topology types.

SMPS can be configured as secondary or as primary switched power supplies. Sec-
ondary power supplies have no isolation between the input and output. They are used in
applications where isolation (in respect to mains) already exists or where isolation is not
required, for example, in battery-powered devices. Primary switched power supplies offer
an isolation between input and output. Their switching transistors operate on the primary
side of a transformer. The energy is transferred to the secondary side at a high-frequency
via a high frequency transformer. Because of the high operating frequency the transformer
can be relatively small.

There are three basic SMPS configurations. These are flyback, forward and resonant
converter. Flyback converters transfer their energy during the off-time of the transis-
tors. Forward converters transfer their energy during the on-time of the transistors. Res-
onant converters use a resonant circuit for switching the transistors when they are at the
zero-current or zero-voltage point, resulting in reduced stress on the switching transis-
tors.
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A power factor preregulator is also a SMPS, used to ensure that the mains current is
substantially sinusoidal.

9.4.1 Single-Ended Converters, Secondary Switched SMPS

9.4.1.1 Buck Converter

The buck converter converts an input voltage into a lower output voltage. It is also called
a step-down converter.

Fig. 9.10. Buck converter

Figure 9.10 shows the circuit diagram of a buck converter. The transistor Q operates as
the switch, which is turned on and off by a pulse-width modulated control voltage VPWM

operating at high frequency. The ratio
t1

T
, where t1 is the on-time and T the periodic time,

is called the duty cycle.

Fig. 9.11. Voltages and currents of the buck converter

In the following analysis it is assumed that the conducting voltage drops of the transistor
and the diode are zero.

During the on-time of the transistor the voltage V1 is equal to Vin. When the transistor
switches off (blocking phase), the inductor L continues to drive the current through the
load in parallel with Cout and back through the diode. Consequently, the voltage V1 is zero.
The voltage V1 stays at zero during the off-time of the transistor provided that the current
IL does not reduce to zero. This is called continuous-mode operation. In this mode V1
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is a voltage that changes between Vin and zero, corresponding to the duty cycle of VPWM,
(Fig. 9.11). The low-pass filter, formed by L and Cout, produces an average value of V1,
i.e. Vout = V1. Therefore for continuous mode:

Vout = t1

T
Vin (9.11)

• For the continuous mode the output voltage is a function of the duty cycle and the input
voltage, and is independent of the load.

The inductor current IL has a triangular shape, and its average value is determined by the
load. The peak-to-peak current ripple �IL is dependent on L and can be calculated with
the help of Faraday’s law:

V = L
di

d t
→ �i = 1

L
· V ·�t

→ �IL = 1

L
(Vin − Vout) · t1 = 1

L
Vout (T − t1) (9.12)

For Vout = t1

T
Vin and a switching frequency f it follows for the continuous mode:

�IL = 1

L
(Vin − Vout) · Vout

Vin
· 1
f

(9.13)

• The current ripple �IL is independent of the load. The average value of the current IL
is equal to the output current Iout.

At low load current, where Iout ≤ �IL

2
, the current IL reduces to zero during every

switching cycle. This is called discontinuous-mode, and for this mode the calculations
above are not valid.

Calculation of L and Cout

In order to calculate the value of L a realistic value of �IL must be selected. The problem
is as follows: If �IL is selected at a very low value, the value of L has to be relatively high,
which would require a very heavy and expensive inductor. If �IL is assigned a high level
the switch-off current of the transistor would be very high (this would result in high losses
in the transistor). A good compromise is to design for: �IL ≈ 0.2 Iout

For L follows:

L = 1

�IL
(Vin − Vout) · Vout

Vin
· 1
f

(9.14)

The maximum value of the inductor current is:

ÎL = Iout + 1
2�IL (9.15)

Assuming that the inductor ripple current is small compared to its DC current, the RMS
value of the current flowing through the inductor is given by:

IL(RMS) ≈ Iout (9.16)
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The capacitor Cout is chosen usually for the cutoff frequency of the LCout-low-pass filter,
which is approximately 100 to 1000 times lower than the switching frequency. An exact
calculation of the capacitor depends on its maximum AC current rating and its serial
equivalent impedance Zmax. Both values can be verified from the relevant data sheet.

The current ripple�IL causes a voltage ripple�Vout at the output capacitorCout. For normal
switching frequencies this voltage ripple is determined by the equivalent impedance Zmax.

The output voltage ripple is given by Ohm’s law:

�Vout ≈ �IL · Zmax (9.17)

The choice of the output capacitor depends not on its capacitance, but on its series equivalent
impedance Zmax at the switching frequency, which can be verified from the capacitor data
sheet.

9.4.1.2 Boost Converter

The boost converter converts an input voltage to a higher output voltage. The boost
converter is also called a step-up converter.

Boost converters are used in battery-powered devices, where the electronic circuit requires
a higher operating voltage than that supplied by the battery, e.g. notebooks, mobile phones
and camera flashes.

Fig. 9.12. Boost converter

Figure 9.12 shows the basic circuit diagramof the boost converter.The transistorQoperates
as a switch, which is turned on and off by a pulse-width modulated control voltage VPWM.

In the following analysis is be assumed that the conducting voltage drops of the transistor
and the diode are zero (during switching).

During the on-time of the transistor, the voltage across L is equal to Vin and the current IL
increases linearly. When the transistor is turned off, the current IL flows through the diode
and charges the output capacitor.

The function of the boost converter can also be described in terms of energy balance.
During the on-time of the transistor the inductance is charged with energy, and during the
off-time of the transistor this energy is transferred from the inductor through the diode to
the output capacitor.

If the transistor is not turned on and off by the clock pulse, the output capacitor charges
via L and D to the level Vout = Vin.When the transistor is switched the output voltage will
increase to higher levels than the input voltage.

In a similar manner to the buck converter (Sect. 9.4.1.1) a distinction is made between
the discontinuous and continuous mode, depending upon whether the inductor current IL
reduces to zero during the off-time of the transistor.
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Fig. 9.13. Voltages and currents of the boost converter

With the help of Faraday’s law the continuous mode and steady-state conditions (see also

Fig. 9.13) can be established: �IL = 1

L
Vin · t1 = 1

L
(Vout − Vin) · (T − t1). This yields:

Vout = Vin
T

T − t1
(9.18)

• For the continuous mode the output voltage is a function of the duty cycle and the input
voltage, and is independent of the load.

• The boost converter is not short-circuit proof, because there is inherently no switch-off
device in the short-circuit path.

Note: If the boost converter is not regulated in a closed loop but is controlled by a fixed
duty cycle of a pulse generator (this could be the case for a laboratory set-up),
the boost converter is not no-load proof. This is because each switching cycle
results in energy in the choking coil being transferred to the output capacitor.
This will result in the output voltage continously increasing until the devices
are eventually destroyed.

Calculation of L and Cout

As with the buck converter, the starting point for calculating L is to select a value of
current ripple �IL of about 20% that of the input current: �IL ≈ 0.2 Iin. The input current
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Iin can be calculated by assuming zero losses (input power = output power), therefore:

Vin · Iin = Vout · Iout → Iin = Iout
Vout

Vin

L can be calculated as follows:

L = 1

�IL
(Vout − Vin)

Vin

Vout
· 1
f

(9.19)

The peak value of the inductor current is (Fig. 9.13):

ÎL = Iin + 1

2
�IL (9.20)

Assuming that the inductor ripple current is small compared to its DC current, the RMS
value of the current flowing through the inductor is given by:

IL(RMS) ≈ Iin (9.21)

The output capacitor is charged by pulses (Fig. 9.13). The ripple�Vout of the output voltage
results from the pulsating charge current ID and is mainly determined by the impedance
Zmax at the switching frequency of capacitor Cout. The value of Zmax can be verified from
the capacitor data sheet.

The output voltage ripple is given by Ohm’s law:

�Vout ≈ ID · Zmax (9.22)

9.4.1.3 Buck-Boost Converter

The buck-boost converter converts a positive input voltage to a negative output voltage.

Fig. 9.14. Buck-boost converter

Figure 9.14 shows the basic circuit of the buck-boost converter. The transistor Q works as
a switch, which is turned on and off by the pulse-width-modulated voltage VPWM. During
the on-time of the transistor, the inductor current IL increases linearly. During the off-time
the current IL is continuous and charges the output capacitor Cout. Note the polarity of the
output voltage in Fig. 9.14.

For the continuous mode and with steady-state conditions the output voltage is given by:

Vout = Vin
t1

T − t1
(9.23)
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The inductor current IL is given by (Fig. 9.15):

IL = Iout
T

T − t1
= Iout

(
Vout

Vin
+ 1

)
, and �IL = 1

L
Vin t1 = 1

L
· VinVout

Vin + Vout
· 1
f

(9.24)

Fig. 9.15. Voltages and currents of the buck-boost converter

9.4.2 Primary Switched SMPS

9.4.2.1 Flyback Converter

The flyback converter belongs to the primary switched converter family, which means
there is isolation between input and output. Flyback converters are used in nearly all mains-
supplied electronic equipment for low power consumption, up to approximately 300 W,
examples of which include televisions, personal computers, printers, etc.

Flyback converters have a remarkably low number of components when compared to other
SMPS. They also have the advantage that several isolated output voltages can be regulated
by one control circuit.

Fig. 9.16. Flyback converter

Figure 9.16 shows the basic circuit of a flyback converter. The transistor works as a switch,
which is turned on and off by the pulse-width modulated control voltage VPWM. During
the on-time of the transistor the primary voltage of the transformer V1 is equal to the
input voltage Vin, which results in the current I1 increasing linearly. During this phase,
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energy is stored in the transformer core. During the on-phase the secondary current is
zero, because the diode is blocking. When the transistor is turned off the primary current

I1 is interrupted, and the voltages at the transformer invert (due to Faraday’s law v = L
di

d t
),

the diode conducts and the energy moves from the transformer core via the diode to the
output capacitor Cout.

During the on-phase of the transistor the drain–source voltage VDS is equal to zero
(Fig. 9.17). During the off-time of the transistor, the output voltage Vout will be trans-
formed back to the primary side, and the drain–source voltage theoretically steps up to

VDS = Vin + Vout · N1

N2
. If a mains voltage of 230 V/50 Hz is used, VDS will jump to ap-

proximately 700 V. In practice, this voltage will be even higher due to the self-induction
of the leakage inductance of the transformer. To allow for this effect the minimum rated
drain–source breakdown voltage of the transistor must be 800 V.

The transformer is not a ‘normal’ one, in that its function is to store energy during the
on-time of the transistor and to deliver this energy during the off-time via the diode to
the output capacitor. In fact, the transformer is a storage inductor (often called a choke)
with a primary and secondary winding. To store energy the transformer core needs an
air gap (normal transformers do not have an air gap). An important consideration for this
transformer is that primary and secondary windings are closely coupled in order to achieve
a minimum leakage inductance. It should be noted that the energy of leakage inductance
cannot be transferred to the secondary side and is therefore dissipated as heat on the primary
side.

Design of the Flyback Converter

Regarding the primary voltage of the transformer V1, its average value V1 must be equal
to zero for steady-state conditions (if not, the current would increase to infinity).

This yields: Vin · t1 = Vout · N1

N2
· (T − t1) , and:

Vout = Vin · N2

N1
· t1

T − t1
(9.25)

The turns ratio of the transformer should be chosen so that for the rated output power the
on-time (energy charge time) t1 is equal to the off-time (energy discharge time) T − t1.
This leads to the turns ratio:

N1

N2
= Vin

Vout
(9.26)

In this case, the breakdown voltage of the transistor and the reverse voltage of the diode
must be:

Transistor: VDS = Vin + Vout · N1

N2
≈ 2Vin (9.27)

Diode: VR = Vout + Vin · N2

N1
≈ 2Vout (9.28)
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Fig. 9.17. Voltages and currents at the flyback converter

It should be noted that the rated breakdown voltage of the transistor must be chosen
significantly higher, because at the turn-off instant the energy of the leakage inductance
Lleak will not be taken over by the secondary winding. To keep the overvoltage within an
acceptable range a snubber circuit is required (Fig. 9.18). At the instant of turn-off the
current of the leakage inductance Lleak is diverted through the diode D and charges the
capacitor C. The power is dissipated in resistor R.

If R and C are required to operate at 230 V AC, the value of R has to be determined
experimentally to ensure that the DC voltage across C falls within the region of 350 V to
400 V.

In order to design the transformer, the primary inductance L1 has to be calculated
first(Fig. 9.16). L1 has to store energy during the on-time of the transistor, which is the
energy required at the output. This energy is given by W = Pout · T , where T is the period
of the switching frequency, and Pout is the rated power. This energy is stored in the primary
inductance during the first half of the period time and is transferred to the output capacitor
during the second half of the switching period. As before, the switching period is divided
into two equal parts, one part to store the energy and the other part to transfer the energy.

During the on-time of the transistor, the voltage across the primary inductance is equal to
Vin, and the current I1 is a ramp waveform (Fig. 9.18). For every cycle of the input energy
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Fig. 9.18. Snubber circuit to limit the peak voltage across the transistor

it follows that:

W = Vin
Î1

2

T

2
(Fig. 9.19)

This energy is stored in L1 and can be calculated as:

W = 1

2
L1Î

2
1

For the size of the primary inductance this leads to:

L1 ≈ V 2
in

8Pout · f .

The calculation above assumes an efficiency of 100%. If we consider an efficiency of η,
it means that we have to store more energy in L1 and not all of this energy is delivered to
the output. Then L1 can be calculated as follows:

L1 ≈ V 2
in

8 Pout · f · η (9.29)

Efficiency η has to be estimated because its value is not known at this point in time.
However, η ≈ 0.75 is normally a good estimate.

Fig. 9.19. Shape of the input current I1 for rated power

The peak value of the current I1 is: Î1 = 4 · Pout

Vin · η

The RMS-value of the current I1 is: I1RMS = Î1√
6

The core of the transformer and the windings can now be calculated with the help of
Sect. 9.4.5.
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Note: The core of the transformer must have a sufficiently large gap, in which the
major part of the magnetic energy can be stored (refer to Sect. 9.4.5).

The output capacitor Cout is charged by pulses (refer to Fig. 9.17). The ripple �Vout of the
output voltage results from the pulsating charge current I2 and is mainly determined by
the impedance Zmax of the capacitor. The value of Zmax can be verified from the capacitor
data sheet.

The magnitude of the ripple voltage is given as follows:

�Vout ≈ Î2 · Zmax

The input capacitor Cin can be calculated for 230 V/50 Hz as follows:

Cin ≈ 1
F

W
· Pin

A special feature of the flyback converter is the possibility of controlling several isolated
output voltages with only one control circuit (Fig. 9.20).

Fig. 9.20. Flyback converter for several output voltages

One output voltage Vout 3 is regulated (Fig. 9.20). Voltage Vout 2 is coupled to Vout 3 via the

turns ratio:
Vout2

Vout3
= N2

N3
. The energy that is stored in L1 (N1) during the on-time of the

transistor moves during the off-time to the outputs. These output voltages maintain their
values in relationship to the turns ratio. The output voltages, when viewed in relation to
the turns ratio from the primary side, appear to be in parallel.

9.4.2.2 Single-Transistor Forward Converter

The single-transistor forward converter belongs to the primary switched converter fam-
ily as there is isolation between input and output. It is suitable for output powers of up
to 1 kW. The single-transistor forward converter is also called a single-ended forward
converter (Fig. 9.21).

The forward converter transfers the energy during the on-time of the transistor. During this
time the voltage V1 is equal to the input voltage. The winding N2 is in the same direction as

N1.When the transistor is on, the voltage V2 at N2 is given by V2 = Vin
N2

N1
. The voltage V2

drives the current I2 through the diode D2, which during this time is equal to I3, through
L, which charges the output capacitor Cout.

During the off-time of the transistor, N1 and N2 are without current. The inductor L draws
its current through diode D3. The value of voltage V3 is equal to zero (neglecting the
forward voltage drop of D3).
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Fig. 9.21. Single transistor forward converter

During the off-time of the transistor, the magnetic flux of the transformer has to decrease
to zero. The core is demagnetised with N ′

1 via D1 to Vin. Since N ′
1 has the same number

of turns as N1, the demagnetisation needs an equal time interval as the on-time. For this
reason the minimum off-time has to be as long as the on-time. This causes a maximum
duty cycle t1/T of 0.5 for the single-transistor forward converter.

During the off-time, the voltage at N ′
1 is equal to the input voltage Vin. This voltage will

be transformed back to the primary winding N1 and for V1 follows: V1 = −Vin. Because
of this the drain–source voltage steps up to VDS ≥ 2Vin when the transistor is turned off
(Fig. 9.22).

In comparison to the transformer of the flyback converter, the transformer in this forward
converter is a ‘normal’ transformer. Its job is not to store energy but to transfer energy. For
this reason the core has no air gap.

• The breakdown voltage of the transistor has to be VDS > 2Vin.

• The windings N1 and N ′
1 must be closely coupled. However, a snubber circuit (as shown

in Fig. 9.18, Sect. 9.4.2.1) is necessary.

• In comparison to the flyback converter, the forward converter can only have one regulated
output voltage.

• The maximum duty cycle is
t1

T
= 0.5.

Design of the Single-Transistor Forward Converter

The output voltage Vout is equal to the average value of V3. The maximum duty cycle is
0.5. This leads to (see also Sect. 9.4.1.1):

Vout = Vin · N2

N1
· t1

T
(9.30)

For the turns ratio it follows that:

N2

N1
= 2 · Vout

Vin
, and N1 = N ′

1 (9.31)

For further calculation of the transformer see Sect. 9.4.5.

To calculate L the method used for the buck converter is appropriate. Initially the current
ripple �I3 of the inductor current I3 has to be selected. A value of 20% of the output
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Fig. 9.22. Voltages and currents at the single transistor forward converter

current is normally acceptable: �I3 ≈ 0.2 · Iout. Assuming a maximum duty cycle of 0.5,
this leads to:

L = Vout · T/2

�I3
(9.32)

The value of Cout depends on the acceptable voltage ripple �Vout of the output voltage.
This voltage ripple is mainly determined by the impedance Zmax of the output capacitor
Cout:

�Vout ≈ �IL · Zmax

The value of Zmax can be verified from the data sheet of Cout.

The input capacitor Cin for 230 V/50 Hz should be:

Cin ≈ 1
F

W
· Pin

Two-Transistor Forward Converter

The two-transistor forward converter is a variant of the single transistor forward con-
verter (Fig. 9.23).
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Fig. 9.23. Two-transistor forward converter

The transistors Q1 and Q2 switch at the same time. During the on-time of the transistors,
the voltage at the primary winding is equal to the input voltage Vin. During the off-time
of the transistors the transformer is demagnetised via the diodes D1 and D2 into the input
voltage Vin. In comparison to the single-transistor forward converter this converter has the
advantage that its transistors have to block the input voltage only and the winding N ′

1 is
not required. In addition, the coupling of the transformer windings is no longer critical.
These advantages make this converter type suitable for significantly higher output powers
in comparison to the single-transistor converter.

The calculation of the components is equivalent to the single-transistor forward converter.

• For the two-transistor forward converter the breakdown voltage of the transistors is only
required to be VDS = Vin.

• The two-transistor forward converter can be used for powers up to a few kilowatts. It is
a simple converter, which is not critical with regard to design and operation.

9.4.2.3 Push–Pull Converters

The push–pull converter is suitable for high-power design.

Fig. 9.24. Push–pull converter, here: full-bridge type

The push–pull converter drives the high-frequency transformer with anAC voltage, where
the negative as well as the positive half swings transfer energy. The primary voltage V1

can be +Vin,−Vin or zero, depending on which pair of transistors (Q1,Q4 or Q2,Q3) are
turned on or off. At the secondary side the AC voltage is rectified and smoothed by L and
Cout (Fig. 9.24).

For the continuous mode it follows that (see also Sect. 9.4.1.1):

Vout = Vin · N2

N1
· t1

T
(9.33)
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Fig. 9.25. Voltages and currents at the push–pull converter

The duty cycle
t1

T
may theoretically increase to 100%. This is not possible in practice

because the serial connected transistors Q1,Q2 or Q3,Q4 have to be switched with a time
difference in order to avoid a short-circuit of the input supply. The turns ratio of the
transformer must be such that:

N2

N1
≥ Vout

Vin
(9.34)

• The transistors of the push–pull converter can be switched with the maximum duty cycle

of 0.5. This leads to the maximum duty cycle of
t1

T
= 1 after rectification.

The calculation of L and Cout follows that of the buck converter (Sect. 9.4.1.1).

Half-Bridge Push–Pull Converter

A variant of the push–pull converter is the half-bridge push–pull converter. The capaci-
torsC1 andC2 divide the input voltageVin into two. Therefore themagnitude of the primary
voltage V1 is ±Vin/2. In comparison to the full-bridge push–pull converter, it follows that

for the half-bridge type the turns ratio of the transformer
N2

N1
≥ 2

Vout

Vin
.
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Fig. 9.26. Half-bridge push–pull converter with full-wave rectifier

In Fig. 9.26 a two-diode full-wave rectifier is used instead of a full-wave bridge rectifier.
The choice of the rectifier type depends on the output voltage and current. The difference
between these two rectifier types is that the current has to pass through two diodes in the
bridge type and only one diode in the full-wave type. Consequently, the full-wave type
is used for high currents (to reduce the rectifier losses), and the bridge type is used for
high-voltage purposes in order to save one secondary winding of the transformer.

9.4.2.4 Resonant Converters

Resonant converters use resonant circuits to switch the transistors when they are at the
zero-current or zero-voltage point. This reduces the stress on the switching transistors
and the radio interference. A distinction is made between between zero-voltge-switching
(ZVS) and zero-current-switching (ZCS) resonant converters.

To control the output voltage, resonant converters are driven by a constant pulse duration
at a variable frequency. The pulse duration is required to be equal to half of the resonant
period time for switching at the zero-crossing points of current or voltage.

There are many different types of resonant converters. For example, the resonant circuit
can be placed at either the primary or secondary side of the transformer.Another alternative
is that a serial or parallel resonant circuit can be used, depending on whether it is required
to turn off the transistor when the current is zero or the voltage is zero.

The technique of resonant converters is described below, with the ZCS push–pull resonant
converter offered as an example.

ZCS Push-Pull Resonant Converter

Figure 9.27 shows the ZCS push–pull resonant converter. The resonant circuit is formed
by L and C. Assume an initial condition of the voltage VC across C equal to zero. If the
transistor Q1 is now turned on, a sinusoidal current half-swing starts through Q1, L, T r ,
C and Cin. This half-swing charges the capacitor C from zero to Vin. If this first half-
sinusoidal swing is completed, Q1 can be switched off without losses. After a short delay
Q2 can be switched and a next half-sinusoidal swing starts, thus discharging C from Vin

back to 0 Volts.

Each half-sinusoidal swing transfers a certain amount of energy from the primary to the
secondary side of the transformer. The transformer T r operates on its primary side as
a voltage source. For the duration of the current swing through the primary winding,

the output voltage Vout will be transformed to the primary side: V ′
out = Vout

N2

N1
. The
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Fig. 9.27. The ZCS push–pull resonant converter

energy that is transferred by every half-swing is equal to W = V ′
out ·

∫
i(t) d t . This

energy will be transferred twice in each resonant period. This leads to an output power
of Pout = W · 2 fswitching (fswitching: frequency of the converter). Figure 9.28 shows an
equivalent circuit for one half-swing.

Fig. 9.28. Equivalent circuit for one half sinusoidal swing of the ZCS push–pull resonant converter

The resonant frequency is:

f0 = 1

2�
√

LC
(9.35)

This leads to the minimum on-time of the transistors. The on-time should be a little higher
than half of the resonant period time to ensure that the current reduces to zero. Formaximum
energy transfer, V ′

out must be half of Vin. This leads to the turns ratio of the transformer:

V ′
out =

1

2
Vin ⇒ N1

N2
= 1

2
· Vin

Vout
(9.36)
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The maximum output power is achieved if one half-current swing instantly follows the
next.

The transferred energy of each half-swing further depends on the value of C and L. The
higher the value ofC and the lower the value ofL, to maintain a certain resonant frequency,
the higher the amount of energy transfer (see also the peak value of the current in Figs. 9.28
and 9.29).

To achieve a certain output power Pout, considering V ′
out = Vin/2 , it can be shown that for

L and C:

√
L

C
=

(
Vin

2

)2

· 2
�
· fSwitching

f0

Pout
⇒ C = 1

2� ·
√

L

C
· f0

, and L =
(√

L

C

)2

· C

(9.37)

Fig. 9.29.Voltages and currents at the ZCS push–pull resonant converter (VGS : Gate–Source control voltage)

In addition to the general advantages of resonant converters, having lower switching losses
and lower radio interference, this particular resonant converter has two more additional
advantages:

• The ZCS push–pull resonant converter can regulate several output voltages using one
control circuit, as for the flyback converter. This is because several output voltages seem
to be connected in parallel when viewed from the primary side. Therefore the energy
always passes to that output having the lowest voltage value, taking into consideration
the turns ratio.

• The ZCS push–pull resonant converter is both no-load and short-circuit proof, without
any additional electronic precautions being required. The output voltage cannot reach
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more than twice the nominal value, as then V ′
out = Vin. The current cannot reach more

than twice the nominal output current, as then V ′
out = 0 and Î = Vin

√
C/L.

• This converter has minor switching losses and EM interference.

9.4.3 Overview: Switched-Mode Power Supplies

Buck converter

• Vout � Vin

• Short-circuit and no-load proof
simply achievable

• VGS has to float

• Usage: Replacement for analogue
voltage regulators

Boost converter

• Vout � Vin

• Not short-circuit proof

• Not no-load proof if not operating in
a closed loop

• Usage: Battery-supplied devices,
such as notebooks, mobile phones,
camera flashes

Inverting converter/buck-boost
converter

• Vout < 0 V

• Short-circuit proof easily achievable

• Not no-load proof if not operating in
a closed loop

• Usage: Generation of an additional
negative voltage from a positive
supply voltage

Flyback converter

• Several isolated output voltages can
be regulated by one control circuit

• Output power up to several hundred
watts

• Wide range of input and output
voltages (mains voltage
85–270 VAC achievable)

• Transistor breakdown voltage
VDS � 2Vin

• Very good magnetic coupling
required

• Big core with air gap necessary
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Single-transistor forward converter

• One isolated controllable output
voltage

• Output power up to several hundred
watts

• Transistor breakdown voltage
VDS � 2Vin

• Duty cycle
ton

T
� 0.5

• Very good magnetic coupling
required

• Small core without air gap

Two-transistor forward converter
• One isolated controllable output

voltage

• Output power up to several kilowatts

• Transistor breakdown voltage
VDS = Vin

• Duty cycle
ton

T
� 0.5

• No extraordinary magnetic coupling
necessary

• Small core without air gap

Full-bridge push–pull converter
• One isolated controllable output

voltage

• Output power up to many kilowatts

• Transistor breakdown voltage
VDS = Vin

• No extraordinary magnetic coupling
necessary

• Small core without air gap

• Balancing problems

Half-bridge push–pull converter
• One isolated controllable output

voltage

• Output power up to several kilowatts

• Transistor breakdown voltage
VDS = Vin

• No extraordinary magnetic coupling
necessary

• Small core without air gap

• Balancing problems
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Push–pull converter with common
based transistors
• One isolated controllable output

voltage

• Output power up to several hundred
watts

• Transistor breakdown voltage
VDS � 2Vin

• Small core without air gap

• Very good magnetic coupling
between the primary coils required

• Balancing problems

ZCS push–pull resonant converter
• Several isolated output voltages

achievable

• Output power up to several kilowatts

• Transistor breakdown voltage
VDS = Vin

• No extraordinary magnetic coupling
necessary

• Small core without air gap

• Control with fixed pulse duration
and variable frequency

• In case the output power is low
compared to the rated power the
frequency can be audible

9.4.4 Control of Switched-Mode Power Supplies

Theoutput voltage of a switched-modepower supply is kept constantwith the help of closed
loop control. The value of the output voltage (actual value) is compared with a reference
voltage (nominal voltage). The difference between the actual and nominal values controls
the duty cycle of the transistor driver. The control loop regulates the variation of the mains
and of the output current change. This is called line regulation and load regulation.

There are two different methods of regulation: voltage-mode and current-mode control.
The voltage-mode control is the ‘traditional’ method of regulation. Most modern systems
use current-mode control, which is the basis of nearly all IC switched-mode controllers.

Both controller types can be explained using a boost converter as shown in Fig. 9.30:

9.4.4.1 Voltage-Mode Control

The output voltage Vout is compared to the reference voltage Vref via a voltage divider
R1, R2. Then the difference Vref − V

′
out is amplified by the PI-regulator. A pulse width

modulator (PWM, see Sect. 7.6.4.16) converts the output voltage of the PI regulator V2

into a pulse-width modulated voltage t1/T . The output of the PWM controls the transistor
of the boost converter (see also Sect. 9.4.1.2).
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Fig. 9.30. Voltage-modecontrol for a boost converter

The closed loop operates as follows: if the output voltage Vout is too low, the voltage V
′
out

will be lower than the reference voltage Vref . This will cause the output voltage V2 of the
PI regulator to increase. In the PWM circuit V2 is compared with a sawtooth signal, and as
V2 increases the duty cycle t1/T also increases. This causes the output voltage to increase
until V ′

out = Vref .

9.4.4.2 Current-Mode Control

Fig. 9.31. Current-mode control for a boost converter

The output voltage Vout is compared to a reference voltage Vref via the voltage divider
R1, R2 and then amplified by the PI regulator. The output voltage of the PI regulator
is compared with the ramp voltage across the current measuring resistor Ri. When the
voltage across Ri exceeds V2 the output of the comparator resets an SR flip-flop and turns
the transistor off. The SR flip-flop is preset by the clock. The transistor is turned on by the
clock and turned off when the ramp voltage (which means the inductor current) reaches a
certain value. In this way the PI regulator directly controls the inductor current.

The closed loop operates as follows: if the output voltage Vout is too low, the voltage V ′
out

will be lower than the reference voltage Vref . This causes the output voltage of the PI
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regulator V2 to increase. The comparator compares the voltage V2 with the ramp voltage
acrossRi. In this wayV2 determines the value towhich the ramp voltage acrossRi increases
(which means the value to which the inductor current IL increases) before the transistor
is turned off. If V2 increases because the V ′

out is lower than Vref , the inductor current will
increase until V ′

out is exactly equal to the reference voltage.

9.4.4.3 Comparison: Voltage-Mode vs. Current-Mode Control

The PI regulator of the current-mode control regulates the inductor current directly. This
current feeds the output capacitor Cout and the load resistance RL. Together Cout and RL

form a first-order system and the step response is an exponential function.

The voltage-mode control regulates the duty cycle t1/T , which means that the voltage
across L is controlled. This voltage operates on a second-order system formed by L, Cout

and RL. The step response of such a system is a sinusoidal transient approaching a fixed
value.

Current-mode control therefore has a better control response; for this reason most con-
trollers are current-mode types.

Fig. 9.32. Block-diagrams for a current-mode and b voltage-mode control

9.4.4.4 Design of the PI Controller

The PI-controlled system tends to oscillate if the capacitance C1 is selected at too small a
value and if the resistor R4 is too high a value. To alleviate this problem C1 should initially
be selected high (a 1−F foil capacitor is a good choice for most control circuits). The
value of R4 should be selected so that the cutoff frequency of the PI controller stays well
below the cutoff frequency of L and Cout:

1

2�
√

LCout
� 10

1

2�R4C1
(9.38)

The controller should now operate in a stable mode (if not, internal interference or a bad
board architecture could be a problem). To improve the reaction of the closed loop, C1

can be decreased step by step with a corresponding increase of R4. If the loop starts to
oscillate, C1 can be increased by a factor of 10 while R4 has to be decreased by the same
factor. Using these design guides the loop will operate in a stable mode with sufficient
regulation speed for most applications.

Note: In many control circuits the operational amplifier (normally called the error
amplifier) is a transconductance amplifier. It supplies an output current (very
high output impedance), which is proportional to the input voltage. In this case
R4 and C1 are connected between the output and ground to achieve the PI
characteristic of the controller.
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9.4.5 Design of Inductors and High-Frequency Transformers

Inductors store energy, transformers transfer energy. This is the main difference. The
magnetic cores are significantly different for inductors and high-frequency transformers:
inductors need an air gap for storing energy, but transformers do not. Transformers for
flyback converters have to store energy, which means they are not high-frequency trans-
formers; they are in fact inductors with primary and secondary windings. The material
of the cores is normally ferrite. Other materials with high permeability and with a high
saturation point are also used.

9.4.5.1 Calculation of Inductors

An inductor with a certain inductance L and a certain peak current Î can be determined
by the following calculation:

Inductors should store energy. The stored energy of an inductor is W = 1

2
LÎ 2. This energy

is stored as magnetic field energy within the ferrite core and within the air gap (Fig. 9.33).
The core size increases with increasing requirements for stored energy.

• The size of an inductor increases approximately proportionally to the energy to be stored.

I Inductor current
N Number of turns
A Cross-sectional area of the core
lfe Magnetic length of the core
δ Air gap
� Magnetic flux
B Magnetic flux density

Magnetic field strength within the ferrite
Hδ Magnetic field strength within the air gap

Fig. 9.33. Inductor with its magnetic and mechanical parameters

The field energy in the inductor is given as:

W = 1

2

∫
�H · �B dV ≈ 1

2
�HFe · �BFe · VFe︸ ︷︷ ︸

Energy in the ferrite

+ 1

2
�Hδ · �Bδ · Vδ︸ ︷︷ ︸

Energy in the air gap

(9.39)

The magnetic field density �B is continuous and is approximately equal within the air gap
and the ferrite, i.e. �B ≈ �BFe ≈ �Bδ . The magnetic field strength �H is not continuous.
Within the air gap it is increased by a factor r with respect to the field strength within the
ferrite. If this is substituted into Eq. (9.39) and considering �B = 0r · �H, VFe = lFe ·A
and Vδ = δ · A this leads to:

W ≈ 1

2

B2

0

(
lFe

r
+ δ

)
· A (9.40)

The relative permeabilityr of the ferrite is 1000–4000. It should be noted that themagnetic
length of the ferrite is reduced by r in the above equation. Therefore it can be seen that
the energy is mainly stored within the air gap.
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This leads to: W ≈ 1

2

B2 · A · δ
0

• Inductors require an air gap, in which the energy is stored.

Because the energy is stored within the air gap, an inductor requires a certain volume for

the air gap to store a certain amount of energy. The energy is given by
1

2
LÎ 2. The core

material has a limit for the maximummagnetic flux density B. This limit is approximately
Bmax = 0.3 T for the usual ferrite materials. This leads to a minimum required volume of
the air gap:

Vδ = A · δ � L Î 2 · 0
B 2

max

, where Bmax = 0.3 T (9.41)

Knowing the required volume of the air gap, a core can be selected from a data book of
ferrite cores.

The number of turns N can be calculated with help of the magnetic conductance AL (often
simply called the AL value):

N =
√

L

AL
AL: magnetic conductance (9.42)

The AL value can be verified from the data book of the ferrite cores. The maximum flux
density within the ferrite can be calculated using the data of the core data sheet. The
maximum flux density must usually not exceed 0.3 T.

B = L · Î
N · Amin

= N · AL · Î
Amin

!→ �0.3 T (9.43)

Where Amin is the minimum cross-sectional area of the core. The flux density has its
maximum at Amin. The value of Amin can be verified from the data sheet.

Calculation of the Wire

The current density J of the wire can be chosen between 2 and 5 A/mm (depending upon
the size and the insulation, which determines the heat transport out of the inductor). This
leads to the diameter of the wire d:

d =
√

4 · IRMS

� · J , where J = 2 . . . 3 . . . 5
A

mm2
(9.44)

9.4.5.2 Calculation of High-Frequency Transformers

High-frequency transformers transfer electric power. Their physical size depends upon the
power to be transferred and upon the operating frequency. The higher the frequency the
smaller the physical size. Usually frequencies are between 20 and 100 kHz. The material
of the core is ferrite.
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Data books for appropriate cores provide information about the possible transfer power
for various cores.

Therefore the first step in designing a high-frequency transformer is to choose a suitable
core with the help of the data book, since the size of the core is dependent on the transferred
power and the frequency. The second step is to calculate the number of primary turns. This
number determines the magnetic flux density within the core. The number of secondary
turns is the ratio of the primary to secondary voltages. Following this, the diameters of the
primary and secondary wires can be calculated, appropriate to the required RMS values
of the currents.

Calculation of the Minimum Number of Primary Turns

Fig. 9.34. Transformer voltages and currents

The voltage V1 at the primary side of the transformers has a rectangular shape. This results
in an input current I1, which is the addition of the back-transformed secondary current
I2 and the magnetising current IM (Fig. 9.34). To keep the magnetising current IM low, a
magnetic core without an air gap is used.

The rectangular voltage V1 causes a triangular shape for the magnetising current IM. The
magnetising current is approximately independent of the secondary current I2 (see the sim-
ple equivalent circuit in Fig. 9.34). The magnetising current is approximately proportional
to the magnetic flux or flux density. The input voltage V1 determines the magnetic flux.

The physical relationships are given by Faraday’s law: V = N · d�

d t
.

Fig. 9.35. Transformer input voltage and magnetic flux density
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For the transformer shown in Fig. 9.34 it follows that:

�B = V1 · T/2

N1 · A (9.45)

• The change �B in flux density depends on the frequency f = 1/T and the number of
turns N1. The higher the frequency and the number of turns, the lower the flux density
change.

Theminimumnumber of turnsN1min canbe calculated to ensure that a certain changeofflux
density �B is not exceeded. The saturation flux density of about B̂ ≈ 0.3 T (which means
�B̂ ≈ 0.6 T) cannot be used in high-frequency transformers. In push–pull converters,
traversing the hysteresis loop with every clock cycle would result in unacceptable losses,
i.e. heat generation. If no further information on core losses and thermal resistance is
available, �B should be limited to �B ≈0.3–0.2 T for operating frequencies from 20 to
100 kHz. The lower the value of �B, the lower the core losses.

This leads to a minimum number of turns for N1:

N1min � V1 · T/2

�B · Amin
where �B ≈ 0.2–0.3 T (9.46)

where Amin is the minimum cross-sectional area of the core. This is where the flux density
is at a maximum. The value of Amin can be checked from the data sheet.

Note: In single-ended forward converters the core ismagnetised in a unipolar direction
only. In push–pull converters the core is dual-polarity magnetised.

The calculation of the minimum number of turns N1min is equal for these dif-
ferent types of switched-mode power supplies.

Calculation of the Wire Diameter

The diameter of the conductors depends on the RMS value of the current. The current can
be calculated from the power.
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For the full-bridge push–pull converter:

I1RMS ≈ Pout

Vin
and I2RMS = Pout

Vout

For the half-bridge push–pull converter:

I1RMS ≈ 2Pout

Vin
and I2RMS = Pout

Vout

For the single ended forward converter:

I1RMS ≈
√
2Pout

Vin
and I2RMS =

√
2Pout

Vout

The magnetising current can be neglected in this calculation. The current density can be
chosen in a range of 2 to 5 A/mm2, depending on the thermal resistance of the choke. The
cross section Awire and the diameter dwire can be calculated as follows:

Awire = I

J
and dwire =

√
I · 4
J · � , where J = 2 . . . 3 . . . 5

A

mm2

(9.47)

Normally cores are designed so that the available winding cross-sectional area is sufficient
for this calculation. Primary and secondarywindings need the samewinding cross-sectional
area.

Note: If good coupling is important, the primary and secondary windings should be
placed on top of each other. Improved coupling is achieved if the windings are
interlocked. In the following example the coupling is bad in (a), good in (b)
and best in (c).

Note: The primary number of turns should not be chosen significantly higher than
N1min. Otherwise the copper losses of the wire would increase needlessly be-
cause of the longer conductor.

Other literature even gives an optimum value �Bopt, where the sum of the
hysteresis and the copper losses are minimised.

Note: For high frequencies and large diameters of the wire the skin effect must be
considered. For operating frequencies of more than 20 kHz and wire diameters
of more than 1 mm2, stranded wire or copper foil should be used.
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9.4.6 Power Factor Control

The European Standards EN61000-3-2 defines limits for the harmonics of line current.
This concerns appliances, which are determined for the domestic market and have an input
power of � 75 W (special regulations; see EN61000-3-2). Some limit values from this
standard are given in Table 9.2. In practice, this standard means that for many applications
a mains rectifier with smoothing is not allowed because of the amount of harmonics
(Fig. 9.36).

Table 9.2. RMS limits for the harmonics of the line current

Input power 75 to 600 W Input power > 600 W
Harmonic maximum value of maximum value of

order harmonic current harmonic current
n per watt (mA/W) / maximum (A) (A)
3 3.4 / 2.30 2.30
5 1.9 / 1.14 1.14
7 1.0 / 0.77 0.77
9 0.5 / 0.4 0.40

11 0.35 / 0.33 0.33

To keep the line current approximately sinusoidal, a boost converter can be used (Fig. 9.37).
In this case the boost converter is called a power factor preregulator or power factor
correction (PFC). In comparison to the simple boost converter, the PFC is controlled in a
different way: the output voltage is higher than the input voltage as for the boost converter,
but the transistor is turned on and off in such a way that a sinusoidal input current is
achieved instead of a constant output voltage. The transistor is driven in such a way that
the inductor current Iin(t) follows the shape of the rectified mains Vin(t). The output voltage
of the PFC is controlled to approximately Vout ≈ 380 V .

Fig. 9.36. Normal rectifying and smoothing of the mains voltage and the mains current

Fig. 9.37. Boost converter as a power factor preregulator
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9.4.6.1 Currents, Voltages and Power of the PFC

Fig. 9.38. a Currents, voltages and power of the PFC; and b the magnified input current with its high-
frequency ripple

For the following calculations it is assumed that the output power is constant:

Pout = Vout · Iout = const. (9.48)

The input current should be controlled to a sinusoidal shape and should be in phase with
the input voltage. The input power is now pulsating and can be calculated as follows:

Pin (t) = V̂in · Îin
2

· (1− cos 2ωt) (9.49)

The input power consists of a DC part, Pin= = V̂in · Îin
2

, and an AC part, Pin∼ = V̂in · Îin
2

·
cos 2ωt . The DC part is equal to the output power Pout, provided the PFC is loss-free.

Pin = V̂in · Îin
2

= Vout · Iout = Pout (9.50)

In practice, an efficiency of about η = 95% is realistic, which means that Pin ≈ Pout

0.95
.

The output capacitorCout is charged by the pulsating input powerPin and discharged by the
constant output power Pout. This causes a voltage ripple �Vout across Cout, depending on
the value ofCout. For 230V/50 Hz supply, providingVout = 380V and�Vout/Vout = 10%,
Cout can be calculated:

Cout ≈ 0.5
F

W
(9.51)

The choke L determines the high-frequency ripple of the input current �IL (Fig. 9.38 b).
The higher the inductance and the higher the clock frequency f , the lower is the current
ripple. If �IL = 20% of the peak value of the input current Îin, and assuming that the
mains voltage has a minimum value of Vin min = 200 V, it follows that:

L ≈ 50 · 103

f · Pin
L(H), f (Hz), P (W) (9.52)
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and for the maximum inductor current:

ILmax = Îin max + 1

2
�IL = 1.1 · 2Pin

V̂in min

(9.53)

9.4.6.2 Controlling the PFC

A variety of integrated PFC controllers are available for the switching transistor. Usually
the data sheets and application examples of those ICs are very extensive. Nevertheless, it
is very important to understand the working principles of the controller in order to design
proper circuits (Fig. 9.39).

In general, two feedback circuits are required:

One controller for the input current in order to keep it sinusoidal (input current control),
and one controller to keep the average output voltage constant (output voltage control).

Fig. 9.39. The control loops of the PFC

The input control-loop current is led by the input voltage. In this case, the input current
acquires the same shape as the input voltage, and consequently the power factor of the
mains current will be unity.

The output voltage is controlled by comparing it to a constant reference voltage.

The multiplier links the two loops. The output of the multiplier is sinusoidal, and its
magnitude depends on the output voltage-control loop. If the output voltage decreases
from its nominal value, the output voltage of the voltage control amplifier increases, which
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causes the magnitude of the multiplier output to increase. Consequently, the RMS value
of the input current also increases.

For proper operation:

• The low-pass filter R5, C5 should have a cutoff frequency of approximately 10% of
fPWM in order to suppress the current ripple of fPWM in the current measurement at RM.

• The cutoff frequency the PI regulator R5, C6 should be approximately 10 times higher
than the frequency of the mains: fR5 C6 ≈ 500 Hz.

• The cutoff frequency of the output voltage regulator R7, C7 should be 10% of the output
voltage ripple (100 Hz): fR7 C7 ≈ 10 Hz.

• The RMS value of the input current is controlled by the output voltage-control loop,
while the input current control-loop creates a sinusoidal input current.

9.4.7 Radio-Frequency Interference Suppression of Switched-
Mode Power Supplies

Switched-mode power supplies generate radio-frequency interference caused by the
high frequency switching. This interference propagates through space by means of elec-
tromagnetic fields or via the mains supply in the form of currents and voltages. Legislation
limits the levels of permitted interference. These limits are published in the European Stan-
dards. Table 9.3 gives some of the most important limits for non-stationary high-frequency
equipment (interference class B). High-frequency equipment is that which operates at a
frequency in excess of 9 kHz.

Table 9.3. Limits for mobile high frequency equipment class B

Quantity Frequency range Limits Standard
Electromagnetic interference 30 to 230 MHz 30 dB (V/m) EN55022
at 10 m distance 230 to 1000 MHz 37 dB (V/m) Class B
Current harmonics 0 to 2 kHz see Table 9.2 EN61000
at the mains (PFC)
Conducted-mode interference 0.15 to 0.5 MHz∗∗ 66 to 56 dB (V) Q∗ EN55022
voltages at the mains 56 to 46 dB (V) M∗ Class B
with respect to earth 0.5 to 5 MHz 56 dB (V) Q∗

46 dB (V) M∗
5 to 30 MHz 60 dB (V) Q∗

50 dB (V) M∗

∗ Q: Measured with quasi-peak detector
M: Measured with average detector∗∗ Linear decrease to the logarithm of the frequency

9.4.7.1 Radio-Frequency Interference Radiation

High-frequency equipment emission of radio-frequency interference is measured as the
radio noise field strength (V/m). The amount of radio-frequency interference radiation
depends on the rise time of the switched currents and voltages and significantly on the
layout of the printed circuit board. To keep the radio-frequency interference radiation low,
three principles should be adhered to:
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• Meshes, in which switched currents flow, should be designed as small as possible in the
(surrounding) area to keep their electromagnetic field low.

• Nodes whose potential with respect to earth step up and down with switching should be
as small as possible in volumetric space, to keep parasitic capacitance to earth low.

• The switched-mode power supply should have a metal housing.

Note: In addition to reduction of the interference radiation, the first two principles
are also beneficial in keeping the conducted interference leaving the power
supply via the mains low. It should also be noted that a high interference level
results in inaccurate switching of the transistors and problems with the closed
loop-control circuit. This often causes audible noise.

9.4.7.2 Mains Input Conducted-Mode Interference

Switched-mode power supplies take high-frequency currents out of the mains. These cur-
rents cause a voltage drop at the source impedance of the mains, which can be measured at
the mains terminals. According to the European Standards the interference voltages have
to bemeasured between the mains terminals and earth. For this measurement specific radio
interference test equipment is needed,which includes a radio-frequency interference me-
ter and an artificial mains network. This equipment is required to define a specific mains
impedance for comparable measurements. To reduce conducted-mode interference special
radio-frequency interference filters or electromagnetic interference filters (EMI-filters)
are employed.

A distinction ismade between three different types of radio interference voltage (Fig. 9.40):

• Unsymmetric radio-frequency interference voltage: This is the high- frequency volt-
age between earth and each mains terminal. This is the only voltage measured in accor-
dance with standards. The limits in Table 9.3 are valid for this voltage only.

• Common-mode radio-frequency interference voltage (asymmetric radio-inter-
ference voltage): This is the sum of all unsymmetric interference voltages with respect
to earth.

• Differential-mode radio-frequency interference voltage (symmetric radio-freq-
uency interference voltage): This is the high-frequency voltage between the mains
terminals.

Fig. 9.40. Single-phase mains radio-frequency interference voltages

Although the legislation requires only measurement of the unsymmetric radio-frequency
interference voltages, the common-mode and differential-mode interferences are decisive
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for radio-frequency interference suppression.The respective suppressionof common-mode
and differential-mode interference requires different designs and components.

9.4.7.3 Suppression of Common-Mode Radio-Frequency Interference

Common-mode radio-frequency interference voltages at the mains terminals L1 and N

(for three-phase mains L1, L2, L3 and N ) are common-mode voltages with respect to
earth potential PE , which means they are equal in magnitude and phase. The interference
currents I∼∼∼, which are driven by this common-mode voltage, are also common-mode
currents. These flow via earth (earth conductor) and back through the parasitic capacitance
Cearth. Cearth is very low. Therefore the common-mode interference voltage has a very high
impedance, which means that this interference source acts like a current source. A low-
pass filter to suppress the interference voltages at the mains terminals must therefore be
arranged as in Fig. 9.41. Looking from the switched-mode power supply, the required low-
pass filter must have a shunt capacitor (Cy) and a current-compensated choke. Current-
compensated chokes are wound so that no magnetic field is generated by the operating
current (50 or 60 Hz), see Fig. 9.42. Therefore the choke only acts against the common-
mode interference current and does not affect the operating current.

Fig. 9.41. Suppression of asymmetric (common-mode) radio frequency interference voltages

The capacitors are called y-capacitors. Y-capacitors have to fulfil special safety require-
ments because theywould connect themains phase to ground in case of a fault.Y-capacitors
may not exceed a certain capacitance to ensure that the permitted maximum earth leakage
current is not exceeded. The earth leakage current is a 50 Hz current (or 60 Hz in certain
countries). The maximum earth leakage current is 3.5 mA (in medical equipment it is a
maximum of 0.5 mA). According to the standards for the measurement of earth leakage
current, terminals L1 and N have to be connected, and the maximum mains voltage has to
be applied between L1 &N and P E. This means that the y-capacitors are in parallel. For
European 230 V/50 Hz mains it follows that for the maximum y-capacitor:

Cy � 1

2
· 230 V+ 10%

2�50 Hz · 3.5 mA
≈ 22 nF

9.4.7.4 Suppression of Differential-Mode Radio Frequency Interference

Differential-mode radio interference voltages are high-frequency voltages between the
mains terminals L1 and N . To reduce the interference level, an LC low-pass filter has
to be inserted between the mains conductors L1 and N (Fig. 9.43). The differential-mode
interference voltage results mainly from the pulsed current, which is taken by the switched-
modepower supply from themains rectifier smoothing capacitor.Because of the impedance
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Fig. 9.42. Left: current-compensated choke for common-mode interference, right: not current-compensated
choke (in this case, a ring-core double choke with powder core) for differential-mode interferences

of the smoothing capacitor, a high frequency voltage is generated between L1 and N . This
is a low impedance, which means that the interference source acts as a voltage source.
Looking from the switched-mode power supply the interference filter must be arranged
using a series choke followed by a shunt capacitor (Fig. 9.43). The choke must not be a
compensated choke, because differential-mode interference current and 50 Hz-operating
current (which is also a differential type) cause a magnetic field within the core (Fig. 9.42).
To avoid saturation these EMI suppression chokes require an air gap. In a powder-core
choke the air gap is not visible, because the air gap is achieved with iron powder, which is
glued together. Air gap size can be fixed by the amount of glue used. Open cores are also
used.With this type the magnetic field loop closes through space. Powder choke cores and
other ring cores are preferred because they have a lower magnetic field outside the core.

Fig. 9.43. Suppression of differential-mode interference

The capacitors for this purpose are called x-capacitors. They have a lower test-voltage
than y-capacitors and are not limited in their value. Foil-type capacitors up to 1 F are
normally used.

Note: Sometimes the impedance of the differential-mode interference source is ap-
proximately equal to the mains impedance. In that case a p-low-pass filter using
two x-capacitors are appropriate (in Fig. 9.43 dotted lined).

9.4.7.5 Complete Radio-Frequency Interference Filter

Figure 9.44 shows a complete radio-frequency interference filter. The component values
can be found iteratively and with the help of experience.With the radio-interference meter
only the unsymmetric interference voltages can be measured. Therefore it is not possible
to differentiate between common-mode and differential-mode interference. In practice,
the operating frequency and several harmonics are differential-mode interference and all
high frequencies, say above 5 MHz, are common-mode. Often a powder core choke is not
required.
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Fig. 9.44. Radio-frequency interference filter for common-mode and differential-mode filtering

9.5 Notation Index

A cross-sectional area
AL magnetic conductance
BFE magnetic flux density in iron/ferrite
Bδ magnetic flux density in the air gap
C capacitor
D diode
f frequency
f0 resonant frequency
�V, �I voltage ripple, current ripple
in as index: input value
HFE magnetic field strength in iron/ferrite
Hδ magnetic field strength in the air gap
I DC current, RMS value of a current

Î peak value of a current

Ī average value of a current
IF current in a diode in forward direction
Is/c short circuit current
J current density
lFE magnetic length of the iron/ferrite core
L inductivity
out as index: output value
P power
PL power loss
PWM pulse-width modulated
R as index: rated value
RM current measurement resistor
RMS root-mean square
t1 on-time of a transistor
t1/T duty cycle
T period time
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VBE base–emitter voltage
VF forward voltage drop at a diode
VFE magnetic volume of a ferrite core
Vmax maximum value of voltage
Vmin minimum value of voltage
Vref reference voltage
VRpp peak-to-peak voltage ripple
VPWM pulse width modulated voltage
Vz zener voltage
Vδ volume of the air gap
Z impedance
Zmax impedance of a capacitor (in the data sheet usually for 10 kHz)
δ length of the air gap
μ0 permeability of air/vacuum, 1.257 · 10−6 Vs/Am
μr relative permeability

9.6 Further Reading
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A Mathematical Basics

A.1 Trigonometric Functions

A.1.1 Properties

Fig. A.1. Graphs of sine and cosine functions

Fig. A.2. Graphs of tangent and cotangent functions

Special values
0 �/6 �/4 �/3 �/2

α =
0◦ 30◦ 45◦ 60◦ 90◦

sin x = 0 1/2
√
2/2

√
3/2 1

cos x = 1
√
3/2

√
2/2 1/2 0

tan x = 0
√
3/3 1

√
3 ∞

Fig. A.3. Signs of the trigonometric functions
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Conversions

cosα sin α tan α

cosα = – ±
√
1− sin2 α 1

±√1+ tan2 α

sin α = ±√1− cos2 α – tan α

±√1+ tan2 α

tan α = ±√1− cos2 α
cosα

sin α

±
√
1− sin2 α

–

sin2 α + cos2 α = 1; tan α = sin α

cosα
; cot α = 1

tan α

Squares of trigonometric functions

sin2 α cos2 α tan2 α

sin2 α = – 1− cos2 α
tan2 α

1+ tan2 α

cos2 α = 1− sin2 α –
1

1+ tan2 α

tan2 α = sin2 α

1− sin2 α

1− cos2 α

cos2 α
–

Symmetry properties

sin(−α) = − sin α odd function

cos(−α) = cosα even function

tan(−α) = − tan α odd function

Sums and differences with �

x = (�/2− α) (� − α) (� + α) (�/2+ α)

sin x = cosα sin α − sin α cosα

cos x = sin α − cosα − cosα − sin α

tan x = cot α − tan α tan α − cot α

A.1.2 Sums and Differences of Trigonometric Functions

sin α + sin β = 2 sin

(
α + β

2

)
· cos

(
α − β

2

)
(A.1)

sin α − sin β = 2 cos

(
α + β

2

)
· sin

(
α − β

2

)
(A.2)

cosα + cosβ = 2 cos

(
α + β

2

)
· cos

(
α − β

2

)
(A.3)
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cosα − cosβ = −2 sin

(
α + β

2

)
· sin

(
α − β

2

)
(A.4)

tan α ± tan β = sin(α ± β)

cosα · cosβ
(A.5)

A.1.3 Sums and Differences in the Argument

sin(α ± β) = sin α cosβ ± cosα sin β (A.6)

cos(α ± β) = cosα cosβ ∓ sin α sin β (A.7)

tan(α ± β) = tan α ± tan β

1∓ tan α tan β
(A.8)

A.1.4 Multiples of the Argument

sin 2α = 2 sin α cosα (A.9)

cos 2α = cos2 α − sin2 α (A.10)

tan 2α = 2 tan α

1− tan2 α
(A.11)

sin 3α = 3 sin α − 4 sin3 α (A.12)

cos 3α = 4 cos3 α − 3 cosα (A.13)

tan 3α = 3 tan α − tan3 α

1− 3 tan2 α
(A.14)

sin 4α = 8 cos3 α sin α − 4 cosα sin α (A.15)

cos 4α = 8 cos4 α − 8 cos2 α + 1 (A.16)

tan 4α = 4 tan α − 4 tan3 α

1− 6 tan2 α + tan4 α
(A.17)

sin
α

2
= ±

√
1− cosα

2
(A.18)

cos
α

2
= ±

√
1+ cosα

2
(A.19)

tan
α

2
= ±

√
1− cosα

1+ cosα
(A.20)

Note: In Eqs. (A.18)–(A.20) the sign of the square root must be equal to the sign of
the function on the left side of the equation.
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A.1.5 Weighted Sums of Trigonometric Functions

a · cosα + b · cosβ = c · cos γ (A.21)

with

c = √a2 + b2 + 2ab · cos(α − β) ; tan γ = a·sin α+b·sin β

a·cosα+b·cosβ
; (A.22)

a · sin α + b · sin β = c · sin γ ; (A.23)

with

c and tan γ as in Eq. (A.22)

A.1.6 Products of Trigonometric Functions

cosα · cosβ = 1

2

[
cos(α − β)+ cos(α + β)

]
(A.24)

cosα · sin β = 1

2

[
sin(α + β)− sin(α − β)

]
(A.25)

sin α · sin β = 1

2

[
cos(α − β)− cos(α + β)

]
(A.26)

sin α · cosβ = 1

2

[
sin(α − β)+ sin(α + β)

]
(A.27)

sin(α + β) · sin(α − β) = cos2 β − cos2 α (A.28)

cos(α + β) · cos(α − β) = cos2 β − sin2 α (A.29)

A.1.7 Triple Products

cosα · cosβ · cos γ = 1

4

[
cos(α + β + γ )+ cos(−α + β + γ ) (A.30)

+ cos(α − β + γ )+ cos(α + β − γ )
]

cosα · cosβ · sin γ = 1

4

[
sin(α + β + γ )+ sin(−α + β + γ ) (A.31)

+ sin(α − β + γ )− sin(α + β − γ )
]

cosα · sin β · sin γ = 1

4

[ − cos(α + β + γ )− cos(−α + β + γ ) (A.32)

+ cos(α − β + γ )+ cos(α + β − γ )
]

sin α · sin β · sin γ = 1

4

[ − sin(α + β + γ )+ sin(−α + β + γ ) (A.33)

+ sin(α − β + γ )+ sin(α + β − γ )
]
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A.1.8 Powers of Trigonometric Functions

cos2 α = 1

2
(1+ cos 2α) (A.34)

sin2 α = 1

2
(1− cos 2α) (A.35)

cos3 α = 1

4
(cos 3α + 3 cosα) (A.36)

sin3 α = 1

4
(3 sin α − sin 3α) (A.37)

cos4 α = 1

8
(cos 4α + 4 cos 2α + 3) (A.38)

sin4 α = 1

8
(cos 4α − 4 cos 2α + 3) (A.39)

A.1.9 Trigonometric Functions with Complex Arguments

cos z = 1

2
ejz + 1

2
e−jz (A.40)

sin z = 1

2j
ejz − 1

2j
e−jz (A.41)

A.2 Inverse Trigonometric Functions (Arc Functions)

Arc functions are the inverse functions of trigonometric functions.

arcsin(sin α) = α arccos(cosα) = α

arccot(cot α) = α arctan(tan α) = α

Note: These functions are designated on calculators as sin−1, cos−1 and tan−1.

Because of the periodicity of the trigonometric functions their inverse functions are am-
biguous. Therefore the principal values are defined.

−�/2 ≤ arcsin x ≤ +�/2 (A.42)

0 ≤ arccos x ≤ � (A.43)

−�/2 ≤ arctan x ≤ +�/2 (A.44)

Within the range of the principal values it holds that

arcsin x = �/2− arccos x = arctan(x/
√
1− x2) (A.45)

arccos x = �/2− arcsin x = arccot(x/
√
1− x2) (A.46)

arctan x = �/2− arccotx = arcsin(x/
√
1+ x2) (A.47)
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Fig. A.4. Graphs of the arcsine and arccosine functions within the range of the principal values

Fig. A.5. Graph of the arctan function

A.3 Hyperbolic Functions

cosh z = 1

2
ez + 1

2
e−z (A.48)

sinh z = 1

2
ez − 1

2
e−z (A.49)

tanh z = ez − e−z

ez + e−z
(A.50)

The addition theorems of the hyperbolic functions are obtained by formally substituting

sin z → j sinh z; cos z → cosh z

Example: cos2 z+ sin2 z → cosh2 z+ j2 sinh2 z = cosh2 z− sinh2 z = 1

A.4 Differential Calculus

A.4.1 Basics of Differential Calculus

While f (x), u(x), v(x) are functionswith an existing derivative, a is a purely real constant.

a′ = 0

(au)′ = au′

(u+ v)′ = u′ + v′

(u · v)′ = uv′ + vu′ Product rule(u

v

)′ = u′v − uv′

v2
Division rule

[f (u(x))]′ = f ′(u) · u′(x) Chain rule
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A.4.2 Derivatives of Elementary Functions

f (x) f ′(x)

a 0

x 1

axn anxn−1

ax ax ln a

eax aeax

xx xx(1+ ln x)

loga x
1

x
loga e

ln x
1

x
sin x cos x

cos x − sin x

tan x cos−2 x = 1+ tan2 x

cot x − sin−2 x = −(1+ cot2 x)

sinh x cosh x

cosh x sinh x

f (x) f ′(x)

tanh x cosh−2 x = 1− tanh2 x

coth x − sinh−2 x = 1− coth2 x

arcsin x
1√

1− x2

arccos x − 1√
1− x2

arctan x
1

1+ x2

arccot x − 1

1+ x2

arsinh x
1√

x2 + 1

arcosh x
1√

x2 − 1

artanh x
1

1− x2
, x2 < 1

arcoth x
1

1− x2
, x2 > 1

A.5 Integral Calculus

A.5.1 Basics of Integral Calculus

b∫
a

f (x) dx = −
a∫

b

f (x) dx (A.51)

b∫
a

f (x) dx =
c∫

a

f (x) dx +
b∫

c

f (x) dx (A.52)

b∫
a

f (x) dx −
c∫

a

f (x) dx =
b∫

c

f (x) dx (A.53)

b∫
a

f (x)± g(x) dx =
b∫

a

f (x) dx ±
b∫

a

g(x) dx (A.54)

b∫
a

u dv = u(b)v(b)− u(a)v(a)−
b∫

a

v du (A.55)
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A.5.1.1 Integrals of Elementary Functions∫
xn dx = xn+1

n+ 1
for n �= −1 (A.56)∫

dx

x
= ln x (A.57)∫

f (x)f ′(x) dx = 1

2
(f (x))2 (A.58)∫

f ′(x)

f (x)
dx = ln(f (x)) (A.59)

∫
f ′(x)

2
√

f (x)
dx = √f (x) (A.60)∫

ex dx = ex (A.61)∫
eax dx = 1

a
eax (A.62)∫

ln x dx = x ln x − x (A.63)∫
ax ln a dx = ax (A.64)∫
sin x dx = − cos x (A.65)∫
cos x dx = sin x (A.66)∫
cot x dx = ln | sin x| (A.67)∫
dx

sin2 x
= − cot x (A.68)∫

dx

cos2 x
= tan x (A.69)∫

sinh x dx = cosh x (A.70)∫
cosh x dx = sinh x (A.71)∫

dx

sinh2 x
= − coth x (A.72)∫

dx

cosh2 x
= tanh x (A.73)∫

dx√
1− x2

= arcsin x = − arccos x (A.74)
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dx√

x2 − 1
= arcosh x = ln

(
x +

√
x2 − 1

)
(A.75)

∫
dx√

x2 + 1
= arsinh x = ln

(
x +

√
x2 + 1

)
(A.76)

∫
dx

1+ x2
= arctan x = − arccot x (A.77)∫

dx

1− x2
= artanh x, for x2 < 1

= arcoth x, for x2 > 1 (A.78)∫
1

a2 + x2
dx = 1

a
arctan

(x

a

)
, a �= 0 (A.79)

∫
1

a2 − x2
dx = 1

2a
ln

∣∣∣∣a + x

a − x

∣∣∣∣ (A.80)

∫ √
1+ x√
1− x

dx = arcsin x −
√
1− x2 (A.81)

A.5.2 Integrals Involving Trigonometric Functions∫
sinmx dx = − 1

m
cosmx (A.82)∫

sin2 x dx = −1

2
sin x cos x + x

2
= −1

4
sin 2x + x

2
(A.83)

∫
sin3 x dx = −1

3
(sin2 x + 2) · cos x = −3 cos x

4
+ cos3 x

12
(A.84)∫

sinn x dx = −1

n
sinn−1 x cos x + n− 1

n

∫
sinn−2 x dx (A.85)

∫
dx

sin x
= ln

∣∣∣∣ 1

sin x
− cot x

∣∣∣∣ = ln
∣∣∣tan x

2

∣∣∣
= −1

2
ln

(
1+ cos x

1− cos x

)
= artanh(cos x) (A.86)

∫
dx

sin2 x
= − cot x (A.87)∫

sin(a + bx) dx = −1

b
cos(a + bx) (A.88)∫

cosmx dx = 1

m
sinmx (A.89)∫

cos2 x dx = 1

2
sin x cos x + x

2
= 1

4
sin 2x + x

2
(A.90)
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cos3 x dx = 1

3
sin x(cos2 x + 2) = 3

4
sin x + sin3 x

12
(A.91)∫

cosn x dx = 1

n
sin x cosn−1 x + n− 1

n

∫
cosn−2 x dx (A.92)

∫
dx

cos x
= ln

∣∣∣∣ 1

cos x
+ tan x

∣∣∣∣ = ln tan
(�
4
+ x

2

)

= 1

2
ln

(
1+ sin x

1− sin x

)
= artanh(sin x) (A.93)

∫
dx

cos2 x
= tan x (A.94)∫

cos(a + bx) dx = 1

b
(sin a + bx) (A.95)

∫
sin x cos x dx = sin2 x

2
(A.96)∫

dx

sin x cos x
= ln(tan x) (A.97)∫

sinmx sin nx dx = sin(m− n)x

2(m− n)
− sin(m+ n)x

2(m+ n)
, for m2 �= n2 (A.98)∫

cosmx cos nx dx = sin(m− n)x

2(m− n)
+ sin(m+ n)x

2(m+ n)
, for m2 �= n2 (A.99)∫

sinmx cos nx dx = −cos(m− n)x

2(m− n)
− cos(m+ n)x

2(m+ n)
, for m2 �= n2 (A.100)∫

sin x cosn x dx = − 1

n+ 1
cosn+1 x (A.101)∫

sinn x cos x dx = 1

n+ 1
sinn+1 x (A.102)∫

tan x dx = − ln |cos x| (A.103)∫
cot x dx = ln |sin x| (A.104)∫
tan2 x dx = tan x − x (A.105)∫
cot2 x dx = − cot x − x (A.106)∫
x sin x dx = sin x − x cos x (A.107)∫
x2 sin x dx = 2x sin x − (x2 − 2) cos x (A.108)
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x3 sin x dx = (3x2 − 6) sin x − (x3 − 6x) cos x (A.109)∫
xn sin x dx = −xn cos x + n

∫
xn−1 cos x dx (A.110)

∫
x sin2 x dx = x2

4
− x

4
sin 2x − 1

8
cos 2x (A.111)

∫
x2 sin2 x dx = x3

6
−
(

x2

4
− 1

8

)
sin 2x − x

4
cos 2x (A.112)

∫
sin x

x
dx = x − x3

3 · 3! +
x5

5 · 5! −
x7

7 · 7! +− · · · (A.113)∫
sin x

xn
dx = − sin x

(n− 1)xn−1
+ 1

n− 1

∫
cos x

xn−1
dx, for n �= 1 (A.114)∫

x cos x dx = cos x + x sin x (A.115)∫
x2 cos x dx = 2x cos x + (x2 − 2) sin x (A.116)∫
x3 cos x dx = (3x2 − 6) cos x + (x3 − 6x) sin x (A.117)∫
xn cos x dx = xn sin x − n

∫
xn−1 sin x dx (A.118)

∫
x cos2 x dx = x2

4
+ x

4
sin 2x + 1

8
cos 2x (A.119)

∫
x2 cos2 x dx = x3

6
+
(

x2

4
− 1

8

)
sin 2x + x

4
cos 2x (A.120)

∫
cos x

x
dx = ln |x| − x2

2 · 2! +
x4

4 · 4! −
x6

6 · 6! +− · · · (A.121)∫
cos x

xn
dx = − cos x

(n− 1)xn−1
− 1

n− 1

∫
sin x

xn−1
dx, for n �= 1 (A.122)

A.5.3 Integrals Involving Exponential Functions∫
ex dx = ex (A.123)∫
e−x dx = −e−x (A.124)∫
eax dx = 1

a
eax (A.125)

∫
e−x2

dx = x

0! · 1 −
x3

1! · 3 +
x5

2! · 5 − . . . Gaussian error integral (A.126)
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xeax dx = 1

a2
eax(ax − 1) (A.127)∫

xneax dx = xn

a
eax − n

a

∫
xn−1eax dx

= eax

[
xn

a
− nxn−1

a2
+ n(n− 1)xn−2

a3
−+ · · ·

]
(A.128)∫

eax

x
dx = ln x + ax + a2x2

2 · 2! +
a3x3

3 · 3! +
a4x4

4 · 4! + · · ·
(A.129)∫

eax+c sin(bx + d) dx = eax+c

a2 + b2

[
a sin(bx + d)− b cos(bx + d)

]
(A.130)

∫
eax+c cos(bx + d) dx = eax+c

a2 + b2

[
a cos(bx + d)+ b sin(bx + d)

]
(A.131)

A.5.4 Integrals Involving Inverse Trigonometric Functions∫
arcsin

x

a
dx = x arcsin

x

a
+
√

a2 − x2 (A.132)∫
arccos

x

a
dx = x arccos

x

a
−
√

a2 − x2 (A.133)∫
arctan

x

a
dx = x arctan

x

a
− a ln(

√
a2 + x2) (A.134)∫

arccot
x

a
dx = x arccot

x

a
+ a ln(

√
a2 + x2) (A.135)∫

x arctan
x

a
dx = −ax

2
+ x2 + a2

2
arctan

x

a
(A.136)

A.5.5 Definite Integrals

�
2∫

0

sinn x dx =
�
2∫

0

cosn x dx

= 1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · · n

�

2
, for even n

= 2 · 4 · 6 · · · (n− 1)

1 · 3 · 5 · · · n
, for odd n

=
√

�

2

�

(
n

2
+ 1

2

)
�

(
n

2
+ 1

) , for n > −1 (A.137)
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∞∫
0

sin ax

x
dx = �

2
, for a > 0

= 0, for a = 0

= −�

2
, for a < 0 (A.138)

∞∫
0

cos ax

x
dx = ∞ (A.139)

∞∫
−∞

cos ax

x
dx = 0 (A.140)

�∫
0

sin2(ax) dx = �

2
, for a �= 0 (A.141)

�∫
0

cos2(ax) dx = �

2
, for a �= 0 (A.142)

�∫
0

sinmx · sin nx dx =
�∫

0

cosmx · cos nx dx (A.143)

= 0, for m �= n, with m, n = 1, 2, 3, . . .

= �

2
, for m = n, with m, n = 1, 2, 3, . . .

+a∫
−a

sin
m�x

a
· sin n�x

a
dx =

+a∫
−a

cos
m�x

a
· cos n�x

a
dx (A.144)

= 0, for m �= n with m, n = 1, 2, 3, . . .

= a, for m = n with m, n = 1, 2, 3, . . .

+a∫
−a

sin
m�x

a
· cos n�x

a
dx = 0, with m, n = 1, 2, 3, . . . (A.145)

∞∫
0

sinmx · sin nx

x
dx = 1

2
ln

m+ n

m− n
, with m > n > 0 (A.146)
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∞∫
0

sinmx · cos nx

x
dx = �

2
, for m > n ≥ 0 (A.147)

= �

4
, for m = n > 0

= 0, for n > m ≥ 0

∞∫
0

sin x2 dx =
∞∫
0

cos x2 dx = 1

2

√
�

2
(A.148)

∞∫
0

e−ax dx = 1

a
, with a > 0 (A.149)

∞∫
0

e−a2x2
dx = 1

2a

√
� , with a > 0 (A.150)

∞∫
0

xe−x2
dx = 1

2
(A.151)

∞∫
0

x2e−x2
dx = 1

4

√
� (A.152)

∞∫
0

x2e−a2x2
dx =

√
�

4a3
, a > 0 (A.153)

∞∫
0

e−ax sin(nx) dx = n

a2 + n2
, with a > 0 (A.154)

∞∫
0

e−ax cos(nx) dx = a

a2 + n2
, with a > 0 (A.155)

∞∫
0

e−a2x2
cos bx dx =

√
�

2a
e−b/4a2

, a > 0 (A.156)

∞∫
0

xne−ax dx = n!

an+1
, a > 0, n > 0, integer (A.157)
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A.6 The Integral of the Standard Normal Distribution

For a normally distributed quantity x with a mean value μ and a standard deviation σ the
normalised random quantity z = (x − μ)/σ is distributed according to a normalised
standard (Gaussian) distribution. The following pages show tables of the integral of this
distribution.

f(z)

0 z

� (z)
�(z) = 1√

2�

z∫
0

e
−x2

2 dx

Application Problem statement
p = 2 ·�(z) Probabilityp that the value does not devi-

ate more than |z| from the average value
(higher or lower).

0 z� z
Example: Given a set of 100 �± 5% re-
sistors. What is the portion of the com-
ponents deviating not more than ±15 �
from the nominal value?
z = (115 − 100)/5 = 3.0 ⇒ p =
2 ·�(z) = 99.7%

p = 1− 2 ·�(z) Probability that the value does deviate
more than |z| from the average value
(higher or lower).

0 z� z
Example: What part of the components
have an actual resistance value below
90 � or above 110 �?
z = 2.0⇒ p = 1− 2 ·�(z) = 4.55%

p = 0.5−�(z) Probability that the average is exceeded
by more than z.

0 z

Example: What percentage of the com-
ponents have an actual value exceeding
110 �?
z = 2.0⇒ p = 0.5−�(z) = 2.275%

p = �(z1)−�(z2) Probability that the value is between z1
and z2.

0 z1 z2

Example: What is the probability that a
resistance value of the set is between
114.5 � and 115 �?
z1 = (114.5− 100)/5 = 2.9,
z2 = 3.0⇒
p = �(3.0)−�(2.9)
= 0.498 650 0− 0.498 134 1 = 0.05%

Note: For these kinds of problems it is reasonable to include many digits in the
calculations, sincemany digitswill cancel out each other calculating differences
of almost equal numbers.
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Confidence Intervals

0 z� z 0 z� z 0 z

z

90.0 % 10.0 % 5.0 % 1.645
95.0 % 5.0 % 2.5 % 1.960
98.0 % 2.0 % 1.0 % 2.326
99.0 % 1.0 % 0.5 % 2.576
99.5 % 0.5 % 0.25 % 2.807
99.8 % 0.2 % 0.1 % 3.091
99.9 % 0.1 % 0.05 % 3.293
99.95% 0.05% 0.025% 3.483
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Integral of the Standard Normal Distribution
z 0 1 2 3 4 5 6 7 8 9

0.0 0.0 000 040 080 120 160 199 239 279 319 359
0.1 398 438 478 517 557 596 636 675 714 753
0.2 793 832 871 910 948 987 0.1 026 0.1 064 0.1 103 0.1 141
0.3 0.1 179 217 255 293 331 368 406 443 480 517
0.4 554 591 628 664 700 736 772 808 844 879
0.5 915 950 985 0.2 019 0.2 054 0.2 088 0.2 123 0.2 157 0.2 190 0.2 224
0.6 0.2 257 291 324 357 389 422 454 486 517 549
0.7 580 611 642 673 704 734 764 794 823 852
0.8 881 910 939 967 995 0.3 023 0.3 051 0.3 078 0.3 106 0.3 133
0.9 0.3 159 186 212 238 264 289 315 340 365 389

1.0 413 438 461 485 508 531 554 577 599 621
1.1 643 665 686 708 729 749 770 790 810 830
1.2 849 869 888 907 925 944 962 980 997 0.4 015
1.3 0.4 032 049 066 082 099 115 131 147 162 177
1.4 192 207 222 236 251 265 279 292 306 319
1.5 332 345 357 370 382 394 406 418 429 441
1.6 452 463 474 484 495 505 515 525 535 545
1.7 554 564 573 582 591 599 608 616 625 633
1.8 641 649 656 664 671 678 686 693 699 706
1.9 713 719 726 732 738 744 750 756 761 767

2.0 0.4 772 499 777 845 783 084 788 218 793 249 798 179 803 008 807 739 812 373 816 912
2.1 821 356 825 709 829 970 834 143 838 227 842 224 846 137 849 966 853 713 857 379
2.2 860 966 864 475 867 907 871 263 874 546 877 756 880 894 883 962 886 962 889 894
2.3 892 759 895 559 898 296 900 969 903 582 906 133 908 625 911 060 913 437 915 758
2.4 918 025 920 237 922 397 924 506 926 564 928 572 930 531 932 443 934 309 936 128
2.5 937 903 939 634 941 322 942 969 944 574 946 138 947 664 949 150 950 600 952 012
2.6 953 388 954 729 956 035 957 307 958 547 959 754 960 929 962 074 963 188 964 274
2.7 965 330 966 358 967 359 968 332 969 280 970 202 971 099 971 971 972 820 973 645
2.8 974 448 975 229 975 988 976 725 977 443 978 140 978 817 979 476 980 116 980 737
2.9 981 341 981 928 982 498 983 051 983 589 984 111 984 617 985 109 985 587 986 050

3.0 0.4 986 500 986 937 987 361 987 772 988 170 988 557 988 932 989 296 989 649 989 991
3.1 990 323 990 645 990 957 991 259 991 552 991 836 992 111 992 377 992 636 992 886
3.2 993 128 993 363 993 590 993 810 994 023 994 229 994 429 994 622 994 809 994 990
3.3 995 165 995 335 995 499 995 657 995 811 995 959 996 102 996 241 996 375 996 505
3.4 996 630 996 751 996 868 996 982 997 091 997 197 997 299 997 397 997 492 997 584
3.5 997 673 997 759 997 842 997 922 997 999 998 073 998 145 998 215 998 282 998 346
3.6 998 409 998 469 998 527 998 583 998 636 998 688 998 739 998 787 998 834 998 878
3.7 998 922 998 963 999 004 999 042 999 080 999 116 999 150 999 184 999 216 999 247
3.8 999 276 999 305 999 333 999 359 999 385 999 409 999 433 999 456 999 478 999 499
3.9 999 519 999 538 999 557 999 575 999 592 999 609 999 625 999 640 999 655 999 669

4.0 0.4 999 683 696 709 721 733 744 755 765 775 784
4.1 793 802 810 819 826 834 841 848 854 860
4.2 866 872 878 883 888 893 898 902 906 911
4.3 915 918 922 925 929 932 935 938 941 943
4.4 946 948 951 953 955 957 959 961 963 964
4.5 966 968 969 970 972 973 974 976 977 978
5.0 997 129 997 274 997 412 997 544 997 669 997 787 997 900 998 008 998 110 998 207
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B.1 The International System of Units (SI)

SI Base Units

Quantity Name Symbol Definition

Length Meter m 1 m is the length that light passes in
1/299 792 458 seconds.

Time Second s 1 s is the duration of 9 192 631 770 periods
of the radiation corresponding to the transi-
tion between the two hyperfine levels of the
ground state of the 133Cs atom.

Mass Kilogram kg 1 kg is the mass of the international kilogram
prototype (a platinum–iridium cylinder).

Electric current Ampere A 1 A is that constant current which, if main-
tained in two straight parallel conductors of
infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum,
would produce a force equal to 2 · 10−7 N per
meter of length.

Temperature Kelvin K 1 K is the fraction 1/273.16 of the thermody-
namic temperature of the triple point ofwater.

Amount of substance Mole mol 1 mol is the amount of substance of a system
that contains as many elementary entities as
there are atoms in 0.012 kg of carbon 12C.

Luminous intensity Candela cd 1 cd is the luminous intensity, in a defined
direction, of a source that emits monochro-
matic radiation of frequency 540 THz and
that has a radiant intensity in that direction
of 1/683 W/sr.

The SI system (French: Système International d’Unités) consists of

• seven base units (e.g. the ampere),

• derived coherent units (e.g. the Watt second),

• additional noncoherent accepted units (e.g. the hour).

The speed of light is defined as c0 = 299 792 458 m/s and thus combines the two basic
units length and time. The coherent derived units are products or quotients of the basic
units. The noncoherent units include various proportional factors (apart from powers of
ten), such as, for example, 3600 for seconds and hours.
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B.1.1 Decimal Prefixes

A quantity consists of a value and a unit. One (and only one) decimal prefix may be used
before the unit symbol, e.g. k� for 103 �. Usually only powers of 1000 are used for this,
e.g. kilo, mega, milli. Some (for historical reasons) exceptions are cm, hPa, decibel and
some others.

Decimal prefixes
Symbol Prefix Factor Symbol Prefix Factor

d deci- 10−1 D deca- 101

c centi- 10−2 H hecto- 102

m milli- 10−3 k kilo- 103

 micro- 10−6 M mega- 106

n nano- 10−9 G giga- 109

p pico- 10−12 T tera- 1012

f femto- 10−15 P peta- 1015

a atto- 10−18 E exa- 1018

Expressions in the USA: 109, billion; 1012, trillion; 1015, quadrillion; 1018, quintillion. In
France and Germany a billion is actually defined as 1000 times the American billion.

In circuit diagrams the capacitance and resistance values are often noted in a short form.
The decimal prefix then replaces the decimal point.

3k3 is 3.3 k�

3p3 is 3.3 pF
6M8 is 6.8 M�

2n7 is 2.7 nF
2R2 is 2.2 �

47 or 4u7 is 4.7 F
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B.1.2 SI Units in Electrical Engineering

The units used in Electrical Engineering are derived from the SI basic units. The most
common units are listed in the table below.

Units in Electrical Engineering
Symbol Unit Relationship Unit for
A Ampere Base unit Electric current
C Coulomb As Electric charge
cd Candela Base unit Luminous intensity
F Farad As/V Capacitance
H Henry Vs/A Inductance
Hz∗ Hertz 1/s Frequency
J Joule Ws Energy, work
K Kelvin Base unit Temperature
kg Kilogram Base unit Mass
kWh† Kilowatthour 3.6 MJ Work
lm Lumen cd sr Luminous flux
lx Lux lm/m2 Illumination
m Meter Base unit Length
N Newton kg m/s2 Force
� Ohm V/A Resistance
S Siemens 1/� Admittance
s Second Base unit Time
T Tesla Vs/m2 Magnetic flux density
V Volt J/C =Ws/As Voltage
W Watt AV Power
Wb Weber Vs Magnetic flux

∗The unit hertz (Hz) is only used for frequencies. The unit of angular frequency is s−1.
†Noncoherent permitted unit.

The units cancel each other out for quantities that are defined as the ratio of two similar
quantities. These are described as relative quantities. These could be, for example, the
solid angle (in steradians), the efficiency and logarithmic power ratios (decibel).
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B.2 Naturally Occurring Constants

Physical Constants
Permeability of free space μ0 = 4 · � · 10−7 H/m
(Permeability constant) = 1.256 637 06 · 10−6 Vs/Am
Absolute dielectric constant ε0 = 1/(μ0 · c2)

(Permittivity constant) = 8.854 187 82 · 10−12 As/Vm
Speed of light in vacuum c = 2.997 924 58 · 108 m/s
Elementary charge of the electron e = 1.602 177 33 · 10−19 C
Boltzmann-constant k = 1.380 658 · 10−23 J/K
Electron rest mass me = 9.109 389 7 · 10−31 kg

Note: For most calculations it is sufficient to consider four digits of the constants.

B.3 Symbols of the Greek Alphabet

Letters of the Greek alphabet
Letter Name Letter Name

α Alpha ν Nu
β Beta ξ, � Xi

γ, � Gamma o Omicron
δ, � Delta �, � Pi

ε Epsilon  Rho
ζ Zeta σ, � Sigma
η Eta τ Tau

θ, ϑ, � Theta υ, ϒ Upsilon
ι Iota φ, ϕ, � Phi
κ Kappa χ Chi

λ, � Lambda ψ, � Psi
μ Mu ω, � Omega
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B.4 Units and Definitions of Technical–Physical
Quantities

Quantity Symbol Definition Unit Name
Length l, r, s Base unit m Meter
Area A = l2 m2

Volume V = l3 m3

Time t, T , τ Base unit s Second
Velocity v = ds/ d t m/s
Acceleration a = dv/ d t m/s2

Frequency f = 1/T 1/s = Hz Hertz
Angular frequency ω = 2�/T 1/s
Mass m Base unit kg Kilogram
Mass density ρ = m/V kg/m3

Force F = m · a kg m/s2 = N Newton
Pressure p = F/A N/m2 = Pa Pascal
Momentum p = m · v = ∫ F d t kg m/s
Angular momentum L = J · ω kg m2/s
Torque M = r · F N m
Moment of inertia J = ∫ r2 dm kg m2

Current I Base unit A Ampere
Current density J = dI/ dA A/m2

Charge Q = ∫ I d t As = C Coloumb
Voltage V = W/Q V Volt
Electric field strength E = F/Q V/m
Energy, work W = ∫ P d t W s = J Joule
Power P = V · I W Watt
Apparent power S VA
Reactive power Q var
Resistance R = V/I � Ohm
Specific resistance ρ = R · A/l � m
Admittance G = 1/R S Siemens, �−1 or �

Conductivity σ = 1/ρ S/m
Electric displacement D = dQ/ dA As/m2

Capacitance C = Q/U F Farad
Magnetic flux density B = F/Q · v Vs/m2 = T Tesla
Magnetic field strength H A/m
Magnetic flux � = ∫ B dA Vs =Wb Weber
Inductance L = V/( d�/ d t) Vs/A = H Henry
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B.5 Imperial and American Units

Unit Symbol In SI Units Conversion factor
Length
inch in 25.4mm 0.0393701 in/mm
mil = 1/1000 in mil 25.4 m 0.0393701 mil/m
foot = 12 in ft 0.30468 m 3.28084 ft/m
yard = 3 ft yd 0.9144 m 1.09361 yd/m
(statute) mile = 1760 yd mi 1.60934 km 0.62137 mi/km
Area
square inch sq in 6.4516 cm2 0.155 sq in/mm2

square mil sq mil 6.4516 · 10−4 mm2 1550 sq mil/mm2

circular mil CM 0.5067 · 10−3 mm2 1.974CM/mm2

M circular mil MCM 0.5067mm2 1.974MCM/mm2

Volume
cubic inch cu in 16.387 cm3 0.061024 cu in/cm3

cubic foot = 1728 cu in cu ft 28.317 dm3 0.035315 cu ft/dm3

cubic yard = 27 cu ft cu yd 0.76455 m3 1.30795 cu yd/m3

fluid ounce (UK) fl oz 28.413 cm3 0.035195 fl oz/cm3

fluid ounce (US) fl oz 29.574 cm3 0.033813 fl oz/cm3

gallon (US) =128 fl oz gal 3.78543 dm3 0.264170 gal/dm3

Mass
ounce oz 28.3459 g 0.0352739 oz/g
pound = 16 oz lb 0.453592 kg 2.204622 lb/kg
Force
pound force lbf 4.445 N 0.225 lbf/N
poundal = 1 lb · ft/s2 pdl 0.1383 N 7.23 pdl/N
Density

pound per cubic foot lb/ft3 16.02 kg/m3 0.0624
lb ·m3

ft3 · kg
Work
British thermal unit BTU 1.055056 kJ 0.947817 BTU/kJ
horsepower hour HPhr 2.6845 MJ 0.37251 HPhr/MJ
Power
BTU per second BTU/s 1.055056 kW 0.947817 BTU/kWs
BTU per hour BTU/h 0.293071 W 3.41214 BTU/Wh
horse power HP 0.74570 kW 1.34102 HP/kW
Wire weights (Mass per unit length)

pound per foot lb/ft 1.488 kg/m 0.672
lb ·m
kg · ft

pound per yard lb/yd 0.496 kg/m 2.016
lb ·m
kg · yd

pound per mile lb/mi 0.2818 kg/km 3.548
lb · km
kg ·mi
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Unit Symbol In SI Units Conversion factor
Electrical conductors (electrical quantities with respect to conductor length)
ohms per 1000 feet �/1000 ft 3.28�/km 0.3047 m/ft

ohms per 1000 yards �/1000 yd 1.0936�/km 0.9144 m/yd

megohms per mile M�/mi 0.6214�/km 1.6093 m/mi

microfarads per mile F/mi 0.6214F/km 1.6093 km/mi

micromicrofarads per foot F/ft 3.2808 pF/m 0.30468 m/ft

decibel per 100 ft dB/100 ft 32.75 dB/km 0.305 m/ft

3.77Np/km 0.2653
dB · km
Np · ft

decibel per 1000 yd dB/1000 yd 1.094 dB/km 0.9144 m/yd

0.126Np/km 7.943
dB ·m
Np · yd

decibel per mile dB/mi 0.621 dB/km 1.609 m/mi

0.0715Np/km 13.98
dB · km
Np ·mi

Optical units
lambert L 3183 cd/m2 � · 10−4 lam2/cd
foot-lambert fL 3.42626 cd/m2 0.291864 ft lam2/cd
candela per square inch cd/sq in 1555.0 cd/m2 64.308 · 10−3 m2/sq in
candela per square foot cd/sq ft 10.7639 cd/m2 0.092903 m2/sq in
foot-candle fc 10.7639 lx 0.092903 ft cd/lx
Temperature
degree Fahrenheit ◦F 5/9K 9/5 ◦F/K

for temperature differences
◦F 5/9(x ◦F−32 ◦F) ◦C (9/5 · x ◦C+32 ◦C) ◦F

for absolute temperatures

Example: A width of 3/8 in is equivalent to 3/8 · 25.4 mm ≈ 9.5 mm. On the other hand
10 mm is equal to 10 · 0.0393701 in ≈ 0.4 in.
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B.6 Other Units

Many of these units are rarely used.

Symbol Name In SI units
′ arc minute 1/60◦
′ foot 0.30468 m
′′ arc second 1/3600◦
′′ inch 25.4 mm
a, yr year
Å Angstroem 0.1 nm
asb Apostilb 1/� cd/m2

at atmosphere, technical 98.0665 kPa
atm atmosphere 101.325 kPa
bar bar 100 kPa
bbl barrel (US) 1.59 hl
Bi biot 10 A
Bq becquerel 1/s
bu (UK) bushel 36.37 l
bu (US) bushel 35.24 l
c Neuminute �/2 · 104 rad
cal calorie 4.1868 J
cbm cubic meter 1 m3

cc Neusekunde �/2 · 106 rad
ccm cubic centimeter 1 cm3

Ci curie 3.7 · 1010 Bq
Cic cicero 12 p ≈ 4.5 mm
CM circular mil 5.06707 · 10−4 mm2

cmm cubic millimeter 1 mm3

cwt (UK) hundred weight 50.80 kg
cwt (US) long hundred weight 50.80 kg
d day 86 400s
Dez dez �/18 rad
dr av dram 1.772 g
dry pt (US) dry pint 0.5506 l
dyn dyne 10−5 N
erg erg 10−7 J
eV electron volt 1.602 · 10−19 J
fL foot-lambert 3.426 cd/m2

F Fermi 1 fm
Fr franklin ≈ 1/3 · 10−9 C
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Other Units
Symbol Name In SI units
G gauss 10−4 T
g gon 1.1111◦
γ gamma 1g
gal (UK) gallon 4.5466 l
gal (US) gallon 3.7854 l
Gb Gilbert 10/4�A
Gon gon 1.1111◦
gr grain 64.8mg
grd grad 1K
Gy gray 1 J/kg
h hour 3 600 s
hl hectoliter 100 l
hp horsepower 745.7W
k karat (metric) 0.200 g
Kal kilocalorie 4.1868 kJ
kcal kilocalorie 4.1868 kJ
kp kilopound 9.806 65N
kWh kilowatt hour 3.6 · 106 J
L lambert 1/� · 104 cd/m2

lbf pound-force 4.448N
lbwt pound weight 4.48N
M maxwell 10−8Wb
 micron 1m
MCM 1000 circular mils 0.5067mm2

ml milliliter 1 cm3

mm Hg millimeter of mercury 133.322 Pa
mm Q see mmHg
mrad millirad 1/1000 rad
Np neper 8.686 dB
nt nit 1 cd/m2

nx nox 10−3 lx
Oe oersted 1000/4�A/m
p pond 9.806 65 · 10−3 N
p point, typographic 0.376 065mm
pdl poundal 0.1383N
ph phot 104 lm/m2

PS (German) horsepower 735.498 75W
psf pound (weight) per square foot 47.88 Pa
psi pound (weight) per square inch 6895 Pa
pt (UK) pint 0.5683 l
pt (US) pint 0.4731 l
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Other Units
Symbol Name In SI units
q quarter (mass) 12.7 kg
qmm square millimetre 1mm2

qt (US) quart 0.9463 l
R roentgen 258 · 10−6 C/kg
rad radian 57.29 578◦

rem rem 0.01 J/kg
sb stilb 104 cd/m2

sh cwt short hundredweight 45.36 kg
sh tn short ton 907.2 kg
sm nautical mile 1852m
sr steradian solid angle
Sv sievert 1 J/kg
t metric ton 1000 kg
t (UK) ton 1016 kg
Torr, torr torr 133.322 Pa
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B.7 Charge and Discharge Curves

Function e−t/τ

t/τ 0 1 2 3 4 5 6 7 8 9
0 1.0000 0.9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066
1 .3679 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496
2 .1353 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550
3 .0498 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202
4 .0183 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074
5 .0067 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027

Example: A 4.7 F capacitor is discharged via a 1 k� resistor. What is the voltage across
the capacitor after 10 ms?
The time constant of theRCcombination is 4.7ms, therefore 10ms is equivalent
to approximately 2.3 time constants τ . For this value the table yields 0.1003.
This means that the voltage across the capacitor has decreased to 10%.

Fig. B.1. Discharge and charge characteristics of an RC combination

Function 1− e−t/τ

t/τ 0 1 2 3 4 5 6 7 8 9
0 0.0000 .0952 .1813 .2592 .3297 .3935 .4512 .5034 .5507 .5934
1 .6321 .6671 .6988 .7275 .7534 .7769 .7981 .8173 .8347 .8504
2 .8647 .8775 .8892 .8997 .9093 .9179 .9257 .9328 .9392 .9450
3 .9502 .9550 .9592 .9631 .9666 .9698 .9727 .9753 .9776 .9798
4 .9817 .9834 .9850 .9864 .9877 .9889 .9899 .9909 .9918 .9926
5 .9933 .9939 .9945 .9950 .9955 .9959 .9963 .9967 .9970 .9973

Example: A discharged 4.7 F capacitor is charged from a 5 Vvoltage source via a 1 k�

resistor. What is the voltage across the capacitor after 10 ms?
The time constant of theRCcombination is 4.7ms, therefore 10ms is equivalent
to approximately 2.3 time constants τ . For this value the table yields 0.8997.
The voltage across the capacitor is therefore 5 V · 0.8997 ≈ 4.5 V.
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B.8 IEC Standard Series

E96 E48 E24 E12 E6
±1% ±2% ±5% ±10%±20%
1.00 1.00 1.0↑ 1.0↑ 1.0↑
1.02
1.05 1.05
1.07
1.10 1.10 1.1
1.13
1.15 1.15
1.18
1.21 1.21 1.2 1.2
1.24
1.27 1.27
1.30
1.33 1.33 1.3
1.37
1.40 1.40
1.43
1.47 1.47 1.5 1.5 1.5
1.50
1.54 1.54
1.58
1.62 1.62 1.6
1.65
1.69 1.69
1.74
1.78 1.78 1.8 1.8
1.82
1.87 1.87
1.91
1.96 1.96 2.0
2.00
2.05 2.05
2.10
2.15 2.15 2.2 2.2 2.2
2.21
2.26 2.26
2.32
2.37 2.37 2.4
2.43
2.49 2.49
2.55
2.61 2.61
2.67
2.74 2.74 2.7 2.7
2.80
2.87 2.87
2.94
3.01 3.01 3.0↓
3.09
3.16 3.16↓ 3.3↓ 3.3↓

E96 E48 E24 E12 E6
±1% ±2% ±5% ±10%±20%
3.24
3.32 3.32 3.3↑ 3.3↑ 3.3↑
3.40
3.48 3.48
3.57
3.65 3.65 3.6
3.74
3.83 3.83
3.92
4.02 4.02 3.9 3.9
4.12
4.22 4.22
4.32 4.3
4.42 4.42
4.53
4.64 4.64 4.7 4.7 4.7
4.75
4.87 4.87
4.99
5.11 5.11 5.1
5.23
5.36 5.36
5.49
5.62 5.62 5.6 5.6
5.76
5.90 5.90
6.04
6.19 6.19 6.2
6.34
6.49 6.49
6.65
6.81 6.81 6.8 6.8 6.8
6.98
7.15 7.15
7.32
7.50 7.50 7.5
7.68
7.87 7.87
8.06
8.25 8.25 8.2 8.2
8.45
8.66 8.66
8.87
9.09 9.09 9.1
9.31
9.53 9.53
9.76
10.0 10.0↓ 10↓ 10↓ 10↓

Thehorizontal linesmark the approximate intervals that are coveredby thegiven tolerances.
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Example: For a calculated resistance value of 1.17 k� a resistance of 1.15 k� is chosen
from the E48 series or a 1.2 k� from the E24 series. If only E6 series resisitors
are available, then a 1.0 k� resistance is chosen.

The values of the IEC series form a harmonic series. Each value has the same ratio to its
preceding value. This ratio is 6

√
10 for the E6 series, 12

√
10 for the E12 series, etc. The

values are chosen so that for the given tolerances a minimum number of resistors have to
be kept in stock.

B.9 Resistor Colour Code

E96, E48, E24
1. Ring 2./3. Ring 4. Ring 5. Ring 6. Ring

Colour 1. Digit 2./3. Digit Factor Tolerance Temp. coeff.
Silver 0.01 � ±10%
Gold 0.1 � ±5%
Black 0 1.0 � ±250 · 10−6/K
Brown 1 1 10 � ±1% ±100 · 10−6/K
Red 2 2 100 � ±2% ±50 · 10−6/K
Orange 3 3 1 k� ±15 · 10−6/K
Yellow 4 4 10 k� ±25 · 10−6/K
Green 5 5 100 k� ±5%∗ ±20 · 10−6/K
Blue 6 6 1 M� ±10 · 10−6/K
Purple 7 7 10 M� ±5 · 10−6/K
Grey 8 8 100 M�∗ ±1 · 10−6/K
White 9 9 0.1 �∗ ±10%∗
Colour 1. Digit 2. Digit Factor Tolerance —

1. Ring 2. Ring 3. Ring 4. Ring —
E6, E12, E24

∗In case the conductivity of gold and silver varnish cannot be tolerated, the following
replacements can be made:
Gold is replaced by white for 0.1 �, and by green for ±5%.
Silver is replaced by grey for 0.01 �, and by white for ±10%.

Example: A resistor with the colour rings grey, red, red, gold has a resistance of 8.2 k�

with a tolerance ±5 %.

Tolerances and temperature coefficients may be marked by letters.

Tolerance
Letter B C D F G J K M
% ±0.1 ±0.25 ±0.5 ±1 ±2 ±5 ±10 ±20

Temperature coefficient
Letter T E C K J L D
10−6/K ±10 ±25 ±50 ±100 ±150 ±200 +200/− 500

Example: A reference resistor with the five colour rings green, blue, red, brown, red and
with the letter E has a resistance value of 5620 � with a tolerance of±2% and
a temperature coefficient of ±25 · 10−6 K.
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B.10 Parallel Combination of Resistors

High-precision resistors are not always available in all 96 or 192 values per decade of the
E series. Many manufacturers produce the values of the E12 series with a tolerance of 1%
or better. The values of the finer series can be approximated with parallel combinations of
those resistors. The following table lists those values that are closest to the values of E96.

Value R1 ||R2

100 100
102 120||680
105 120||820
107 120||1000
110 220||220
112 120||1800
115 120||2700
118 120||6800
120 120
121 220||270
123 180||390
127 150||820
130 180||470
133 150||1200
136 150||1500
140 150||2200
143 150||3300
147 150||6800
150 150
153 180||1000
158 220||560
161 180||1500
165 330||330
169 180||2700
174 180||5600
179 330||390
180 180
182 270||560
186 220||1200
192 220||1500
196 220||1800
200 220||2200
206 220||3300

Value R1 ||R2

210 220||4700
214 220||8200
220 270||1200
229 270||1500
230 390||560
235 330||820
245 270||2700
250 270||3300
253 270||3900
261 270||8200
264 390||820
270 270
280 560||560
287 330||2200
294 330||2700
300 330||3300
310 390||1500
317 330||8200
321 390||1800
331 390||2200
340 680||680
349 390||3300
358 470||1500
365 390||5600
373 470||1800
382 560||1200
390 390
400 470||2700
411 470||3300
419 470||3900
434 470||5600
440 470||6800
451 820||1000

Value R1 ||R2

464 560||2700
470 470
479 560||3300
487 820||1200
500 1000||1000
509 560||5600
524 560||8200
530 820||1500
545 1000||1200
560 560
563 820||1800
579 680||3900
594 680||4700
606 680||5600
618 680||6800
629 820||2700
643 1000||1800
667 1200||1500
680 680
698 820||4700
715 820||5600
732 820||6800
750 1500||1500
767 1000||3300
796 1000||3900
820 820
825 1000||4700
848 1000||5600
872 1000||6800
891 1000||8200
918 1200||3900
956 1200||4700
964 1500||2700
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B.11 Selecting Track Dimensions for Current Flow

Copper tracks on printed circuit boards heat up when a current flows through them. The
graph shown in Fig. B.2 permits the selection of the required track width as a function
of the temperature increase and the cross-sectional area of the copper. The values are for
orientation for an ambient temperature of 20◦Cwithout external cooling.

Fig. B.2. Copper track selection

Example: A copper track should carry 8A, while not increasing the temperature by more
than 30 K. A cross-sectional area of about 0.12 mm2 is therefore required. For
a track depth of 35 m, this implies a conductor width of 3.5 mm.



B.12 American Wire Gauge 545

B.12 American Wire Gauge

In the US, gauges are given in American wire gauge numbers (AWG). They are derived
from the steps of the manufacturing process of copper wire.

AWG Diameter Cross section Diameter Cross-sectional area
(in) (MCM) (mm) (mm2)

0000 0.4600 211 11.7 107
000 0.4100 168 10.4 84.9
00 0.3650 133 9.27 67.5
0 0.3250 105 8.25 53.5
1 0.2890 83.7 7.35 42.4
2 0.2580 66.3 6.54 33.6
4 0.2040 41.8 5.19 21.2
6 0.1620 26.3 4.12 13.3
8 0.1280 16.5 3.26 8.35

10 0.1020 10.4 2.59 5.27
12 0.0810 6.51 2.05 3.30
14 0.0640 4.12 1.63 2.09
16 0.0510 2.58 1.29 1.31
18 0.0400 1.63 1.024 0.824
20 0.0320 1.02 0.813 0.519
22 0.0253 0.641 0.643 0.325
24 0.0210 0.405 0.511 0.205
26 0.0159 0.254 0.405 0.129
28 0.0126 0.159 0.320 0.0804
30 0.0100 0.101 0.255 0.0511
32 0.0080 0.0639 0.203 0.0324
34 0.0063 0.0397 0.160 0.0201
36 0.0050 0.0250 0.127 0.0127
38 0.0040 0.0161 0.102 0.00817
40 0.0031 0.0097 0.079 0.00490
4/0 see 0000 – – –
3/0 see 000 etc. – –

MCM: 1000 circular mils
1 MCM = 0.5067 mm2

The 0000, 000, etc. in AWG are also denoted by 4/0, 3/0, etc.

The following rules hold for AWG numbers:

• An AWG 10 wire has a diameter of close to 0.1 in, a cross-sectional area of about
10 MCM and (for copper wire) a resistance of 1 �/1000 ft.

• An increase of 3 AWG numbers doubles the cross-sectional area and the wire weight,
and decreases the wire resistance by a factor of 2.

• An increase of 6 AWG numbers doubles the cross-sectional diameter.

• An increase of 10 AWG numbers increases the cross-sectional area 10 times.
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Fig. B.3. Cross-sectional area Q =
(

d

2

) 2
· �

B.13 Dry Cell Batteries

Coding of the cells
IEC notation Open-circuit voltage Chemical system

R 1.5 V Zinc–carbon
CR 3.3 V Manganese dioxide–lithium
ER 3.8 V Chromium–lithium
LR 1.45 V Zinc–Alkali metal-manganese
MR 1.35 V Zinc–Mercury oxide
NR 1.40 V Zinc–manganese dioxide–mercury oxide

PR 1.40 V Zinc–air
SR 1.55 V Zinc–silver oxide
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Format
Zinc–Carbon Alkali– Ni–Cd NiMH–

manganese battery battery

Dimensions Capacity Capacity Capacity Capacity
Mono cell R20 LR20 KR35/62

33mm©/ × 60mm 7.3Ah 18Ah 4Ah 5Ah
Baby cell R14 LR14 KR27/50

26mm©/ × 50mm 3.1Ah 7Ah 2Ah 2.6Ah
Mignon cell R6 LR6 KR15/51

14.5mm©/ × 50mm 1.1Ah 2.3Ah 0.75Ah 1.1Ah
Micro cell R03 LR03 KR10/44

10.5mm©/ × 44.5mm 0.5Ah 1.2Ah 0.2Ah 0.45Ah
Microdyn cell R1 LR1 KR12/30

12mm©/ × 30mm 0.6Ah 0.8Ah 0.15Ah –
9 V pack 6F22 6LF22 TR7/8

15.5mm × 25mm × 48mm 0.4Ah 0.6Ah 0.15Ah 0.12Ah
4.5 V flat battery 3R12

22mm × 62mm × 65mm 2Ah – – –

The cell capacity values give an orientation. The cell capacity depends greatly on the kind
of discharge and the operating temperature. Notation according to IEC.

International notation of batteries
Mono Baby Mignon Micro Microdyn Transistor Flat
cell cell cell cell cell battery battery

IEC R20 R14 R6 R03 R1 6F22 3R12
USA D C AA AAA N 6AM6 –
Japan UM1 UM2 UM3 UM4 UM5 – UM10

The notations are valid for zinc–carbon batteries.
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B.14 Notation of Radio-Frequency Ranges

Frequency range Wavelength Description Acronym

30–300 Hz 10 000–1000 km Extremely low frequency ELF
300Hz–3 kHz 1000–100 km Infralow frequency ILF
3–30 kHz 100–10 km Very low frequency VLF

30–300 kHz 10–1 km Low frequency LF
Long wave LW

300–3000 kHz 1000–100 m Medium wave MW

3–30 MHz 100–10 m High frequency HF
Short wave SW

30–300 MHz 10–1 m Very high frequency VHF
Ultrashort wave USW

300–3000 MHz 100–10 cm Ultrahigh frequency UHF
3–30 GHz 10–1 cm Super high frequency SHF

30–300 GHz 10–1 mm Extremely high frequency EHF
300–3000 GHz 1–0.1 mm Hyperhigh frequency HHF

Range Meaning CCIR band CCITT notation

ELF Eextremely low frequency
ILF Infralow frequency
VLF Very low frequency 4 Miriametric

LF Low frequency 5 Kilometric
MF Middle frequency 6 Hectometric

HF High frequency 7 Decametric
VHF Very high frequency 8 Metric

UHF Ultrahigh frequency 9 Decimetric
SHF Super high frequency 10 Centimetric

EHF Extremely high frequency 11 Millimetric
HHF Hyperhigh frequency 12 Submillimetric
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B.15 Ratios

In measurement logarithmic ratios of values are often used.Measured values and reference
values must have the same dimensions (e.g. power, current). For complex values the ratio
of the absolute values (e.g. apparent power) is considered.

A destinction is made between power and field values. Power values are proportional to
the power, whereas field values to the power of 2 are proportional to the power.

The decibel (dB) is used as the unit for logarithmic ratios to the base 10. The neper (Np)
is used for natural logarithmic ratios, although this occurs less frequently.

1 Np = 8.685889 dB 1 dB = 0.115129 Np (B.1)

Power attenuation (log of the power value ratio):

aP = 10 · lg P1

P2
dB (B.2)

Voltage attenuation (log of the field value ratio):

aV = 20 · lg V1

V2
dB, V1, V2 at the same source resistance (B.3)

B.15.1 Absolute Voltage Levels

Absolute levels perform the ratio calculation with respect to a defined reference value.
The absolute power level is given by:

PL = 10 · lg P

1mW
dB(mW) or dBm (B.4)

The dBm is used frequently, for example, for laser diode power output.

The absolute voltage level is defined as

PSP1 = 20 · lg V

0.775V
dB(0.775 V) (B.5)

So a voltage level of 0 dB(0.775V) corresponds to a voltage of 0.775V.A power of 1 mW
will be therefore dissipated by a 600 � resistance. The voltage level is often given with
respect to 1 V.

PSP2 = 20 · lg V

1 V
dB(V) or dBV (B.6)

Other reference values are also used.
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Reference Values: Level Ratios
Rin = Rout Pref V0 dB(mW) Application

(�) (mW) (V)
600 1 0.77459 0 Standard
75 1 0.27386 0 RF
60 1 0.24494 0 Measurement
50 1 0.22360 0 Measurement
150 1 0.389 0 Telephony
500 6 1.73205 7.78 USA telephony
600 6 1.1898 7.78 USA telephony
600 12.5 2.739 10.97 USA telephony

There is no uniform usage of reference values, so care must be taken in applying them!

Reference values: voltage levels
Notation Reference value dB(0.775 V)
dBV 0 dBV=1 V 2.2
dBmV 0 dBmV=1 mV −57.8
dBV 0 dBV=1 V −117.8

B.15.1.1 Conversion of Power and Voltage Level Ratios

The power level ratio corresponds to the voltage level ratio only for a resistance of 600 �.
For absolute level ratios, measured across a resistance, R,

power level ratio = voltage level ratio+ correction factor � (B.7)

PL = PSP1 + 10 · lg 600 �

R︸ ︷︷ ︸
�

(B.8)

The unit of the correction factor is the dB. Depending on the resistor R where the level is
measured, it follows that

Correction factors
R (�) 50 60 75 150 500 600 1200
� (dB) 10.79 10.00 9.03 6.02 0.79 0 -3.01
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B.15.2 Relative Levels

Relative level Gain Attenuation Relative level Gain Attenuation

0.0 1.0000 1.0000 0.5 1.0593 0.9441
0.1 1.0116 0.9886 0.6 1.0715 0.9333
0.2 1.0233 0.9772 0.7 1.0839 0.9226
0.3 1.0351 0.9661 0.8 1.0965 0.9120
0.4 1.0471 0.9550 0.9 1.1092 0.9016

1.0 1.1220 0.8913 11.0 3.5481 0.2818
1.5 1.1885 0.8414 11.5 3.7584 0.2661
2.0 1.2589 0.7943 12.0 3.9811 0.2512
2.5 1.3335 0.7499 12.5 4.2170 0.2371
3.0 1.4125 0.7079 13.0 4.4668 0.2239
3.5 1.4962 0.6683 13.5 4.7315 0.2113
4.0 1.5849 0.6310 14.0 5.0119 0.1995
4.5 1.6788 0.5957 14.5 5.3088 0.1884
5.0 1.7783 0.5623 15.0 5.6234 0.1778
5.5 1.8836 0.5309 15.5 5.9566 0.1679
6.0 1.9953 0.5012 16.0 6.3096 0.1585
6.5 2.1135 0.4732 16.5 6.6834 0.1496
7.0 2.2387 0.4467 17.0 7.0795 0.1413
7.5 2.3714 0.4217 17.5 7.4989 0.1334
8.0 2.5119 0.3981 18.0 7.9433 0.1259
8.5 2.6607 0.3758 18.5 8.4140 0.1189
9.0 2.8184 0.3548 19.0 8.9125 0.1122
9.5 2.9854 0.3350 19.5 9.4406 0.1059
10.0 3.1623 0.3162 20.0 10.0000 0.1000

40 102 10−2 100 105 10−5

60 103 10−3 120 106 10−6

80 104 10−4 140 107 10−7

Example: The power amplification for a 48.5 dB amplifier is required; 48.5 dB = 8.5 dB+
40 dB. From the table it can be seen that 8.5 dB corresponds to a gain of 2.6607,
while 40 dB means an amplification of 100. The product of the two yields a
voltage amplification of 266. If a more exact result is required, e.g. for 48.7 dB,
then the values for 0.7 dB+ 8 dB+ 40 dB should be taken from the table. This
yields 1.0839 · 2.5119 · 100 = 272.26.
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B.16 V.24 Interface

The interface in accordance with CCITT V.24 is also described in the American norm
RS232/E and in the German DIN 66 020. The interface signals are given on the following
page. In practical applications only some of the many signals are analysed. Here is an
example for two devices connected with V.24 interfaces:

Without handshake
DTE DCE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

CTS handshake
DTE DCE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

DTR handshake
DTE DCE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

Full handshake
DTE DCE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

�
� �

�
�

�

�
�

�
�

�
�

�

�
�

�
�

CTS and DTR handshakes may be combined with each other.

Nullmodem
DTE DTE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

CTS handshake
DTE DTE

2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

DTE DTE
2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

DTE DTE
2 2
3 3
4 4
5 5
6 6
7 7
8 8

15 15
17 17
20 20
24 24

������ ������ ������ ������

������ ������ ������
� � � �

• �•�

Levels: Mark (1) −15 V < V < −3 V
Space (0) +15 V > V > +3 V

Protocols: The data flow control is carried by the RTS/CTS or DTR signals, or through
an exchange of the XON/XOFF (DC1/DC3) or ETX/ACK signals.

The arrows in the following table show the signal direction between

Computer Modem
DTE: data terminal equipment DCE: data communications equipment
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Interface signals
Notation Pin Description

CCITT EIA DIN RS232C 1

101 AA E1 1 – Protective ground ←→
102 AB E2 7 – Signal ground ←→
103 BA D1 2 TD Transmitted data ←−
104 BB D2 3 RD Received data −→
105 CA S2 4 RTS Request to send ←−
106 CB M2 5 CTS Clear to send −→
107 CC M1 6 DSR Data set ready −→
108.1 S1.1 20 – Connect data set to line ←−
108.2 CD S1.2 20 DTR Data terminal ready ←−
125 CE M3 22 RI Ring indicator −→
109 CF M5 8 DCD Data carrier detect −→
110 CG M6 21 SQ Signal quality detect −→
111 CH S4 23 – Data signal rate selector (DTE) ←−
112 CI M4 23 – Data signal rate selector (DCE) −→
126 CK S5 11 – Select transmit frequency ←−
113 DA T1 24 – Transmitter signal element timing ←−
114 DB T2 15 – Transmitter signal element timing −→
115 DD T4 17 RC Receiver clock −→

secondary channel
118 SBA HD1 14 – transmitted data ←−
119 SBB HD2 16 – received data −→
120 SCA HS2 19 – request to send ←−
121 SCB HM2 13 – clear to send −→
122 SCF HM5 12 – carrier detect −→

1 From DTE to DCE.

B.17 Dual-Tone Multi-Frequency

Two sinusoidal waveforms of different frequencies are sent by the telephone when a button
is pressed. The frequencies and their order are internationally standardised.

697Hz 1 2 3 A
770Hz 4 5 6 B
852Hz 7 8 9 C
941Hz * 0 # D

1209Hz 1336Hz 1477Hz 1633Hz

The keys shown in the last column are only availabe on some telephones.
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B.18 ASCII Coding

hex 0 1 2 3 4 5 6 7
NUL DLE 0 P ‘ p

0 0 16 32 48 64 80 96 112

SOH DC1 ! 1 A Q a q
1 1 17 33 49 65 81 97 113

STX DC2 " 2 B R b r
2 2 18 34 50 66 82 98 114

ETX DC3 # 3 C S c s
3 3 19 35 51 67 83 99 115

EOT DC4 $ 4 D T d t
4 4 20 36 52 68 84 100 116

ENQ NAK % 5 E U e u
5 5 21 37 53 69 85 101 117

ACK SYN & 6 F V f v
6 6 22 38 54 70 86 102 118

BEL ETB ’ 7 G W g w
7 7 23 39 55 71 87 103 119

BS CAN ( 8 H X h x
8 8 24 40 56 72 88 104 120

HT EM ) 9 I Y i y
9 9 25 41 57 73 89 105 121

LF SUB * : J Z j z
A 10 26 42 58 74 90 106 122

VT ESC + ; K [/Ä k {/ä
B 11 27 43 59 75 91 107 123

FF FS , < L \/Ö l —/ö
C 12 28 44 60 76 92 108 124

CR GS - = M ]/Ü m }/ü
D 13 29 45 61 77 93 109 125

SO RS . > N ∧ n ∼/ß
E 14 30 46 62 78 94 110 126

SI US / ? O _ o DEL
F 15 31 47 63 79 95 111 127

TheAmerican Standard Code for Information Interchange (ASCII) is standardised world-
wide as ISO/IEC 646. It allows national special characters in 12 places. In this table the
German extensions according to DIN 66 003 are also shown. ASCII is a 7-bit code, but
there exist many extensions to 256 characters, which are not necessarily compatible to
each other.

The two- and three-letter symbols are acronyms for control codes for data transmission
according to ISO. The symbol DC1 is also known as XON, and DC3 as XOFF.
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B.19 Resolution and Coding for Analogue-to-Digital
Converters

Resolution
Bits Number of steps Resolution Dynamic range

n 2n at 10V (dB)
1 2 5V 6.02
2 4 2.5V 12.04
4 16 625mV 24.08
6 64 156mV 36.12
8 256 39mV 48.16

10 1 024 9.77mV 60.21
12 4 096 2.441mV 72.25
14 16 384 610.352V 84.29
16 65 536 152.588V 96.33
18 262 144 38.1470V 108.37
20 1 048 576 9.53674V 120.41

The resolution is given for an input signal range of 10 V. The dynamic range denotes the
logarithmic ratio between the largest and the smallest representable signal.

Coding
Value Offset Two’s One’s Sign

binary complement complement magnitude
+FS−1 LSB 1111 . . . 1111 0111 . . . 1111 0111 . . . 1111 1111 . . . 1111
+1/2 FS 1100 . . . 0000 0100 . . . 0000 0100 . . . 0000 1100 . . . 0000
+0 1000 . . . 0000 0000 . . . 0000 0000 . . . 0000 1000 . . . 0000
−0 . . . . . . 1111 . . . 1111 0000 . . . 0000

−1/2 FS 0100 . . . 0000 1100 . . . 0000 1011 . . . 1111 0100 . . . 0000
−FS+1 LSB 0000 . . . 0001 1000 . . . 0001 1000 . . . 0000 0111 . . . 1111

−FS 0000 . . . 0000 1000 . . . 0000 – –

LSB: least significant bit

FS: full scale, maximum range allowed for the converter. The maximum output value is
given by the input voltage (2n − 1) · FS.
One’s complement is derived by inverting each of the bits of the value. The representation
as sign magnitude uses the highest value bit to show the positive sign. Both representations
have two different representations for zero.
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B.20 Chemical Elements

Z Symbol Element name Atomic Remark
weight

1 H Hydrogen 1.008 Gas
2 He Helium 4.003 Inert gas
3 Li Lithium 6.941 Alkaline metal
4 Be Beryllium 9.012 Alkaline earth element
5 B Boron 10.81 –
6 C Carbon 12.01 –
7 N Nitrogen 14.01 Gas
8 O Oxygen 16.00 Gas
9 F Flourine 19.00 Halogen

10 Ne Neon 20.18 Inert gas
11 Na Sodium 22.99 Alkaline metal
12 Mg Magnesium 24.31 Light metal
13 Al Aluminium 26.98 Light metal
14 Si Silicon 28.09 Semiconductor
15 P Phosphorus 30.97 –
16 S Sulfur 32.06 –
17 Cl Chlorine 35.45 Halogen
18 Ar Argon 39.95 Inert gas
19 K Potassium 39.10 Alkaline metal
20 Ca Calcium 40.08 Alkaline earth element
21 Sc Scandium 44.96 Metal
22 Ti Titanium 47.88 Light metal
23 V Vanadium 50.94 Heavy metal
24 Cr Chromium 52.00 Heavy metal
25 Mn Manganese 54.94 Heavy metal
26 Fe Iron 55.85 Heavy metal
27 Co Cobalt 58.93 Heavy metal
28 Ni Nickel 58.69 Heavy metal
29 Cu Copper 63.55 Heavy metal
30 Zn Zinc 65.39 Metal
31 Ga Gallium 69.72 Semiconductor
32 Ge Germanium 72.59 Semiconductor
33 As Arsenic 74.92 –
34 Se Selenium 78.96 Semiconductor
35 Br Bromine 79.90 Halogen
36 Kr Krypton 83.80 Inert gas
37 Rb Rubidium 85.47 Alkaline metal
38 Sr Strontium 87.62 Alkaline earth element
39 Y Yttrium 88.91 Metal
40 Zr Zirconium 91.22 Metal
41 Nb Niobium 92.91 Metal
42 Mo Molybdenum 95.94 Metal
43 Tc Technetium (98) Artificial metal
44 Ru Ruthenium 101.1 Transition metal

Z: atomic number. The atomic weight is given in g/mol.
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Z Symbol Element name Atomic Remark
weight

45 Rh Rhodium 102.9 Precious metal
46 Pd Palladium 106.4 Precious metal
47 Ag Silver 107.9 Precious metal
48 Cd Cadmium 112.4 Metal
49 In Indium 114.8 Metal
50 Sn Tin 118.7 Heavy metal
51 Sb Antimony 121.8 Heavy metal
52 Te Tellurium 127.6 Semiconductor
53 I Iodine 126.9 Halogen
54 Xe Xenon 131.3 Inert gas
55 Cs Cesium 132.9 Alkaline metal
56 Ba Barium 137.3 Alkaline earth element
57 La Lanthanum 138.9 Rare earth element
58 Ce Cerium 140.1 Rare earth element
59 Pr Praseodymium 140.9 Rare earth element
60 Nd Neodymium 144.2 Rare earth element
61 Pm Promethium 145.0 Rare earth element
62 Sm Samarium 150.4 Rare earth element
63 Eu Europium 152.0 Rare earth element
64 Gd Gadolinium 157.3 Rare earth element
65 Tb Terbium 158.9 Rare earth element
66 Dy Dysprosium 162.5 Rare earth element
67 Ho Holmium 164.9 Rare earth element
68 Er Erbium 167.3 Rare earth element
69 Tm Thulium 168.9 Rare earth element
70 Yb Ytterbium 173.0 Rare earth element
71 Lu Lutetium 175.0 Rare earth element
72 Hf Hafnium 178.5 –
73 Ta Tantalum 180.9 –
74 W Tungsten 183.9 –
75 Re Rhenium 186.2 Transition metal
76 Os Osmium 190.2 Heavy metal
77 Ir Iridium 192.2 Precious metal
78 Pt Platinum 195.1 Precious metal
79 Au Gold 197.0 Precious metal
80 Hg Mercury 200.6 Liquid metal
81 Tl Thallium 204.4 –
82 Pb Lead 207.2 Heavy metal
83 Bi Bismuth 209.0 Heavy metal
84 Po Polonium (209) –
85 At Astatine (210) –
86 Rn Radon (222) Radioactive inert gas
87 Fr Francium 223.0 Alkaline metal
88 Ra Radium 226.0 Radioactive metal

Z: atomic number. The atomic weight is given in g/mol. For unstable elements the atomic
mass of the longest-lasting isotope is given in parentheses.
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Z Symbol Element name Atomic Remark
weight

89 Ac Actinium 227.0 Actinoid
90 Th Thorium 232.0 Actinoid
91 Pa Protactinium 231.0 Actinoid
92 U Uranium 238.0 Actinoid
93 Np Neptunium 237.0 Transuranic ↓
94 Pu Plutonium (244)
95 Am Americium (243)
96 Cm Curium 247
97 Bk Berkelium (247)
98 Cf Californium (251)
99 Es Einsteinium (252)

100 Fm Fermium 257
101 Md Mendelevium (258)
102 No Nobelium (259)
103 Lr Lawrencium (260)
104 Rf Rutherfordium (261)
105 Db Dubnium (262)
106 Sg Seaborgium (263) also Unh, Unnilhexium
107 Bh Bohrium (262)
108 Hs Hassium (265)
109 Mt Meitnerium
110 Uun Ununnilium (269) discovered 1994
111 Uuu Ununium (272) discovered 1994
112 Uub Ununbium (277) discovered 1996
113 Uut
114 Uuq (285) discovered 1999
115 Uup
116 Uuh (289)
117 Uus
118 Uuo (293) discovered 1999, announcement retracted

2001
. . . ?? as of 2001

Z: atomic number. The atomic weight is given in g/mol. For unstable elements the atomic
mass of the longest-lasting isotope is given in parentheses.



B.21 Materials 559

B.21 Materials

Material Chem. Density Resistivity Temperature
symbol coefficient

kg/dm3 �m∗ 10−3K−1

Aluminium Al 2.70 0.027 4.3
Antimony Sb 6.68 0.42 3.6
Brass – 8.4 0.05–0.12 1.5
Bronze – 8.9 0.02–0.14 0.5
Cadmium Cd 8.64 0.077 3.8–4.2
Chromium Cr 7.20 0.13 –
Chromium–Nickel – 8.3 1–1.1 0.14
Cobalt Co 8.9 0.06–0.09 3–6
Constantan – 8.8 0.5 -0.04
Copper Cu 8.92 0.017 4.3
Germanium (pure) Ge 5.35 0.46 · 106 –
German silver – 8.5 0.33 0.07
Glass – 2.4–2.6 1017–1018 –
Gold Au 19.3 0.022 3.8
Iridium Ir 22.42 0.06–0.08 4.1
Iron Fe 7.86 0.1 6.5
55% Cu, 44%Ni, 1% Mn

Lead Pb 11.2 0.21 3.9
Magnesium Mg 1.74 0.045 3.8–5.0
Manganin – 8.4 0.43 ±0.01
86% Cu, 2% Ni, 12% Mn

Mercury Hg 13.55 0.97 0.8
Mica – 2.6–3.2 1019–1021 –
Molybdenum Mo 10.2 0.055 3.3
Nickel Ni 8.9 0.08 6.0
Palladium Pd 11.97 0.11 3.3
Platinum Pt 21.45 0.098 3.5
Rhodium Rh 12.4 0.045 4.4
Selenium Se 4.8 1011 –
Silver Ag 10.5 0.016 3.6
Silicon Si 2.4 0.59 –
Tantalum Ta 16.6 0.15 3.1–3.5
Tin Sn 7.23 0.12 4.3
Titanium Ti 4.43 0.048 –
Tungsten W 19.3 0.055 4.5–5.7
Water (distilled) H2O 1.00 4 · 104 –
Wood’s metal – 9.7 0.53 2.0
Zinc Zn 7.14 0.061 3.7

∗Conversion: 1 �m = 1 � mm2/m = 10−6 �m. The resistivity (specific resistance)
is valid in the range from 0 to 100◦C. The density is given for 20◦C. The temperature
coefficient is valid for 0◦C; some ranges are given for temperatures from 0 to 500◦C.
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Resistivity of isolators (�m)

Amber > 1016 Polyethylene 1016

Epoxy resin 1013–1015 Polystyrene 1016

Glass 1011–1012 Porcelain < 5 · 1012

Hard rubber 1016 PVC, hard 1015

Mica 1013–1015 soft 1013

Micanite 1015 Quartz 1013–1016

Paper 1015–1016 Transformer oil 1010–1013

Plexiglas 1015 Wood (dry) 109–1013

Permittivity Values (Dielectric Constants)
Air 1at, 0◦C, dry 1.000 594 Methyl alcohol 33.5
Amber 2.2–2.9 Mica 4–9
Acetone 21.4 Micanite 4.0–6.0
Argon 1.000 504 Nitrobenzene 35.5
Barium titanate 1000–9000 Nitrogen 1.000 528
Benzene 2.3 Oxygen 1.000 486
Cable joint resin 2.5 Paraffin oil 2.2
Cable paper, im-
pregnated

4–4.3 Pertinax 3.5–5.5

Cable oil 2.25 Phenoplaste 5–7
Carbon dioxide 1.000 985 Plexiglas 3–4
Cellulose 3–7 Polyethylene 2.2–2.7
Ceramics up to 4000 Polystyrene 1.1–1.4
Condensa 40–80 Porcelain 4.5–6.5
Diethyl ether 4.3 PVC 3.1–3.5
Epoxy resin 3.7 Quartz glass 3.2–4.2
Ethyl alcohol 25.1 Shellac 2.7–4
Germanium ≈ 16 Silicon oil 2.2–2.8
Glass 2–16 Silicon ≈ 12
Glycerine 41.1 Styroflex 2.5
Hard rubber 2.5–5 Teflon 2.1
Helium 1.000 066 Transformer oil 2.2–2.5
Hydrogen 1.000 252 Vacuum 1.000 000
Kerosene 2.2 Water, distilled 81
Marble 8.4–14 Wood 2.5–6.8

The values for materials are for orientation. For a specific application it is recommended
to get more information in reference books and tables. In particular, the conditions of the
measurement have to be considered carefully.
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Acronym Stands for

A

AC alternating current

ACD automatic call distribution

ACIA asynchronous communication-interface adapter

ACK acknowledge

ACL access control list

ACTE Approval Committee for Telecommunications Equipment

ACW architecture control word (GAL)

A/D analogue to digital

AD administrative domain

ADC analogue-to-digital converter

ADM add-drop multiplexer

ADPCM adaptive differential-pulse code modulation

ADSL asymmetrical digital subscriber line

ADSR attack–decay–sustain–release (sound generator)

AEA American Electronics Association

AF audio frequency

AFC automatic frequency control

AFT automatic fine tuning

AGA alterable gate array

AGC automatic gain control

AHDL analogue hardware-description language

ALC automatic level control

ALERT advice and problem location for European road traffic (RDS decoder)

ALGOL algorithmic language

ALS advanced low-power Schottky

ALU arithmetic logical unit

AM amplitude modulation

AMI alternate mark inversion

AMPS advanced mobile phone system

AMVSB amplitude-modulation vestigeous sideband

ANL automatic noise limiter

ANSI American National Standards Institute

ANSI ANSI code

APD avalanche photodiode
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Acronym Stands for

API application programming interface

APL a programming language

AQL acceptable quality level

ARP address resolution protocol

ARRL American Radio Relay League

AS advanced Schottky

ASA American Standards Association

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

ASIS application-specific instruction set

ASK amplitude shift keying

ASM algorithmic state machine

ASRA application-specific resistor array

AT control language for dial-up modems

ATAPI AT-attachment packet interface

ATE automatic test equipment

ATF automatic track finding

ATM Adobe Type Manager

ATM asynchronous transfer mode

AUI attachment unit interface (Ethernet)

AVC automatic volume control

avg average

AVI audio–video interlace

AWG American wire gauge

AWGN additive white Gaussian noise

B

BALUN balanced/unbalanced

BASIC beginner’s all-purpose instruction code

bbl barrel

BBS bulletin board system

BCC block check character

BCD binary coded decimal

BCH Bose–Chaudhuri–Hocquenghem (code)

bd French: baud

BEAB British Electrotechnical Approvals Board

BEL bell

BER bit error rate

BFO beat frequency oscillator
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Acronym Stands for

BG borrow generate

BGA ball/column grid array

BI burn-in

BITBLT bit block transfer

BIBO bounded input–bounded output

BIFET bipolar field-effect transistor

BIOS basic input/output system

B-ISDN broadband ISDN

BIST built-in self test

BISYNC binary synchronous communication

bit binary digit

BK black

BLOB binary large object

bn billion

BN brown

BNC bayonet nut connector, baby n-connector

BO borrow-out output, ripple borrow output

BOC Bell Operating Company

BOM begin of message

BORSCHT battery, overvoltage protection, ringing, signalling, coding, hybrid and testing

bp boiling point

BP borrow propagate

BPL biphase level (code)

bpp bits per pixel

BPSK biphase shift keying

BRA basic rate access (ISDN)

BS base station

BS backspace

BSC binary synchronous communication

BSI British Standards Institution

BTLZ British Telecom Lempel–Ziv algorithm (data compression standard V.42bis)

BU blue

BW bandwidth

BWG Birmingham wire gauge

C

C ceramic

CA collision avoidance

CAD computer-aided design
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Acronym Stands for

CAE computer-aided engineering

CAI computer-assisted instruction

CAM common access method (SCSI)

CAM content-addressable memory

CAN cancel

CAN controller area network

CAN customer access network

CAPI common ISDN application programming interface

CAS column address strobe

CASE computer-aided software engineering

CAT computer-aided telephony

CATV community area television

CAV constant angular velocity

CAZ commutating auto zero (amplifier)

CB citizen band

CB common base (circuit)

CBDS connectionless broadband data service

CBMS computer-based message system

CCC ceramic chip carrier

CCD charge-coupled device

CCFL cold-cathode flourescent light

CCIR French: Comité Consultatif International de Radiodiffusion

CCITT French: Comité Consultatif International de Téléphonique et de Télégraphique

CCN cordless communication network

CCO current-controlled oscillator

CCS7 common channel signalling system no. 7

CCTV closed circuit television

ccw counterclockwise

CD call deflection (ISDN)

CD collision detection (Ethernet)

CD conditioned diphase (pulse frequency shift keying)

CDDI copper distributed data interface

CD-I CD interactive

CDIP ceramic dual in-line package

CDLC cellular data link control

CDMA code-division multiple access

CDN count down

CDRAM cached dynamic RAM

CD-ROM compact disk ROM
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Acronym Stands for

CDV compressed digital video

CE chip enable

CE common emitter (circuit)

CE concurrent engineering

CECC French: Comité des Composants Electroniques du CENELEC

CELP code-excited linear predictive coding

CEN French: Comité Européen de Normalisation

CENELEC French: Comité Européen de Normalisation Electrotechniques

CEPT French: Conférence Européenne des Administrations des Postes et des
Télécommunications

CERDIP ceramic dual in-line package

CF call forwarding

CF center frequency

CG carry generate

CGA color graphics adaptor

CI carry-in input

CID charge injection device

CIE French: Commission International de l’Éclairage

CIM computer-integrated manufacturing

CIR committed information rate

CISC complex-instruction set computer

CIT computer-integrated telephony

Ck clock

CLCC ceramic leaded chip carrier

CLI command language interpreter

CLIP calling line identification presentation (ISDN)

CLIR calling line identification restriction

CLP configurable logic block

Clr clear

CLUT colour look-up table

CLV constant linear velocity

CM circular mil

CMI coded mark inversion

CMIP common management information protocol

CML current mode logic

CMOL CMIP over LLC (logical link control)

CMOP CMIP over TCP/IP

CMR common-mode rejection

CMRR common-mode rejection ratio
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Acronym Stands for

CMV common-mode voltage

C/N carrier-to-noise ratio

CNC computer numerical control

CNR carrier-to-noise ratio

CO carry-out output, ripple carry output

COFDM coded orthogonal frequency-division multiplex

COHO coherent oscillator

COLP connected line identification presentation

COMAL common algorithmic language

COMEL French: Comité de Coordination des Constructeurs des Machines Tournantes Electriques
du Marché Commun

CompuSec computer security

ComSec communications security

CONP connection-oriented protocol

CP carry propagate (output)

CP/M control program for microcomputers

CPE customer premises equipment

CPFSK continuous phase frequency shift keying

CPGA ceramic pin grid array

CPM continuous phase modulation

CPN customer premises network

cps characters per second

cps cycles per second

CPU central processing unit

CQFP ceramic quad flat package

CR carriage return

CRC cyclic redundancy check

CRO cathode ray oscilloscope

CRT cathode ray tube

c/s client server (application)

CS chip select

CSA Canadian Standard Association

CSMA carrier sense multiple access

CSMA/CA carrier sense multiple access/collision avoidance

CSMA/CD carrier sense multiple access/collision detection

CSTA computer-supported telephony applications

CT cordless telephone

CTC counter/timer circuit

CTI computer telephone integration
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Acronym Stands for

CTR counter

CTS clear to send

CUP count up

CVD chemical vapour deposition

CW call wait

cw clockwise

CW continuous wave

CWL continuous wave laser

Cy carry

D

D data

D2B domestic digital bus

D2MAC duobinary coded multiplexed analogue components

D/A digital to analogue

DAB digital audio broadcast

DAC digital-to-analogue converter

DASP digital audio signal processor

DATEC data telecommunications

DAU data acquisition unit

DBS direct broadcast satellite

DC direct current

dc don’t care

DCE data circuit-terminating equipment

DCS digital cellular system

DCT discrete cosine transform

DCTL direct-coupled transistor logic

DD double density

DDC direct digital control

DECT digital enhanced cordless telephone

DEMKO Danish national quality assurance symbol

DES data encryption standard

DFB distributed feedback (laser)

DFT discrete Fourier transform

DIAC diode alternating current switch

DIL dual in-line

DIMM dual in-line memory module

DIP dual in-line package

DLC data link control
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Acronym Stands for

DMA direct memory access

DMM digital multimeter

DNS domain name system

DOV data over voice

dpb defects per billion

DPDT double-pole double-throw

dpi dots per inch

DPLL digital phase-locked loop

DPM digital panel meter

DPSK differential phase shift keying

DPST double-pole single-throw

DQDB distributed queued dual bus

DQPSK differential quadrature phase shift keying

DRAM dynamic random-access memory

DRO digital recording oscilloscope

DS double sided

DSB double sideband

DSBS direct sound broadcasting by satellite

DSO digital storage oscilloscope

DSO dual in-line package small outline

DSP digital signal processing/processor

DSR data set ready

DSR digital satellite radio

DSS-1 digital subscriber signalling system no. 1

DSSS direct sequencing spread spectrum

DSU/CSU digital service unit/channel service unit

DTE data terminal equipment

DTL diode transistor logic

DTMF dial tone multiple frequency

DTR data terminal ready

DUT device under test

DVD digital versatile disk

DVSO dual in-line package very small outline

dx duplex

DX distant (reception)

E

E extension input

E2PROM electrically erasable EPROM
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Acronym Stands for

EAPROM electrically alterable PROM

EAROM electrically alterable ROM

EAV end of active video

EBCDIC extended binary-coded-decimal interchange code

EBU European Broadcasting Union

ECC error checking and correction

ECC error correcting code

ECCT enhanced computer-controlled teletext

ECL emitter-coupled logic

ECM error-correcting mode

ECMA European Computer Manufacturers Association

ECMA-6 extended ASCII code

ECQAC Electronic Components Quality Assurance Committee

ED extreme density

EDA electronic design automation

EDC error-detecting code

EDC error-detection and correction

EDFA Erbium-doped fibre amplifier

EDI electronic data interchange

EDIF electronic data interchange format

EDO extended data out

EDP electronic data processing

EDRAM enhanced dynamic RAM

EDTV enhanced definition TV

EE electrical engineering

EEPLD electrically erasable PLD

EEPROM electrically erasable PROM

EFM eight-to-fourteen (modulation)

EGA enhanced graphics adapter

EHF extremely high frequency (30–300 GHz)

EIA Electronic Industries Association

EIB European installation bus

E-IDE enhanced IDE

EIRP effective isotropic radiated power

EISA extended industry standard architecture

ELCB earth leakage circuit breaker

ELD electroluminescent display

ELF extremely low frequency (30–300 Hz)

EMC electromagnetic compatibility
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Acronym Stands for

emf electromotive force

EMI electromagnetic interference

EMR electromagnetic radiation

EMS expanded memory specification

EN enable

EN European norm

ENQ enquiry

e/o electro-optical

EOF end of file

EOR exclusive Or

EOT end of tape

EOT end of transmission

EPAC electrically programmable analogue circuit

EPLD electrically programmable logic device

EPO European Patent Office

EPROM erasable ROM

EPS encapsulated PostScript

erf error function

ERMES European radio message system

ERP effective radiated power

ES European standard

ESC escape

ESD electrostatic discharge

ESDI enhanced small device interface

ESDS electrostatic discharge sensitive (device)

ESPRIT European Strategic Programme for Research and Development on Information
Technology

ETS European Telecommunication Standard

ETSI European Telecommunication Standards Institute

EUT equipment under test

EXOR exclusive Or

E1 transmission rate in European multiplex hierachy 2.048 Mbit/s

F

FACT Fairchild Advanced CMOS Technology

FAMOS floating gate avalanche-injection MOS

FAQ frequently asked questions

FAST Fairchild advanced Schottky TTL

FAT file allocation table
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Acronym Stands for

FCC Federal Communications Commission

FCS frame check sequence

FDC floppy disk controller

FDD floppy disk drive

FDDI fibre-distributed data interface

FDDI-II FDDI enhancement

FDM frequency-division multiplexing

FDMA frequency-division multiple access

FDX full duplex

FEC forward error correction

FET field-effect transistor

FF form feed

FFT fast Fourier transform

FH-CDMA frequency-hopping CDMA

FHSS frequency-hopping spread spectrum

FIFO first in-first out

FILO first in-last out

FIPS Federal information-processing standard

FIR finite impulse response

FIT failures in time

FLOTOX floating gate tunnel oxide

FM frequency modulation

FoD fax on demand

FOR fax over radio

FORTRAN formula translator

FOX fibre-optic transceiver

fp freezing point

FPA floating point accelerator

FPDT four-pole double-throw

FPGA field-programmable gate array

FPLD field-programmable logic device

FPLS field-programmable logic sequencer

fps frames per second

FPST four-pole single-throw

FPU floating point unit

FR frame relay

FRD fast recovery diode

FROM flash ROM

FSD full scale deflection
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Acronym Stands for

FSK frequency shift keying

FSM finite state machine

FSR force sensitive resistor

FTAM file transfer, access and management

FTP file transfer protocol

FTTC fibre to the curb

FTTD fibre to the desk

FTTH fibre to the home

G

GA gate array

GaAs gallium arsenide

GAFET gallium arsenide FET

GAL generic array logic

GB gigabytes

GCD greatest common divisor

GCR group-coded recording

GCT gamma correction table

GD gold

GDI graphics device interface

GFLOPS giga (109) floating point operations per second

GIGO garbage in, garbage out

GMSK Gaussian minimum shift keying

GN green

GND ground

GNYE green–yellow

GOLD GSM one-chip logic device

GOPS giga (109) operations per second

GP general purpose

GPIA general-purpose interface adapter

GPIB general-purpose interface bus

GPS global positioning system

GSM global system for mobile communications

GTO gate turn-off (thyristor)

GUI graphical user interface

GY grey, gray
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Acronym Stands for

H

HAL hardware array logic

HBT heterojunction bipolar transistor

HC high-speed CMOS

HCF highest common factor

HCMOS high-density complementary metal oxide on silicon

HCT high-speed CMOS with TTL thresholds

HD hard disk

HD high density

HDB3 high-density binary code with 3 zeros substitution

HDCD high-density compact disk

HDD hard disk drive

HDL hardware-description language

HDLC high-level data-link control

HDMAC high-definition multiplexed analogue components

HDTV high-definition TV

HDVS high-definition video system

HDX half duplex

HEMT high electron mobility transistor

HFO high-frequency oscillator

HHF hyperhigh frequency (300–3000 GHz)

HiFi high fidelity

HIP hex in-line package

HIPO hierarchy of input–process–output

HLF hyperlow frequency (below 3 kHz)

HLL high-level logic

HLL high-level language

HLLCMOS high-speed low-voltage low-power CMOS

HMA high memory area

HNIL high noise immunity logic

HPIB general-purpose interface bus

HSB hue, saturation, brightness

HSI hue, saturation, intensity

HSV hue, saturation, value

HTL high threshold logic

HTL high-voltage transistor logic (26–33 V)

HTML hypertext markup language

HTP high trigger point

HTS high-temperature superconductor
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Acronym Stands for

http hypertext transfer protocol

h/w hardware

I

IAE ISDN attachment unit

IARU International Amateur Radio Union

IC integrated circuit

ICAP Interactive Circuit Analysis Program

ICCS integrated communications cabling system

ICE in-circuit emulation

ICIS current-controlled current source

ICT in-circuit test

ICVS current-controlled voltage source

IDE intelligent drive electronics

IDFT inverse discrete Fourier transform

IDN integrated digital network

IDTV improved definition TV

IEC International Electrotechnical Commission

IECC International Electronic Components Committee

IECEE IEC System for Conformity Testing to Standards for Safety of Electrical Equipment

IEEE Institute of Electrical and Electronics Engineers

IEV International Electrotechnical Vocabulary

IF image frequency

IF intermediate frequency

IFL integrated fuse logic

IGBT insulated gate bipolar transistor

IGES initial graphics exchange specification

IGFET insulated gate FET

IIL integrated injection logic

IIR infinite impulse response

ILF infralow frequency (0.3–3 kHz)

IM intermodulation

IMD intermodulation distortion

IMPATT impact avalanche transit time

IMQ Italian national quality sign

INIC current inverting negative impedance converter

INT interrupt

I/O input–output

IP Internet Protocol
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Acronym Stands for

IP international protection

IP3 intercept point of third order

IPC Institute for Interconnecting and Packaging of Electronic Circuits

IPIP input intercept point

ips inches per second

IPX Internetwork Packet Exchange

IR infrared

IrDA Infrared Data Association

IRE Institute for Radio Engineers

IRE IRE units

IRED infrared emitting diode

IRQ interrupt request

ISA industry standard architecture

ISDN integrated services digital network

ISI intersymbol interference

ISO International Standards Organisation

ISP Internet service provider

IT information technology

ITSEC information technology security evaluation criteria

ITU International Telecommunications Union

ITU-R International Telecommunications Union – Radio Communication Sector

ITU-T see ITU-TSS

ITU-TSS International Telecommunications Union – Telecom Standardisation Sector

IVR interactive voice response

IWG Imperial wire gauge

J

JAN Joint Army–Navy

JEDEC Joint Electron Device Engineering Committee

JFET junction FET

JIT just in time

JPEG Joint Photographic Expert Group (picture compression)

K

kbps kilobits per second

KCL Kirchhoff’s current law

kc/s kilocycles per second

KIS keep it simple
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Acronym Stands for

KLT Karhunen–Loéve transform

kMc kilo megacycles (GHz)

KOPS kilo-operations per second

ksps kilosamples per second

KVL Kirchhoff’s voltage law

L

L live

LAN local area network

LAP-M link access procedure for modems

laser light emission by stimulated emission of radiation

LCA logic cell array

LCC leadless chip carrier

LCD liquid crystal display

LCM least common multiple

LCR least cost routing

LD laser diode

LDC long distance carrier

LDR light-dependent resistor

LDTV low-definition TV

LE local exchange

LED light-emitting diode

LEMP lightning electromagnetic pulse

LF line feed

LF low frequency (30Hz–300 kHz)

LFO low-frequency oscillator

LIFO last in-first out

LISP list processing (programming language)

LL leased line

LLC logical link control

LLLTV low-level light TV

LMS least mean square

LNA low-noise amplifier

LNB low-noise block converter

LNC low-noise converter

LO local oscillator

LOCMOS local oxide CMOS

LORAN long-range navigation

LP low pass (filter)



Appendix C Acronyms 577

Acronym Stands for

LPC linear predictive coding

LR loudness rating

LRC longitudinal redundancy check

LRU last recently used (memory)

LS least square

LSB least significant bit

LSD least significant digit

LSI large-scale integration (1000-5000 gates)

LSTTL low-power Schottky TTL

LTP lower trigger point

LUT look-up table

LZW Lempel–Ziv–Welch (data compression)

M

MAC media access control

MAC multiplexed analogue components

MAD mean absolute difference

MAN metropolitan area network

MAP manufacturing automation protocol

MASK multiple-amplitude shift keying

MAU medium attachment unit

MAU multistation access unit

MB megabytes

Mbps megabits per second

MBS mutual broadcasting system

C micro-controller

MCA microchannel architecture

MCM 1000 circular mils

MCT MOS-controlled thyristor

MDAC multiplying analogue-to-digital converter

MDR magnetic field dependent resistor

MDT mean down time

MECL Motorola emitter-coupled logic

MET multiemitter transistor

MF medium frequency (300 kHz–3 MHz)

MF microfarad, F

MFAQ most frequently asked questions

MFD microfarad, F

MFLOPS mega floating-point operations per second
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Acronym Stands for

MFM modified frequency modulation

MFSK multiple-frequency shift keying

MHC modified Huffmann code

MHS message-handling system

MIB management information base

MIDI musical instrument digital interface

mil 1/1000 inch

MIL qualified for military use

MIMD multiple instruction/multiple data (stream)

MIME multipurpose Internet mail extension

MIPS million instructions per second

MLE maximum likelihood estimation/estimator

MLSE minimum least-square error

MM-CD mixed-mode compact disk

MMS43 multimode system 4B3T

MMU memory management unit

MNP Microcom network protocol

MO magneto-optical

MOD magneto-optical drive

modem modulator/demodulator

MOS metal-oxide semiconductor

P microprocessor

mp melting point

MPEG motion picture expert group

MPLD mask-programmed logic device

MPP massively parallel processor

MPP maximum power point

MPPP multiwatt power plastic package

MPRII Swedish norm concerning the maximum values for electric fields from PC monitors

MPSK multiple-phase shift keying

MPU microprocessing unit

MR master reset

MSB most significant bit

MSD most significant digit

MS-DOS Microsoft disk operating system

MSE mean square error

MSI medium scale integration (10–1000 gates)

MSK minimum shift keying

MSPS mega samples per second
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Acronym Stands for

MTBF mean time between failures

MTF modulation transfer function

MTTF mean time to failure

MTTFF mean time to first failure

MTTR mean time to repair

MUSE multiple subsampling encoding

MUSICAM masking pattern universal sub-band integrated coding and multiplexing

MUT mean up time

MUX multiplexer

MW hectometric waves

MX multiplex

N

N neutral

NAK negative acknowledge

NB narrowband

NBFM narrow-band frequency modulation

NBS National Bureau of Standards (USA)

nc normally closed

nc not connected

NCCF normalized cross-correlation function

NCO numerically controlled oscillator

NDI nondestructive inspection

NDT nondestructive testing

NE network element

NEC National Electric Code (USA)

NEMA National Electrical Manufacturers Association

NEMKO Norwegian national quality assurance symbol

NEP noise equivalent power

NF noise figure

NFB negative feedback

NFS network file system

NI network interface

NIC negative impedance converter

NIC network interface card

NIH not invented here (syndrome)

NIM nuclear instrumentation module

NIST US National Institute of Standards and Technology

NLQ near letter quality
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Acronym Stands for

NMI nonmaskable interrupt

NN neural network

no normally open

NOT number of turns

Np neper (log unit = 8.69 dB)

NPV net present value

NRZ nonreturn-to-zero

NRZI nonreturn-to-zero inverted

NT network terminator (ISDN)

NTC negative temperature coefficient

NTFS new technology file system

NTP normal temperature and pressure

NTSC National Television System Committee

nv nonvolatile

NVM nonvolatile memory

O

OA office automation

OA operational amplifier

OC open collector

OC output control

OCCAM programming language for transputer

OCP overcurrent protection

OCR optical character recognition/reader

ODA open document architecture

ODIF open document interchange format

ODL optical data link

o/e optoelectronic

OEIC optoelectronic integrated circuit

OEM original equipment manufacturer

OFA optical fibre amplifier

OFDM optical frequency-division multiplex

OFDM orthogonal frequency-division multiplex

OG orange

OGM outgoing message

OHP overheat protection

OLMC output logic macro cell

ONT optical network termination

OOK on–off keying
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Acronym Stands for

OOP object-oriented programming

OOS out of service

OPIP output intercept point

OSD on-screen display

OSF Open Systems Foundation

OSI open systems interconnection

OTA operational transconductance amplifier

OTDM optical time-division multiplex

OTDR optical time-domain reflectometer

OTP one-time programmable

ÖVE Austrian national quality assurance initials

OVP overvoltage protection

P

P plastic

P proportional (control)

PA power amplifier

PA polyamide

PA public address

PABX private automatic branch exchange

PAD packet assembler/disassembler

PAL phase alternation line

PAL programmable array logic

PAM pulse amplitude modulation

PAP plug and play

PASC precision adaptive sub-band coding

PASTA Poisson arrivals see time averages

PBN private branch network

PBX private branch exchange

PC personal computer

PCB printed circuit board

PCC plastic chip carrier

PCD photo compact disk

PCI peripheral component interconnect

PCL printer command language

PCM pulse code modulation

PCMCIA PC Memory Card International Association

PCN personal communication network

pcs pieces
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Acronym Stands for

PCS plastic cladded silica

PCSF plastic cladding silica fibre

PCTA personal computer terminal adapter

PD proportional differential (control)

PD public domain

PDA personal digital assistant

PDCA plan, do, check, assess

PDH plesiosynchronous digital hierarchy

PDM polarization-division multiplex

PDM pulse-duration modulation

PE parallel enable

PE phase encoding

PE polyethylene

PE protective earth

PEARL process and experiment automation real-time language

PECL pseudo-ECL

PEEL programmable electrically erasable logic

PEN protective earth neutral

PERL practical extraction and report language

PF power factor cosϕ

PFC power factor correction

PFET power field-effect transistor

PFM pulse frequency modulation

PGA pin grid array

PGA programmable gain amplifier

PHIGS programmer’s hierarchical interactive graphics system

PHL physical layer

PI proportional integral (control)

PIA peripheral interface adapter

PID process indentifer

PID proportional integral differential (control)

PIN personal identification number

PIN positive–intrinsic–negative

PIO parallel input/output

PIP picture in picture

PIPO parallel in, parallel out

PIR passive infrared (detector)

PISO parallel in serial out

PK pink
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Acronym Stands for

PKC public key cryptography system

PKI public key cryptography infrastructure

PLA programmable logic array

PLC programmable logic controller

PLCC plastic leaded chip carrier

PLD programmable logic device

PLL phase-locked loop

PLM pulse length modulation

PL/1 programming language no. 1

PM phase modulation

PM polarization maintaining (fibre)

PMF power MOSFET

POF polymer optical fibre

POH power-on hours

POLSK polarisation shift keying

PON passive optical network

PON power on

POS product of sums

POST power-on self-test

POTS plain old telephone service

pp peak to peak

PP polypropylene

PPA push–pull amplifier

ppb parts per billion

ppm parts per million

PPP point-to-point protocol

PQFP plastic quad flat pack

PRA primary rate access (ISDN)

PRBS pseudo-random binary sequence

PRF pulse repetition frequency

PRN pseudo-random noise

PROM programmable read-only memory

PRR pulse repetition rate

PS polystyrol

PSDN packet-switched data network

PSK phase shift keying

PSRR power supply rejection ratio

PSSO plastic shrink small outline (SMD)

PSTN public switched telephone network
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Acronym Stands for

PSW program status word

PTC positive temperature coefficient

PTFE polytetraflourineethylene (Teflon)

PTO public telephone operator

PTT post, telephone and telegraph company

PU polyurethane

PVC polyvinyl chloride

PWD pulse-width distortion

PWM pulse-width modulation

PWR power

PWR DWN power down

PXO programmable oscillator

Q

QAM quadrature amplitude modulation

QASK quadrature amplitude shift keying

QBE query by example

QCIF quarter common intermediate format

QDPSK quadrature differential-phase shift keying

QFP quad flat package

QFPP quad flat plastic package

QIC quarter-inch cartridge

QIP quad in parallel

QIP quad-in-line package

QMS quality management system

QoS quality of service

QPP quiescent push–pull amplifier

QPSK quadrature phase shift keying

QSPI queued serial peripheral interface

QTY quantity

R

RAC rectified alternating current

RACE Research on Advanced Communications for Europe

RADAR radio detection and ranging

RAH row address hold

RAID redundant array of inexpensive disks

RAIT redundant array of inexpensive tapes
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Acronym Stands for

RAM random-access memory

RAMDAC digital-to-analogue converter with RAM

RAS row address strobe

RBER residual bit error rate

RBOC regional Bell operating company

RCO ripple counter output

RCT reduced contact test

RCTL resistor-coupled transistor logic

RCV receive

R&D research and development

RD receive data

RD red

RDBMS relational database management system

RDS running digital sum

RDY ready

RF radio frequency (3–30MHz)

RF reactive factor sin ϕ

RFA radio-frequency amplifier

RFI radio-frequency interference

RGB red, green, blue

RIP remote image processing

RISC reduced instruction set computer

RJ45 8-pin connector for network/telecommunications applications

RLC resistor, inductance, capacitor (filter)

RLE run-length encoding

RLLE run-length-limited encoding

RMS root mean square

RNIS French: Réseau Numérique Intégration de Services (ISDN)

ROC region of convergence

ROD rewritable optical disk

ROM read-only memory

RPM revolutions per minute

RPN reverse polish notation

RPS revolutions per second

RS Reed–Solomon (code)

RS232 American interface standard similar to V.24

RSA Rivest–Shamir–Adleman (code)

RSC Reed–Solomon code

RS-PG Reed–Solomon product code
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Acronym Stands for

RTC real-time convolver

RTD resistive temperature device (thermistor)

RTF rich text format

RTL resistor transistor logic

RTS request to send

RTTY radio teletype

R/W read/write

RX receiver

RZ return to zero

S

S0 ISDN subscriber interface

SAA standard application architecture

SAH stuck at high

SAL stuck at low

SAM sequential access memory

SAV start of active video

SAW surface acoustic wave (filter)

SAWR surface acoustic wave resonator

SBC single-board computer

SC switched capacitor (filter)

SCAM suppressed carrier amplitude modulation

SCM subcarrier modulation

SCP serial communication port

SCR silicon-controlled rectifier

SCS silicon-controlled switch

SCSI small computer systems interconnect (pronounce: scuzzy)

�–� sigma delta converter

SD single density

SDH synchronous digital hierarchy

SDIP shrink dual in-line package

SDLC synchronous data-link control

SDRAM synchronous dynamic RAM

SDTV standard-definition TV

SECAM French: Séquential á mémoire (TV)

SEM scanning electron microscope

SEMKO Swedish national quality assurance initials

SET single-electron transistor

SETI Finnish national quality assurance initials
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Acronym Stands for

SEV Swiss national quality assurance initials

SFN single-frequency network

SG signal ground

SGML standardized generalized markup language

S/H sample and hold

SHA sample-and-hold amplifier

SHF superhigh frequency (3–30GHz)

S/I signal to interference (ratio)

SIA Semiconductor Industry Association

SIL single in line

SIMD single-instruction multiple data (stream)

SIMM single in-line memory modules

SIO serial input/output

SIP single in-line package

SIPO serial in, parallel out

SISD single instruction single data

SISO serial in, serial out

SLALOM semiconductor laser amplifier in a loop mirror

SLF superlow frequency (< 3 kHz)

SLIC subscriber line interface circuit

SMAC state machine atomic cell

SMC surface-mounted component

SMD surface-mounted device

SMDS switched multimegabit data service

SMPS switched-mode power supply

SMPTE Society of Motion Picture and Television Engineers

SMT surface-mount technology

SMTP simple mail transfer protocol

S/N signal to noise (ratio)

SNA systems network architecture

SNMP simple network management protocol

SNR signal-to-noise ratio

SO serial output

SO small outline

SOA safe operating area

SOG small-outline gull-wing

SOH start of heading

SOHO small office, home office

SOIC small-outline IC
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Acronym Stands for

SOJ small-outline J (IC housing)

SOP state of polarisation

SOP sum of products

SOP small-outline package

SOS silicon on sapphire

SOT small-outline transistor

SP signal processor

SP stack pointer

SP surge protector

SPARC scalable processor architecture

SPC stored program control

SPDT single-pole double-throw

SPE subscriber premises equipment

sp gr specific gravity

SPICE simulation program with IC emphasis

SPN subscriber premises network

SPST single-pole single-throw

SPX sequenced packet exchange

SQFT shrink quad flat package

SQL structured query language

SR shift register

SR silver

SRAM static RAM

SRD step recovery diode

SSB single sideband (modulation)

SSBSC single sideband suppressed carrier (modulation)

SSD solid-state disk

SS/DD single side double density

SSI small-scale integration

SSMA spread spectrum multiple access

SSN7 signalling system no. 7

SSOP shrink small-outline package

SSPA solid-state power amplifier

SSR solid-state relay

SSSC single sideband suppressed carrier

SSTV slow-scan television

SS#7 signalling system no. 7

SS7 signalling system no. 7

STDM synchronous time-division multiplex
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Acronym Stands for

STEP standard for the exchange of product and model data

STM synchronous transfer mode

STM-1 synchronous transport module (ISS Mbps)

STP shielded twisted pair

STP standard temperature and pressure

STX start of text

s-VHS super-video home system

SVP surge voltage protector

s/w software

SW short wave

SWG Imperial standard wire gauge

SWR standing-wave ratio

SYN synchronous idle

T

TAM telephone answering machine

TAP terminal access point

TASI time-assignment speech interpolation

TAT transatlantic tube

TAZ transient absorption zener (diode)

TB terminal block

TC temperature coefficient

TC terminal count

TC two’s complement

TCM Trellis coded modulation

TCO92 Swedish standard for electric fields from PC monitors

TCO95 Swedish standard for power consumption of PC monitors

TCP/IP transmission control protocol/internet protocol

TD transmit data

TDD time-division duplex

TDM time-division multiplexing

TDMA time-division multiple access

TDR time-domain reflectometer

TE transversal electrical (wave)

TE terminal equipment

TEM transversal electromagnetic (wave)

TEMPEST test for electromagnetic propagation emission and secure transmission

TETRA trans-European trunked radio

TFP thin flat package
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Acronym Stands for

TFT thin-film transistor (LCDs)

T/H terminal host (application)

T/H track and hold

THD total harmonic distortion

THZ terahertz (1015 Hz)

TIFF tagged image file format

TIM transient intermodulation

TLA three-letter acronym

TM transversal magnetic (wave)

TN-C terra, neutral, common (protective conductor also serves as neutral)

TN-C-S terra, neutral, common, separated (contains both combined and separate neutral and
protective conductors)

TOC table of contents

TOR telex over radio

TPDDI twisted-pair distributed data interface

TPE twisted pair Ethernet

tpi tracks per inch

TQ turquoise

TQFP thin quad flat package

TQM total quality management

TRIAC triode alternating current switch

Triple
nickel

lab-slang for the timer-IC 555

TSR terminate and stay resident

TSSOP thin shrink small-outline package

TT true type

TTL transistor–transistor logic

TTY teletypewriter

TÜV German national quality assurance initals

TV television

TWAIN technology without an interesting name

TWT travelling wave tube

TX transmitter

T1 transmission rate in US multiplex hierarchy, 1.5Mbit/s

T3 transmission rate in US multiplex hierarchy, 45Mbit/s

U

UART universal asynchronous receiver/transmitter

UDP user datagram protocol

UDTV ultradefinition TV
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Acronym Stands for

UEP unequal error protection

uF microfarad, F

uH microhenry, H

UHF ultrahigh frequency (300MHz–3GHz)

UI unit interval

UIT French: Union International des Télécommunications (ITU)

UJT unijunction transistor

UKW German abbreviation for VHF, metric waves

UL American national quality assurance initials

ULA uncommitted logic arrays (ASICs)

ULF ultralow frequency (300 Hz–3 kHz)

ULSI ultralarge scale integration

UMA upper memory area

UMB upper memory blocks

UNIC voltage-inverting negative impedance converter

UNIX widely used multiuser operating system for powerful workstations

UPC universal product code

UPS uninterruptible power supply

US unavailable seconds

USART universal synchronous/asynchronous receiver/transmitter

USAT ultrasmall-aperture terminal

USD US dollars

UTC universal time coordinated

UTP unshielded twisted pair (cable)

UV ultraviolet (λ < 400 nm)

V

VAC volts alternating current

VANS value-added network service

VAR value-added reseller

VAS value-added service

VC virtual channel

VCA voltage-controlled amplifier

Vcc supply voltage

VCD variable-capacitance diode

VCF voltage-controlled filter

VCI virtual channel identifier

VCIS voltage-controlled current source

VCO voltage-controlled oscillator
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Acronym Stands for

VCR videocassette recorder

VCVS voltage-controlled voltage source

VCXO voltage-controlled crystal oscillator

VDC volts direct current

VDE German national quality assurance initals

VDR voltage-dependent resistor (varistor)

VDT video display terminal

VDU video display unit

VESA Video Electronics Standards Association

VF voice frequency (16 Hz–20 kHz)

VFC voltage-to-frequency converter

VFO variable-frequency oscillator

VHDL VHSIC hardware description language

VHF very high frequency (30–300MHz)

VHSIC very high speed integrated circuit

VIA versatile interface adapter

VIH high-level input voltage

VIL low-level input voltage

VIL vertical in-line

VLB VESA local bus

VLF very low frequency (3–30 kHz)

VLSI very large scale integration (more than 5000 gates)

VLT video look-up table

VME Versa Module Eurocard (bus system for microcomputers and workstations)

VMOS V-groove MOS

VMS voice mail system

VoD video on demand

VOH high-level output voltage

VOL low-level output voltage

VOM volt–ohm–milliammeter (multimeter)

VOX voice-operated transmission

VPI virtual path identifier

VPN virtual private network

VR voltage regulator

VRAM video random-access memory

VRC vertical redundancy check

VSAT very small aperture terminal

VSO very small outline

Vss ground
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Acronym Stands for

VSW very short waves (10–1m, UKW)

VSWR voltage standing-wave ratio

VT vertical tabulator

VT violet

VTF voltage-tunable filter

VTR videotape recorder

VTVM vacuum voltmeter

VXI VME bus extension for instrumentation

VXO variable-frequency crystal oscillator

V.24 interface standard of the CCITT

W

W3 World Wide Web

WAN wide area network

WARC World Administrative Radio Conference

WB wide-band

WBFM wide-band frequency modulation

WCS writable control store

WDM wavelength-division multiplexing

WDT watchdog timer

WE write enable

WH white

WISCA why isn’t Sam coding anything?

WLAN wireless LAN

WORM write once read multiple

wpc watts per candle (light power)

wrt with respect to

WSI wafer-scale integration

wt weight

WWW World Wide Web

WYSIWYG what you see is what you get

X

XBIOS extended basic input/output system

XMS extended memory specification

XMT transmit

XOR exclusive Or

XTAL crystal
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Acronym Stands for

Y

yd yard (0.9 m)

YE yellow

YIG yttrium–iron–garnet

YIQ luminance, in-phase, quadrature

YUV colour coordinates of the European PAL system (Y= luminance, UV= chrominance)

Z

Z zero bit

Z80 highly popular 8-bit microprocessor

ZCS zero code suppression

ZCS zero current switching

ZD zero defects

ZIF zero insertion force (ICs)

ZIP zigzag in-line package

ZM dual sideband modulation

ZTAT zero turnaround time

ZVS zero voltage switching

4PDT four-pole double-throw

4PST four-pole single-throw

555 triple nickel (nickel: 5-cent coin)



D Circuit Symbols (Selected)

Resistors

Resistor, general Thermal resistor, NTC

Adjustable resistor
�

Thermal resistor, PTC

Potentiometer with mov-
able contact B

Magnetic-dependant re-
sistor

V
Voltage-dependent resis-
tor, varistor X

Magnetoresistor, linear

Resistor with fixed taps Adjustability, general

Shunt Adjustability, nonlinear

Heating element Variability, inherent,
general

Variability, inherent,
nonlinear

Capacitors

Capacitor, general Capacitor, adjustable

+ Polarised capacitor Lead-through capacitor
feed-through capacitor
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Inductors

Inductor, Coil
general

Continuously variable
inductor

Inductor with magnetic
core

Inductor with fixed taps

Inductor with gap in
magnetic core

Ferrit bead, shown on
conductor

Transformers

Transformer with
2 windings

Transformer with
3 windings

Transformer with
2 windings and identical
voltage polarity

Autotransformer

Transformer with
2 windings and opposing
voltage polarity

Pulse transformer

Voltage Sources, Current Sources

Ideal voltage source Ideal current source

AC voltage source,
technical frequency

AC voltage source,
high frequency

AC voltage source,
audio frequency

Protective earth,
Protective ground

Earth, general
Ground, general

Ground, Chassis

Fuse
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Old Symbols (no longer used!)

Resistor, general Electrolytic capacitor

Capacitor, general Inductor

+ Polarized capacitor Transformer

Semiconductor Diodes

Semiconductor diode,
general

Variable capacitance
diode Varactor

Light emitting diode,
LED general

Breakdown diode, unidi-
rectional Zener diode

Temperature sensing
diode

Breakdown diode, bidi-
rectional

Photodiode – –

Thyristors

Bidirectional diode
thyristor DIAC

Bidirectional triode
thyristor TRIAC

Thyristor Turn-off triode thyristor
GTO
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Transistors

npn-transistor Insulated gate field-
effect transistor IGFET,
enhancement type,
p-type channel

pnp-transistor IGFET, enhancement
type, n-type channel

npn-transistor, collector
connected to housing

IGFET, enhancement
type, n-type channel

Junction field-effect
transistor JFET, n-type
channel

IGFET, depletion
type, n-type channel

JFET, p-type channel IGFET, depletion type,
p-type channel

Insulated gate bipolar
transisor IGBT, enhance-
ment type, n-type chan-
nel

Phototransistor,
pnp-type

Measurement Instruments

Indicating instrument Recording instrument

Integrating instrument Counter

V Voltmeter Recording wattmeter

cos � Power-factor meter Watt-hour meter

W Wattmeter
Hour meter
Hour counter

� Thermometer Pulse meter

Thermocouple,
with polarity

Thermoelement with
noninsulated heating
element

Movement symbols, see Sect. 4.1.6
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Switches, Relays

Switch, make contact Operating device
Relay coil, general

Switch, break contact Relay coil of a polarised
relay

Temperature-sensitive
switch, break contact

Relay coil of a remanent
relay

Self-operating thermal
switch, break contact

Operating device of a
thermal relay

Manually operated
switch, general

Operating device of an
electronic relay
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Connections, Connectors

Connection, general Junction,
connection point

3 connections T-connection

Screened conductor Double junction of con-
ductors

Twisted connection,
2 connections

Not connected

Coaxial pair Plug and socket

Terminal Female contact, socket

Connecting link, closed Male contact, socket

Sensors

Permanent magnet Hall generator

Light-dependent resistor Photovoltaic cell

Piezoelectric crystal,
quartz

– –

Integrated Circuits

Optocoupler Operational amplifier

Optical coupling device
with slot for light barrier

Opto-TRIAC
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8421-code 452

absolute value 102–104
absolute value squared 102
absolute values of sums 105
absolute voltage level 549
AC bridges see bridge circuits
AC current gain 274
AC equivalent circuit 262
AC measurement

current 177
voltage 177

AC power
overview 156

AC voltage amplifier 343
access time 440
acronyms 561
active 265
active filter see filter
actual value 99
addition of vectors 105
addition theorems

of hyperbolic functions 518
of trigonometric functions 514

address 439
address access time 440
address inputs 424
addressable memory 439
adjacent terms

logic algebra 407
admittance 119
admittance parameters 266
admittance plane

complex 120
advanced low-power Schottky TTL
series 416

advanced Schottky TTL series 416
AGA 446
air gap 500
value of AL 73
all-pass filter 197, 237, 348
alternating quantity 112
alternative phase-shifting circuits 148
AL-value 500
American units 535
American wire gauge 545
amount of feedback 323
ampere 1

definition 64

ampere turns 71
Ampere’s law 71, 95
amplitude 99, 113
amplitude spectrum 212
amplitude–phase form 211
analogue circuit design 261 ff

methods of analysis 261
analogue signals 261
analogue stabilisation with transistor
474

analogue-to-digital converter
resolution and coding 555

And 444
And function 392
And gate 394
angular frequency 99, 106, 113
antisymmetric function 209
apparent power 155, 156
application of the Fourier series 217
approval sign 469
arbiter 442
arc-functions 517

principal value 517
Argand diagram 103
argument 103, 104
arithmetic mean 114
Aron-circuit 186
Arrhenius-law 372
artificial mains network 508
artificial zero-point 185
ASCII coding 554
ASCII table 554
associative law 397
asymmetric radio-frequency interference
voltage 508

asymmetrical 265
asynchronous counters 447, 450
attenuation constant 237
attenuation distortion 237
attenuation factor 194
atto 531
average 114
average power 7, 152
AWG 545
axial symmetry 209

baby cell 547
balanced 158
balanced systems 165
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balancing
of AC bridges 149

balancing condition
of AC bridges 149

bandpass filter 196, 204, 361
bandwidth 361
centre frequency 361
circuit 362
frequency response 361
higher order 362
ideal 240

bandwidth 26, 196, 240, 361
definition 240

Barkhausen criterion 364
barkhausencriterion 328
basics of differential calculus 518
basics of integral calculus 519
batteries 547
BCD 452
BCD counter 447
BCD-decimal decoder 426
Bessel-filter 351
bias voltage production 385
bimetallic instrument 171
binary coded decimal 452
binary counter 447, 450
Biot–Savart 68
Biot–Savart’s law 68
bipolar transistor 271 ff

AC equivalent circuit 277
basic circuits 280
characteristics 272
common-emitter circuit 280
critical frequency 276
current gain 274
equivalent circuit, AC 277
equivalent circuit, static 276
Giacoletto equivalent circuit 278
input resistance 275, 279
output resistance 275
overview: basic circuits 296
reverse voltage transfer ratio 276
static equivalent circuit 276
thermal voltage drift 275
unity gain frequency 276
voltages and currents 272

bipolar transistor current sources 296
bipolar transistor differential amplifier
298, 300
differential mode gain 300

black-box 192, 220
block diagram 267

Bode plot 269
Boltzmann-constant 533
boost converter 479, 494
bootstrap 384
branch 6
bridge circuits 149

balancing condition 149
bridge rectification 472
bridge rectifier 472
bridges see bridge circuits
buck converter 477, 494
buck-boost converter 481, 494
Butterworth-filter 351

calculation methods for linear circuits
29 ff

capacitance 4, 46
capacitive divider 19
capacitive reactance 123
capacitor 5, 122
CAS 442
cascade circuit 202
cascading counters 456
causal signals 208
causal systems 221
CE sign 469
centre frequency 196, 361
chain rule 518
characterisation of nonlinear systems
253

characteristic equation
of nonlinear systems 253

characteristic expression 435
characteristics of nonsinusoidal
waveforms 115

charge 1
electric 1

Chebyshev-filter 351
chemical elements 556
choke 4

current compensated 509
chokes 91
circuit duality 139
circuit symbols 595–600

capacitors 595
connections 600
connectors 600
current sources 596
diodes 597
inductors 596
integrated circuits 600
measurement instruments 598
old symbols 597
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relays 598
resistors 595
sensors 600
switches 598
thysistors 597
transformers 596
transistors 598
voltage sources 596

circuits
equivalent 135

circuits with operational amplifiers
335, 336
impedance converter 336
noninverting amplifier 336

class A operation 379
class AB operation 383

biasing 384
class B operation 382
class C operation 382
classes of precision 188
closed-loop gain 323
closed-loop system 323
CMOS 417
CMOS counters 459
CMOS devices

technical data 417
CMRR 301, 332
code

8421-code 452
coercivity 76
coherent units 530
coil 4
colour code

resistor 542
Colpitts oscillator 368
combinational circuit 408, 423
combinational logic 423
common mode 299
common-base circuit 294, 297

AC equivalent circuit 295
AC voltage gain 296
high frequencies 296
input impedance 295
output impedance 295

common-collector circuit 291, 297
AC current gain 294
AC equivalent circuit 292
high frequencies 294
input impedance 293
output impedance 293
voltage gain 291

common-drain circuit 316, 318

common-emitter circuit 280 ff, 297
AC equivalent circuit 282
AC voltage gain 285
at high frequencies 291
input impedance 283
load line 290
operating point 286
output impedance 284
thermal voltage drift gain 289
two-port network equations 281
two-port network parameters 281

common-gate circuit 317, 318
common-mode gain 299, 301, 320, 331
common-mode input resistance 302
common-mode input swing 331
common-mode radio-frequency
interference voltage 508

common-mode rejection ratio
301, 321, 332

common-source circuit 310–313, 318
AC equivalent circuit 312
feedback capacitance 314
gain 314
input impedance 313
operating point 314
output impedance 313
two-port parameters 311
y-parameter 311

commutative law 396
comparators 335
compass needle 66
compensated voltage divider 141
compensation

of reactive current 156
complementary emitter follower 379

biasing 384
bootstrap 384
class AB operation 383
class B operation 379, 382
class C operation 382
current-limiting 386
Darlington pair 385
efficiency 381
feedback 387
input and output impedance 380
input signal injection 386
operation classes 383
oscillation 387
output power 380
output voltage limit 380
power dissipation 381
pseudo-Darlington circuit 385
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zero stability 387
complex admittance plane 120
complex amplitude 110
complex calculus 105
complex conjugate 101, 103, 104
complex exponential function 104
complex Fourier coefficients 212
complex frequency 267
complex function of time 109
complex impedance 116
complex impedances

overview 121
complex normal form 212
complex number arithmetic

overview 107
complex numbers 101 ff

addition 102
Cartesian form 103
division 102
Euler formula 109
exponential form 104
multiplication 102, 106
notation convention 101
polar form 103
representations 103, 105
subtraction 102
trigonometric form 103

complex plane 103
complex power 155
complex RMS value 110
complex spectrum 212
composite signal spectrum 219
compression point 257
conductance 3, 57, 119, 122

complex 119
magnetic 500

conducted-mode interference 508
conductivity 56
confidence intervals 528
constant quantity 112
consumer pointer system 65
continuous mode 478
continuous-mode operation 477
control

current-mode 496
of SMPS 496
PI controller 498
power factor pre-regulator 506
voltage-mode 496

controllable resistor 321
converter

inverting 481, 494

convolution 228
rules 228–230

convolution integral 228
convolution product 228
core cross-section

magnetic 499
core length

magnetic 499
corkscrew rule 64, 66
corner frequency 147, 198, 202
correct current measurement 181
correct voltage measurement 181
cosine function 99, 109

basic terms 99
graph 513
with complex argument 109

cosinusoidal waveforms
sum of 100

cotan function
graph 513

coulomb 1
Coulomb integral 44
Coulomb’s law 39
counter 447–460

asynchronous 450
BCD 450
binary 450
cascading 456
CMOS 458, 459
decimal 450, 453
down 453
overview 458, 459
partially synchronous 456
programmable 454
ripple-through 450
semisynchronous 456
TTL 458, 459
up/down 454

coupling coefficient 88
crest factor 115
critical frequency 147, 348
critical frequency of transconductance
310

critically damped case 26, 27
cross-coil instrument 172
crossover distortion 380, 384
crystal oscillator 368
current 1, 54

definition 64
electric 1

current amplifier 324
current compensated double choke 509
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current density 55
current direction

positive 1
current divider 18

capacitive 19
complex 140
inductive 19

current division 140
current error

with instrument transformers 180
current error circuit 181
current flow

selecting track dimensions 544
current gain 274

AC 274
differential 274
forward 274
static 274

current limiting 386
current measurement

AC 177
DC 174

current mirror 304
current path 182
current sink 417
current source 5, 13, 417

conversion into voltage source 13
ideal 5
real 12
voltage-controlled 341

current transformer 179
current-compensated choke 509
current-compensated inductor 510
current-divider rule 18
cutoff frequency 195, 196, 198, 202

D flip-flop 430, 434, 436
D-input 433
D-latch 430
damped oscillation 108
damping ratio 26, 204

critically damped case 26
overdamped case 26
underdamped case 26

Darlington pair 278, 385
data selectors 427
data sheets

digital technology 412
DC 1
DC measurement

current 174
voltage 174

DC part 211

DC systems 1
decibel 193
decimal counter 450, 453
decimal prefixes 531
decoder 426
definition

linear systems 220
stable systems 222
time-invariant systems 221

delay distortion 237
delay time 236
delayed output 432, 433
delta circuit

transformation into star circuit 17
transformation to a star circuit 137
transformation to a wye circuit 137

delta function 224
spectrum 245

delta–configuration 17
delta–star transformation 137
delta–wye transformation 137
delta-connected generator 161
demagnetisation 77
DeMorgan’s rules 398
demultiplexer 427
dependency notation 423–426
depletion 305
derivative

of step function 225
derivatives 108

of elementary functions 519
design of the PI controller 498
diamagnetism 69, 74
dielectric constant 44
dielectrics 44
difference amplifier 339
differential amplifier 298
differential amplifier with bipolar
transistors
common-mode gain 301
common-mode rejection ratio 301
examples 303
input impedance 302
input offset voltage drift 302
offset current 302
offset voltage 302
output impedance 302
overview 304

differential amplifier with field-effect
transistors 319, 320
common-mode gain 320
common-mode rejection ratio 321
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differential mode gain 320
input impedance 321
output impedance 321
overview 321

differential calculus
chain rule 518
division rule 518
product rule 518

differential current gain 274
differential equation, linear 1st-order 19
differential input resistance 275
differential mode 299
differential output resistance 275
differential resistance 262
differential-mode gain 300
differential-mode input impedance 302
differential-mode radio-frequency
interference voltage 508

differentiator 342
digital circuits

CMOS family 417
integration 412
loading of 410
noise margin 410
open collector 420
power loss 412
propagation delay 411
rise time 411
slew rate 412
TTL family 414
voltage levels 409

digital electronics 392 ff
diode 269

dynamic resistance 271
parallel combination 271

Dirac impulse 224
direct current 1
discontinuous mode 478
discontinuous-mode 478
display error 187

classes of precision 188
distortion-free systems 236
distortions

linear 237
nonlinear 253–257

distributive law 397
division rule 518
don’t care state 405
down counter 449, 453
drain 305
DRAM 441
driver transistors 385

DTL 419
dual 139
dual-tone multi-frequency 553
duality constants 139
duality of circuits 139
duty cycle 477
dynamic component 412
dynamic input 433
dynamic load line 291
dynamic noise margin 411
dynamic RAM 441
dynamic resistance 262
dynamometer 170

EAROM 444
earth leakage current 509
ECC memory 443
ECL 418
edge-triggered flip-flops 434

synthesis of 436
EEPROM 444
efficiency 9
electric charge 1
electric current 1
electric displacement 43
electric field 39
electric field strength 40, 54
electric flux lines 40
electric induction 42
electric potential 2
electric resistance 2
electric voltage 2
electrical energy 7
electricity meter 172
electrodynamic instrument 170
electrodynamic ratio meter 172
electron

charge 533
electronic realisation of logic circuits
409

electrostatic field 39–53
at a boundary 47

electrostatic induction 42
electrostatic instrument 171
electrostatic movement 171
electrostatic shielding 42
elementary charge 1
elementary signals 222 ff

delta function 224
Dirac impulse 224
Gaussian pulse 223
impulse function 224
rectangular pulse 222
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step function 222
triangular pulse 223

EMI suppression chokes 510
emitter follower 291, 297, 376

as power amplifier 376
complementary 379
efficiency 379
input and output impedance 377
operating limits 377
output power 377
power dissipation 378

enable 457
energy 7 ff

in a capacitor 9
in an inductor 8

energy in a magnetic field 90
energy in an electrostatic field 49
energy in static steady-state current flow
62

energy signal 208
energy, normalised 208
enhancement 305
EPLD 445
EPROM 443, 445
equipotential surfaces 41, 54
equivalent circuit diagram 6
equivalent circuits 135
equivalent parallel circuit 136
equivalent series circuit 136
error limits 188
EU sign of conformity 469
Euler formula 104, 109
European norm

EN55022 507
EN61000 507
EN61000-3-2 504

even function 209
exa 531
exclusive Or 396
exponential form of complex numbers
104

exponential function
complex 107–109
derivations and integrals 108
with complex exponents 108
with imaginary exponent 108

failure in time 371
failure rate 371
fall time 411
fan 371
fan-in 410
fan-out 410

farad 4, 46
Faraday cage 42
Faraday’s law 95
Faraday’s law of induction 84
FAST series 416
feedback 322
feedback capacitance 312
feedback factor 323
feedback, types of 324
femto 531
ferrite 499
ferromagnetics 75
ferromagnetism 75
FET see field-effect transistor
FET current sources 319
field constant

electric 533
magnetic 533

field lines 66
field-effect transistor 305 ff

active range 307
as controllable resistor 321
basic circuits 310, 311
critical frequency 310
depletion type 305
enhancement type 305
high frequencies 310
IGFET 306
input impedance 309
insulated gate 305
JFET 305
junction 305
MOSFET 306
n-channel 305
output characteristic 307
output characteristics 307
output resistance 309
overview: basic circuits 318
p-channel 305
pinch-off voltage 307
resistive range 307
symbols 306
threshold voltage 307
transconductance 308
transfer characteristic 307
voltages and currents 305

FIFO 442
filter 194 ff, 470

active 348
all-pass 197, 348
band-stop 348
bandpass 196, 361
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Bessel 351, 353
Butterworth 351, 352
Chebyshev 351
Chebyshev 0.5 dB 354
Chebeyshev 3 dB 355
coefficients 350
EMI 508
high-pass 195, 359
low-pass 195, 349
normalisation of the transfer function
349

order of a 350
overview 194
passive 349
poles 350
rise time 198
stop-band 197
universal 363
with critical damping 351

filter capacitor 471
filter order 202, 348
filter realisation 206
filters 141
finite state machines 464
first-order systems

impulse response 232
step response 232

fit see failure in time
fixed memory see ROM
flash 444
flip-flop

circuit symbols 433
overview 434

flip-flop applications 428
flip-flop transition table 435
flip-flops 428

circuit symbols 433
circuits, overview 438
clocked SR 430
D 430
edge-triggered 434
JK 432
master–slave 431
overview 434
overview, edge-triggered 434
RS 429
SR 429
syntheses 436
triggering 432

flux density 66
flux linkage 70
flyback converter 477, 482, 494

follower 336
force

at the boundaries 93
at the boundary 50
in a magnetic field 92
in an electrostatic field 50
on a charge 50
on a current-carrying conductor
67, 92

on a moving charge 65
form factor 115
forward converter 477
forward current 270
forward current gain with shorted output
266, 274

forward transconductance 267
forward transconductance with shorted
output 267

forward voltage 270
Fourier coefficients 210

complex 212
Fourier series 210

amplitude–phase form 211
application of 217
complex normal form 212
exponential form 212
frequently used 215
overview 213
trigonometric form 210

Fourier transform 242
definition 242
properties, overview 244
symmetry 244

Fourier transforms 241
of elementary signals 245–249

FPGA 446
FPLA 446
FPLS 446
free-wheeling diode 24
frequency 99, 113

complex 267
frequency compensation 334
frequency divider 434
frequency domain 242
frequency normalisation 199, 231
frequency response 193, 269
frequently used Fourier series 215
full-bridge push–pull converter 495
full-wave rectification 472
full-wave rectification with dual supply
472

full-wave symmetry 209
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GaAs 419
gain criterion 364
gain frequency characteristic 193
gain margin 335
gain response 193
gain-bandwidth product 333
GAL 446
gallium-arsenide 419
galvanometer 169
gate 305
gates 393
Gaussian distribution 527
Gaussian pulse 223

spectrum 248
Gauss’s law 96
Gauss’s law of electrostatics 45
general alternating quantity 112
generator 29
generator star point 162
Germanium diode 269
Giacoletto 278
Giacoletto equivalent circuit 278
Gibb’s phenomenon 239
Greek symbols 533
group delay 237
guaranteed error limits 188

HAL 445
half-bridge push–pull converter
490, 495

half-wave rectification 472
half-wave symmetry 210
hard iron 77
harmonic 112
harmonic function 99, 108
harmonics 210, 253
Hartley oscillator 367
heating of components 370
heatsink 371

calculation of 370
henry 4, 73, 74
high frequency transformer 499

coupling 503
hysteresis losses 502
minimum number of primary
windings 502

windings 502
wire diameter 502

high-frequency transformer 500
high-pass filter 195, 200, 359

circuits 359
transfer function 359

high-speed CMOS series 416

higher-order filters 202
hold time 441
homogeneous field 55
hot-wire measuring system 171
h-parameters 265
hybrid-parameters 265
hyperbolic functions 518

addition theorems 518
hysteresis 422
hysteresis loop 76
hysteresis loss 76
hysteresis-circuit 344

ideal bandpass filter 240
ideal low-pass filter 238

step response 238
ideal systems 236
IFL 446
IGFET 305
illegal states 467
imaginary numbers 101
imaginary part 101
imaginary unit 101

powers of 101
impedance 116, 117

complex 116
impedance converter 292, 336
impedance matching 10, 143
impedance normalisation 231
impedance plane

complex 117
Imperial units 535
implicant 406
impulse function 224
impulse response 226

first-order systems 232
second-order systems 234

impulse response calculation 231
in-phase current 153
in-phase voltage 153
increasing oscillation 108
induced voltage 84
inductance 4, 74
induction 83–90
induction in a moving conductor 83
induction instrument 172
inductive divider 19
inductive reactance 122
inductor 4, 122, 499

airgap 500
core 500
current-compensated 510
wire diameter 500
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input admittance with shorted output
267

input bias current 332
input characteristic 273
input impedance 142, 263, 321
input impedance of the differential
amplifier 302

input offset voltage 302
input resistance with shorted output 266
input spectrum 231
input vector 465
instantaneous power 7, 151

in a three-phase system 165
instantaneous value 99, 113
instrument symbols 173
instrumentation amplifier 340
insulated gate field-effect transistors
305

integrals 108
basics 519
definite 524
involving cosine 523
involving exponential functions 523
involving inverse trigonometric
functions 524

involving trigonometric functions
521

of elementary functions 520
integrator 341
intercept point 257
interference

conducted-mode 508
intermodulation distortion 255
intermodulation margin 257
internal resistance

in a voltmeter 176
voltage-related 176

inverse trigonometric functions 517
inversion 392
inversion laws 398
inverter 394

controlled 396
inverting amplifier 337
inverting converter 494
inverting Schmitt trigger 344
iron loss 76

JFET 305
JK flip-flop 432, 435
Johnson counter 449
joule 7
junction field-effect transistors 305

Karnaugh map 402
KCL 6, 58
Kirchhoff’s laws 6, 58

current law 6, 58
first law 6, 58
mesh law 59
second law 6, 59
voltage law 6, 59

Kronecker symbol 215
KVL 6, 59

lagging 113
lagging power factor 154
Laplace frequency domain 267
latch 431
latches 428
LCA 446
leading 113
leading power factor 154
least significant bit 462
Lenz’s law 84
levels

absolute 549
relative, table 551

lifetime 371
line conductor 159
line current 159
line regulation 496
line spectrum 217
line-to-line voltage 159
linear systems 192, 220
linearisation 261

operating point 261
load 29

for instrument transformers 180
of digital circuits 460

load line 290
load regulation 496
load variation 473
loading

of digital circuits 410
logic algebra 392 ff
logic circuits

CMOS family 417
electronic realisation 409
integration 412
loading of 410
noise margin 410
open collector 420
power loss 412
propagation delay 411
rise time 411
slew rate 412
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TTL family 414
TTL/CMOS comparison 418
voltage levels 409

logic families 412
logic functions 392
logic high voltage level range 409
logic low voltage level range 409
logic transformations 396

associative law 397
commutative law 396
DeMorgan’s rules 398
distributive law 397
inversion laws 398
overview 398

logic variable 392
loop 6
loop analysis 30, 32
loop gain 323
Lorentz force 66, 67
loss factor 26
low-pass filter 195, 197, 349

calculation 356
circuits 357
ideal 238

low-pass filter, 2nd-order 27
step response 29

low-power Schottky TTL series 416
low-power TTL series 415
lower cutoff frequency 196
LRC low-pass filter 27
LSB 462
LSL 419
LTI systems 222

magnetic circuit 78
magnetic circuit with a permanent
magnet 80

magnetic conductance 73, 500
magnetic core length 499
magnetic coupling 88
magnetic coupling coefficient 88, 89
magnetic dipole 66
magnetic field

direction-pointing convention 64
force at the boundaries 93

magnetic field strength 69
magnetic fields 64–95
magnetic fields at boundaries 77
magnetic flux 70
magnetic flux density 66
magnetic hysteresis 76
magnetic induction 83
magnetic resistance 73

magnetic saturation 76
magnetic voltage 71
magnetomotive force 71
magnitude 102–104
magnitude frequency characteristic 193
magnitude response 193, 197, 201
mains ripple 298
mask programmable 443
master–slave flip-flop 431
mathematical basics 513
maximum power transfer 10
maxterm 406
Maxwell’s equations 95–96

1st equation 95
2nd equation 95
3rd equation 96
4th equation 96

Maxwell’s parallel plates 42
mean time between failures 371
measurement

AC current 177
AC power 182
AC voltage 177
DC current 174
DC power 181
DC voltage 174
multiphase power 185
power factor 184
reactive power 183, 184
reactive power, multiphase 186
RMS 180

measurement error 187 ff
classes of precision 188
current measurement 176
random error 187
systematic error 187
voltage measurement 177

measurement instruments 169–173
bi-metallic 171
cross-coil 172
electrodynamic 170
electrodynamic ratio 172
electrostatic 171
hot-wire 171
induction 172
overview 173
ratiometer moving-coil- 169
reed frequency meter 172
rotary magnet 171
thermal 171
vibration 172

measurement methods
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overview 190
measurement range extension

current measurement 174
voltage measurement 175
with an instrument transformer 179

Meissner oscillator 367
memory 439
memory access 440
memory cell 439
memory construction 439
mesh 6
mesh analysis 30, 32
mho 57

unit 534
micro cell 547
microdyn cell 547
mignon cell 547
Miller-capacitance 280, 291
minimum number of primary turns 501
minimum overlap of logic terms 407
minterm 406
mixed quantity 112
MMF 71
mode

continuous 478
discontinuous 478

modulo-(m+ 1) counter 455
mono cell 547
most significant bit 463
moving-coil instrument 169, 174
moving-coil meter 116
moving-iron instrument 171
moving-iron meter 116
MSB 463
MTBF 371
multiplexer 425, 427
multiplexor see multiplexer
multiport RAM 442
multivibrator 346, 370
mutual inductance 88, 89
mutual induction 88

n-channel FET 305
n-phase system 158
Nand gate 395
national approval signs 469
natural frequency 26
naturally occurring constants 533
negative feedback 322–329

closed loop gain 323
critical frequency 328
frequency response 327
gain 328

input and output impedance 326
stability 328

negative frequency spectrum 212
negative logic 409
negative-feedback resistor 286
neper 549
network transformations 135–140
networks at variable frequency 192
neutral conductor 159
node 6
node analysis 30, 33
noise margin 410
nominal load 180
noninverting amplifier 336
noninverting Schmitt trigger 345
nonlinear systems 192, 226, 253–257

characterisation 253
characteristic equation 253
definition 253
THD 254
total harmonic distortion 254

nonperiodic signals 208
nonreactive 265
Nor gate 395
normalisation of circuits 231
normalised frequency 199
Norton’s theorem 33
notch filter 197

odd function 209
offset current 302
offset voltage 302, 330
offset voltage drift 302, 331
ohm 3, 56, 57
Ohm’s law 2
one way rectification 472
op-amp 329
open circuit 12
open collector 420
open core 510
open-circuit 11
open-loop gain 323
operating point 261

linearisation at 261
operating point biasing 286
operating point stabilisation 288

nonlinear 290
operational amplifier 329 ff

characteristics 330
CMRR 332
common-mode gain 331
common-mode input swing 331
common-mode rejection ratio 332
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compensation 334
critical frequency 333
equivalent circuit 333
frequency compensation 334
gain margin 335
gain-bandwidth product 333
input bias current 332
input impedance 332
instrumentation amplifier 340
offset voltage 330
output impedance 332
output voltage swing 330
phase margin 335
power supply rejection ratio 332
PSRR 332
rail-to-rail 330
single supply 330
slew rate 333
transit frequency 333

operational amplifier circuits
AC voltage amplifier 343
bandpass filter circuit 362
compensation of the input bias
current 338

current source 341
difference amplifier 339
differentiator 342
follower 336
high-pass filter circuits 359
integrator 341
inverting amplifier 337
low-pass filter circuits 357
multivibrator 346
sawtooth generator 346
Schmitt-trigger 344
summing amplifier 338
triangle- and square-wave generator
345

voltage setting 343
Or 444
order of a filter 350
Or function 393
Or gate 395
orthogonal 214
oscillation

amplitude criterion 328
barkhausencriterion 328
phase criterion 328

oscillation criterion 328
oscillator 364–370

Barkhausen criterion 364
Colpitts 368

crystal 368
feedback loop gain criterion with
FET 365

gain criterion 364
Hartley 367
LC 367
Meissner 367
phase criterion 364
phase shifter- 365
Pierce 369
quartz 368
RC oscillators 365
Wien bridge 366

out-of-phase current 154
out-of-phase voltage 154
output admittance with open input 266
output admittance with shorted input
267

output characteristic 273, 307
output impedance 142, 321
output impedance, equivalent source
resistance 263

output logic 465
output ROM 467
output spectrum 231
output vector 465
output voltage swing 330
overcompensation 157
overdamped case 26, 27
overload protection

for moving-coil instruments 176
overshoot 239
overview

AC power 156
basic circuits using field-effect
transistor 318

bipolar transistor-basic circuits 296
capacitances of different geometric
configurations 48

characteristics of a magnetic field 94
characteristics of a static steady-state
current flow 63

characteristics of an electrostatic field
52

complex impedances 121
complex number arithmetic 107
counter circuits, CMOS 459
counter circuits, TTL 459
counters 458
dependency notation 425
differential amplifier with bipolar
transistors 304
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differential amplifier with field-effect
transistors 321

filters 194
flip-flop circuits 438
flip-flops 434
flip-flops, edge-triggered 434
Fourier series 213
inductances of different geometric
configurations 82

instruments 173
logic transformations 398
measurement methods 190
notation in data sheets for digital
circuits 412

properties of the Fourier transform
244

resistances of geometric
configurations 61

series and parallel circuits 134
switched-mode power supplies 494
symbols on measurement instruments
188

three-phase system 164

p-channel FET 305
PAL 444, 445

output circuits 446
PAL assembler 463
parallel circuits

transformation to series circuits 135
parallel combination 13–16, 130

of R and C 22, 130
of R and L 129
of R, C and L 132
of capacitances 16, 19
of conductances 14
of inductances 15, 19
of resistors 13

parallel in serial out 447
parallel-equivalent circuit

of a passive component 157
parallel-resonant circuit 132
paramagnetism 69, 74
partially synchronous 457
pascal

unit 534
pass-band 194–196
passive 265
passive components 123

parallel combinations 128 ff
series combination of 123–128

passive elements
dual 139

peak magnitude 99
peak value 113, 115
period 99, 112, 113, 208
periodic

definition 112
periodic quantity 112
periodic signals 208
permanent magnet 80

designing a 81
permeability 69

relative 69
permeability of free space 69
permittivity 44

table 560
peta 531
phase 99, 104
phase constant 237
phase criterion 364
phase current 159
phase delay 237
phase distortion 237
phase error

for instrument transformers 180
phase factor 194
phase frequency characteristic 193
phase margin 335
phase position 113
phase response 193, 197, 201, 269
phase shift 99, 113

lagging 113
leading 113

phase shifter 146
phase shifter oscillator 365
phase shifting

circuits for 146–149
phase spectrum 212
phase voltage 159
phasor

rotating 110
rotation of 106

phasor diagram 110
phasors 110

multiplication with real number 106
sum of 111

�-configuration 145
Pierce oscillator 369
pinch-off voltage 307
PISO 447
PLA 445
PLD 444
PLD types 445

overview 446
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point symmetry 209
poles of a filter function 350
polyphase systems 158
POS 401
positive current direction 1
positive edge-triggered 434
positive feedback 322
positive frequency spectrum 212
positive logic 409
potential 2, 41, 53
powder core 92
powder-core choke 510
power 7

average 7
average value 152
in a reactive element 151
in a resistor 7
instantaneous 7
measurement in a multiphase system
185

power amplifier 376–388
AC voltage gain 387
current-limiting 386
input signal injection 386
negative feedback 386

power attenuation 549
power factor 153, 156

measurement 184
power factor control 504
power factor correction 157
power factor preregulator 477
power in a three-phase system 165
power in static steady-state current flow
62

power loss
in digital logic circuits 412
transistor 273

power matching 264
power measurement 181

AC circuit 182
DC circuit 181
multiphase circuit 185

power signal 208
power supplies 469–475
power supply rejection ratio 332
power transformer 469

internal resistance 470
loss factor 470
no-load voltage 470
primary winding 470
protection 470
rated power 470

rated voltage 470
secondary winding 470
short circuit protection 470

power transistors 385
power, normalised 208
preparatory inputs 432
presettable counter 454
primary switched SMPS 477, 482
prime implicant 406
principal value 103, 517
principle of superposition
31, 192, 220, 262

probe 141
product of sums 400, 401, 405
product rule 518
program ROM 467
programmable counter 449, 454
programmable logic device 439
programmable logic devices 444–448
PROM 443–445
propagation delay time 411
pseudo-Darlington circuit 385
pseudo-Darlington pair 279
pseudostatic RAM 442
PSRR 332
pulsating quantity 112
pulse width 240

definition 240
modulator 346, 388, 496

push–pull converter 489
push–pull converter with common based
transistors 496

push-pull amplifier 379
PWM 346, 388, 496

Q-factor 26, 196
quality 26
quality factor 196
quartz oscillator 368
quiescent current 384
Quine–McCluskey minimisation 406
Quine–McCluskey technique 406

radian frequency 113
radio frequency interference radiation
507

radio frequency interference suppression
507

radio frequency interference voltage
symmetric 509

radio frequency ranges 548
radio noise field strength 507
radio-frequency interference voltage
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differential-mode 508
radio-frequency interference 507
radio-frequency interference filter
508, 510

radio-frequency interference meter 508
radio-frequency interference voltage

asymmetric 508
symmetric 508
unsymmetric 508

RAM 439
arbiter 442
ECC memory 443
multiport RAM 442
pseudostatic RAM 442
ring memory 442
variations 442

RAM controller 442
RAS 442
ratio instrument 169

electrodynamic 172
ratiometer moving-coil instrument 169
RC combinations 19
RC phase shifter 146
RCL combinations 25
reactance 117, 122, 123

capacitive 123
inductive 122

reactive component 152
reactive impedance 117
reactive power 154, 156

from 3-voltmeter measurement 184
measurement in a multiphase system
186

measurement in an AC circuit 183
reactive voltage 154
read-only memory 443
read-write memory see RAM
real current 153
real part 101
real power 153, 156

measurement in a multiphase system
185

real voltage 153
reciprocal, reversible 265
rectangular pulse 222

spectrum 247
rectangular signal

spectrum 217
rectifier 470
reduced products of sums 404
reduced sum of products 402
reduction of logic functions 402

Karnaugh map 402
Quine–McCluskey technique 406

reed frequency meter 172
register 447
relative bandwidth 196
relative permeability 69
relative permittivity 44
relative quantities 532
reliability 371
remanent flux density 76
reset 434
resistance 3, 57, 117

temperature dependency of 3
resistive component 152
resistivity 56, 559
resistor standard series 541
resonance 128
resonant circuit 26
resonant converter 477, 491
resonant frequency 26, 128, 133
reverse current 270
reverse transconductance with shorted
input 267

reverse voltage transfer ratio with open
input 266

reverse voltage-transfer ratio 276
right-hand rule 66
ring memory 442
ripple voltage 471
ripple-through counter 450
rise time 199, 411
RL combinations 19
RMS 170
RMS measurement 180
RMS value 114, 115
ROM 439, 443
root mean square (RMS) 115
rotary magnet instrument 171
rotating phasor 106
rotation 106, 108
RS flip-flop 429
RS232 552
RTL 419

saturation flux density 76
sawtooth generator 346
sawtooth signal

spectrum 218
Schmitt trigger 422
schmitttrigger 344
Schottky TTL series 415
second-order systems

impulse response 234
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step response 234
secondary switched SMPS 477
selecting track dimensions for current
flow 544

self reciprocal function 249
self-induction 87
semi-synchronous counters 447
semiconductor memory 439
semisynchronous 457
sequential circuit 423
sequential logic 423

synthesis of 460
serial in parallel out 447
series and parallel circuits

overview 134
series circuits

transformation to parallel circuits
135

series combination 13–16
of R and C 21, 125
of R and L 124
of R, C and L 126
of R, L and C 26
of capacitances 16, 19
of conductances 14
of inductances 15, 19
of resistors 13

series combination of AC impedances
123

series equivalent circuit
of a passive component 157

series-resonant circuit 126
set 434
settling processes 19 ff, 25 ff
settling time 239
seven-segment code 458
shape factor 196
shielding 42

electrostatic 42
magnetic 75

shift register 447
short circuit 11
short-circuit current 11
shortening minterms 407
shunt resistor 174
SI base units

definition 530
Si function 239
SI units in electrical engineering 532
siemens 3, 56, 57
signal-to-intermodulation ratio 255
signals and systems 208

signum function 246
spectrum 246

Silicon diode 269
sinc function

definition 238
sine function 99, 109

basic terms 99
with complex argument 109

single-transistor forward converter
486, 495

sinusoidal quantity 112
sinusoidal waveforms

sum of 100
SI system 530
skin effect 503
slew rate 333, 412
small signal 261
small-signal amplifier 271, 305
small-signal current gain 274
small-signal equivalent circuit 262
SMPS 476
snubber circuit 484
soft iron 77
soft-iron instrument 171
SOP 400
source 305
source field 40
source follower 316, 318
source pointer system 64
source resistance 11, 12
specific resistance

table 559
specific thermal capacity 375
spectrum

composite signal 219
delta function 245
Gaussian pulse 248
of elementary signals 245–249
of harmonic functions 249
rectangular pulse 247
sawtooth signal 218
signum function 246
step function 246
triangular pulse 247

SR flip-flop 429, 434, 436
clocked 430

SR flip-flop with clock input 430
SRAM 441
standard distribution 527
standard series

IEC 541
standard TTL series 415



618 Index

star circuit
transformation to a delta circuit 137

star–configuration 17
star–connected generator 162
star–delta start 164
star–delta transformation 17, 138
start

star–delta 165
state memory 465
state vector 465
static component 412
static load line 290
static RAM 441
static steady-state current flow 53–64

at boundaries 60
step function 222

spectrum 246
step response 19 ff, 29, 227

first-order systems 232
second-order systems 234

step response calculation 231
step-down converter 477
step-up converter 479
stop-band 194–196
stop-band filter 197
sum of products 400
summary of Fourier transforms 250 ff
summation point 267
summing amplifier 338
superposition 31
susceptance 119
switched mode power supplies

control of 496
overview 494
primary switched 477, 482
radio frequency interference radiation
507

radio frequency interference
suppression 507

secondary switched 477
switched-capacitor filter 363
switched-mode amplifiers 388
switched-mode power supplies 476
symbols on measurement instruments
188

symmetric function 209
symmetric radio frequency interference
voltage 509

symmetric radio-frequency interference
voltage 508

symmetrical 265
synchronous counters 447, 455

synchronous sequential logic 464
synthesis of combinational circuits 408
system response 226

impulse reponse 226
step response 227
to arbitrary input signals 228

systems
linear, definition 220
stable, definition 222
time-invariant, definition 221

T flip-flop 434, 437
table

Fourier expansion into a series 215
Fourier transforms 250 ff

T-configuration 145
temperature calculation for components
373

temperature coefficient 3
temperature coefficient of the input offset
voltage 302

tera 531
tesla 66

unit 534
THD 254
THD, nth order 255
thermal capacity 374
thermal compound 371
thermal impedance

transient 375
thermal instruments 171
thermal paste 371
thermal resistance 373
thermal voltage 270
thermal voltage drift 275
thermal voltage drift gain 289
Thévenin’s theorem 33
Thévenizing 35
three-ammeter method 183
three-phase supplies 158
three-phase system 159

overview 164
three-phase systems 159
three-voltmeter method 183
three-wattmeter circuit 187
threshold voltage 270, 307, 409

temperature dependency 270
time constant 19, 147
time scaling of signals 225
time shift of signals 225
time–bandwidth product 239
time-invariant systems 221
toggle 450
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toggle flip-flop 432
total harmonic distortion 116, 254
total harmonic distortion attenuation
255

total harmonic distortion, nth order 255
track dimensions for current flow 544
transconductance 275, 308
transconductance amplifier 324
transfer characteristic 273, 307, 409
transfer function
192, 197, 200, 230, 231, 267
definition 230

transformer 90
rated voltage 471

transient 99
transient thermal impedance 375
transimpedance amplifier 324
transistor characteristics 272

base 272
collector 272
emitter 272

transistor–transistor logic 414
transit frequency 333
transition combinational circuit 465
transparency

in flip-flops 431
tri-state 422, 424, 447
triangle- and square-wave generator 345
triangular pulse 223

spectrum 247
triggering of flip-flops 432
trigonometric functions 513

addition theorems 515
inverse 517
products 516
properties 513

true RMS measurement 180
truth table 392
TTL 414

basic structure 416
TTL devices

technical data 415, 416
two-port network 265

active 265
asymmetrical 265
linear 265
nonreactive 265
passive 265
reversible 265
symmetrical 265

two-port network equations 265
two-port network parameters 265

two-terminal network 264
two-tone signal 255
two-transistor forward converter
488, 495

two-wattmeter method 186

uncertainty principle 240
underdamped case 26, 28
uninterruptable power supplies 469
unit 531
units

decimal prefixes 531
unity gain frequency 276
universal filter 363
unsymmetric radio-frequency
interference voltage 508

up counter 449
up/down counter 449, 454
upper cutoff frequency 196
UPS 469
useful Fourier series 215

V.24 552
VAR 154
versor 104
vibration instrument 172
volt–ampere 155
volt–ampere reactive 154
voltage 2, 41, 53

electric 2
line 159
magnetic 71

voltage amplifier 324
voltage attenuation 549
voltage divider 18

capacitive 19
compensated 141
complex 140
complex loaded 142
inductive 19
with def. i/o-resistances 145

voltage division 140
voltage error

with instrument transformers 180
voltage error circuit 181
voltage gain 291
voltage level 409
voltage measurement

AC 177
DC 174

voltage path 182
voltage regulation 475
voltage regulator
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for variable output voltage 475
integrated 475
pulse width modulated 496

voltage setting with defined slew rate
343

voltage source 5, 13
conversion into current source 13
ideal 5
real 11

voltage stabilisation 473
analogue 473
with Zener diode 473

voltage transformer 179
voltage variation 473
voltage-divider rule 18
voltage-related internal resistance 176

walking-ring counter 449
watt 7, 153
weber 70

unit 534
weighting function 226
Weiss domain 75
Wien bridge 150
Wien bridge oscillator 366
wire diameter 500

wire gauge
American 545

wired And 420
wired Or 420
work in static steady-state current flow
62

write cycle time 441
write pulse width 441
wye see star
wye circuit

transformation to a delta circuit 137
wye–delta transformation 17, 137
wye-connected generator 162

X-capacitor 510
Xor 396
Xor gate 396

Y-capacitor 509
y-parameters 266

ZCS push–pull resonant converter
491, 496

ZCS resonant converters 491
Zener diode 473
zero-point

artificial 185
ZVS resonant converters 491


